Abstract

An explicit method for determination of the Mueller matrix elements of a commercial long-period fiber grating inscribed with ultraviolet CW laser irradiation (UV-LPFG) is presented. From the Mueller matrix obtained for such UV-LPFG, the full polarimetric response of the grating was found. Our polarimetric analysis was focused mainly on the polarization-dependent loss and other polarimetric properties, such as the polarizance, the depolarization index, and the diattenuation parameters. The full polarimetric analysis allows us to obtain more complete information than the usually reported ones, in which only two orthogonal linear polarizations are considered; for example, with our analysis, we prove that a small depolarization effect is inherent in UV-LPFG and that attenuation depends on the polarization state. This additional polarimetric information could be useful to control the output LPFG signal, for instance, for the realization of wavelength switchable or Q-switched fiber lasers, among other applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. R. Pedrazzani, J. B. Judkins, and V. Bhatia, “Long-period fiber-grating as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
    [CrossRef]
  2. A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, and L. Rivoallan, “Long-period fiber grating as a wavelength selective polarization element,” Electron. Lett. 33, 616–617 (1997).
    [CrossRef]
  3. C. Y. Lin, L. A. Wang, and G. W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19, 1159–1168 (2001).
    [CrossRef]
  4. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [CrossRef]
  5. D. E. Ceballos-Herrera, I. Torres-Gómez, A. Martínez-Rios, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sensors J. 10, 1200–1205 (2010).
    [CrossRef]
  6. B. J. Eggleton, R. E. Slusher, J. B. Judkins, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883–885 (1997).
    [CrossRef]
  7. J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1232–1245 (1997).
    [CrossRef]
  8. M. K. Pandit, K. S. Chiang, Z. H. Chen, and S. P. Li, “Tunable long-period fiber gratings for EDFA Gain and ASE equalization,” Microwave Opt. Technol. Let. 25, 181–184 (2000).
    [CrossRef]
  9. J. R. Qian and H. F. Chen, “Gain flattening fiber filters using phase-shifted long period gratings,” Electron. Lett. 34, 1132–1133 (1998).
    [CrossRef]
  10. A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, and P. J. Lemaire, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21, 336–338 (1996).
    [CrossRef]
  11. M. Yan, S. Luo, L. Zhan, Z. Zhang, and Y. Xia, “Triple-wavelength switchable erbium-doped fiber laser with cascaded asymmetric exposure long-period fiber gratings,” Opt. Express 15, 3685–3691 (2007).
    [CrossRef]
  12. X. J. Gu, “Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber gratings,” Opt. Lett. 23, 509–510 (1998).
    [CrossRef]
  13. B. L. Bachim and T. K. Gaylord, “Polarization-dependent loss and birefringence in long-period fiber gratings,” Appl. Opt. 42, 6816–6823 (2003).
    [CrossRef]
  14. R. S. Hyung, P. Yongwoo, O. T. Seong, C. Youngjoo, and K. Y. Dung, “Effect of asymmetric stress relaxation on the polarization-dependent transmission characteristics of a CO2 laser-written long-period fiber grating,” Opt. Lett. 28, 155–157 (2003).
    [CrossRef]
  15. H. Ryu, Y. Park, and D. Y. Kim, “Asymmetric stress distribution analysis on the polarization dependent loss in a CO2 laser-written long period fiber grating,” in Optical Fiber Communication Conference (OFC) (IEEE, 2003), Vol. 2, pp. 569–570.
  16. A. Martínez-Rios, D. Monzón-Hernández, I. Torres-Gómez, and G. Salceda-Delgado, “Long period fibre gratings,” in Fiber Optic Sensors, M. Yasin, ed. Chap. 11 (InTech, 2012).
  17. K. Nishide, A. Wada, Y. Ishii, K. Shima, and S. Okude, “PDL suppression on long-period fiber gratings by azimuthally isotropic exposure,” IEICE Trans. Electron. 85, 934–939 (2002).
  18. G. Rego, M. Melo, J. L. Santos, and H. M. Salgado, “Polarization dependent loss of arc-induced long-period fiber gratings,” Opt. Commun. 262, 152–156 (2006).
    [CrossRef]
  19. K. M. Salas-Alcántara, R. Espinosa-Luna, and I. Torres-Gómez, “Polarimetric Mueller-Stokes analysis of photonic crystal fibers with mechanically induced long-period gratings,” Opt. Eng. 51, 085005 (2012).
    [CrossRef]
  20. R. Espinosa-Luna, G. Atondo-Rubio, and A. Mendoza-Suárez, “Complete determination of the conical Mueller matrix for one-dimensional rough metallic surfaces,” Opt. Commun. 257, 62–71 (2006).
    [CrossRef]
  21. G. Atondo-Rubio, R. Espinosa-Luna, and A. Mendoza-Suárez, “Mueller matrix determination for one-dimensional rough surface with a reduced number of measurements,” Opt. Commun. 244, 7–13 (2005).
    [CrossRef]
  22. D. S. Sabatke, M. R. Descour, E. L. Deniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipss, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804 (2000).
    [CrossRef]
  23. J. S. Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error,” Appl. Opt. 41, 619–630 (2002).
    [CrossRef]
  24. H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274, 116–123 (2007).
    [CrossRef]
  25. D. H. Goldstein, Polarized Light (CRC Press, 2011).
  26. R. Espinosa-Luna, G. Atondo-Rubio, E. Bernabeu, and S. Hinojosa-Ruíz, “Dealing depolarization of light in Mueller matrices with scalar metrics,” Optik 121, 1058–1068 (2010).
    [CrossRef]
  27. A. Ghatak and K. Thyagarajan, An Introduction to Fiber Optics (Cambridge University, 1998).
  28. H. Renner, “Effective-index increase, form birefringence and transition losses in UV-side-illuminated photosensitive fibers,” Opt. Express 9, 546–550 (2001).
    [CrossRef]
  29. K. Dossou, S. LaRochelle, and M. Fontaine, “Numerical analysis of the contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber,” J. Lightwave Technol. 20, 1463–1470 (2002).
    [CrossRef]
  30. O. Duhem and M. Douay, “Effect of UV-induced birefringence on long-period-grating coupling characteristics,” Electron. Lett. 36, 416–417 (2000).
    [CrossRef]
  31. T. A. Eftimov, W. J. Bock, J. Chen, and P. Mikulic, “Muller-Stokes analysis of long-period gratings part I: uniformly birefringent LPGs,” J. Lightwave Technol. 27, 3752–3758 (2009).
    [CrossRef]
  32. T. A. Eftimov, W. J. Bock, P. Mikulic, and J. Chen, “Analysis of long-period gratings part II: randomly birefringent LPGs,” J. Lightwave Technol. 27, 3759–3764 (2009).
    [CrossRef]

2012 (1)

K. M. Salas-Alcántara, R. Espinosa-Luna, and I. Torres-Gómez, “Polarimetric Mueller-Stokes analysis of photonic crystal fibers with mechanically induced long-period gratings,” Opt. Eng. 51, 085005 (2012).
[CrossRef]

2010 (2)

R. Espinosa-Luna, G. Atondo-Rubio, E. Bernabeu, and S. Hinojosa-Ruíz, “Dealing depolarization of light in Mueller matrices with scalar metrics,” Optik 121, 1058–1068 (2010).
[CrossRef]

D. E. Ceballos-Herrera, I. Torres-Gómez, A. Martínez-Rios, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sensors J. 10, 1200–1205 (2010).
[CrossRef]

2009 (2)

2007 (2)

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274, 116–123 (2007).
[CrossRef]

M. Yan, S. Luo, L. Zhan, Z. Zhang, and Y. Xia, “Triple-wavelength switchable erbium-doped fiber laser with cascaded asymmetric exposure long-period fiber gratings,” Opt. Express 15, 3685–3691 (2007).
[CrossRef]

2006 (2)

G. Rego, M. Melo, J. L. Santos, and H. M. Salgado, “Polarization dependent loss of arc-induced long-period fiber gratings,” Opt. Commun. 262, 152–156 (2006).
[CrossRef]

R. Espinosa-Luna, G. Atondo-Rubio, and A. Mendoza-Suárez, “Complete determination of the conical Mueller matrix for one-dimensional rough metallic surfaces,” Opt. Commun. 257, 62–71 (2006).
[CrossRef]

2005 (1)

G. Atondo-Rubio, R. Espinosa-Luna, and A. Mendoza-Suárez, “Mueller matrix determination for one-dimensional rough surface with a reduced number of measurements,” Opt. Commun. 244, 7–13 (2005).
[CrossRef]

2003 (2)

2002 (3)

2001 (2)

2000 (3)

M. K. Pandit, K. S. Chiang, Z. H. Chen, and S. P. Li, “Tunable long-period fiber gratings for EDFA Gain and ASE equalization,” Microwave Opt. Technol. Let. 25, 181–184 (2000).
[CrossRef]

O. Duhem and M. Douay, “Effect of UV-induced birefringence on long-period-grating coupling characteristics,” Electron. Lett. 36, 416–417 (2000).
[CrossRef]

D. S. Sabatke, M. R. Descour, E. L. Deniak, W. C. Sweatt, S. A. Kemme, and G. S. Phipss, “Optimization of retardance for a complete Stokes polarimeter,” Opt. Lett. 25, 802–804 (2000).
[CrossRef]

1998 (2)

X. J. Gu, “Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber gratings,” Opt. Lett. 23, 509–510 (1998).
[CrossRef]

J. R. Qian and H. F. Chen, “Gain flattening fiber filters using phase-shifted long period gratings,” Electron. Lett. 34, 1132–1133 (1998).
[CrossRef]

1997 (3)

J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1232–1245 (1997).
[CrossRef]

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, and L. Rivoallan, “Long-period fiber grating as a wavelength selective polarization element,” Electron. Lett. 33, 616–617 (1997).
[CrossRef]

B. J. Eggleton, R. E. Slusher, J. B. Judkins, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883–885 (1997).
[CrossRef]

1996 (3)

Atondo-Rubio, G.

R. Espinosa-Luna, G. Atondo-Rubio, E. Bernabeu, and S. Hinojosa-Ruíz, “Dealing depolarization of light in Mueller matrices with scalar metrics,” Optik 121, 1058–1068 (2010).
[CrossRef]

R. Espinosa-Luna, G. Atondo-Rubio, and A. Mendoza-Suárez, “Complete determination of the conical Mueller matrix for one-dimensional rough metallic surfaces,” Opt. Commun. 257, 62–71 (2006).
[CrossRef]

G. Atondo-Rubio, R. Espinosa-Luna, and A. Mendoza-Suárez, “Mueller matrix determination for one-dimensional rough surface with a reduced number of measurements,” Opt. Commun. 244, 7–13 (2005).
[CrossRef]

Bachim, B. L.

Bayon, J. F.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, and L. Rivoallan, “Long-period fiber grating as a wavelength selective polarization element,” Electron. Lett. 33, 616–617 (1997).
[CrossRef]

Bernabeu, E.

R. Espinosa-Luna, G. Atondo-Rubio, E. Bernabeu, and S. Hinojosa-Ruíz, “Dealing depolarization of light in Mueller matrices with scalar metrics,” Optik 121, 1058–1068 (2010).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. R. Pedrazzani, J. B. Judkins, and V. Bhatia, “Long-period fiber-grating as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef]

Bock, W. J.

Ceballos-Herrera, D. E.

D. E. Ceballos-Herrera, I. Torres-Gómez, A. Martínez-Rios, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sensors J. 10, 1200–1205 (2010).
[CrossRef]

Chen, H. F.

J. R. Qian and H. F. Chen, “Gain flattening fiber filters using phase-shifted long period gratings,” Electron. Lett. 34, 1132–1133 (1998).
[CrossRef]

Chen, J.

Chen, Z. H.

M. K. Pandit, K. S. Chiang, Z. H. Chen, and S. P. Li, “Tunable long-period fiber gratings for EDFA Gain and ASE equalization,” Microwave Opt. Technol. Let. 25, 181–184 (2000).
[CrossRef]

Chern, G. W.

Chiang, K. S.

M. K. Pandit, K. S. Chiang, Z. H. Chen, and S. P. Li, “Tunable long-period fiber gratings for EDFA Gain and ASE equalization,” Microwave Opt. Technol. Let. 25, 181–184 (2000).
[CrossRef]

Deniak, E. L.

Descour, M. R.

Dong, H.

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274, 116–123 (2007).
[CrossRef]

Dossou, K.

Douay, M.

O. Duhem and M. Douay, “Effect of UV-induced birefringence on long-period-grating coupling characteristics,” Electron. Lett. 36, 416–417 (2000).
[CrossRef]

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, and L. Rivoallan, “Long-period fiber grating as a wavelength selective polarization element,” Electron. Lett. 33, 616–617 (1997).
[CrossRef]

Duhem, O.

O. Duhem and M. Douay, “Effect of UV-induced birefringence on long-period-grating coupling characteristics,” Electron. Lett. 36, 416–417 (2000).
[CrossRef]

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, and L. Rivoallan, “Long-period fiber grating as a wavelength selective polarization element,” Electron. Lett. 33, 616–617 (1997).
[CrossRef]

Dung, K. Y.

Eftimov, T. A.

Eggleton, B. J.

B. J. Eggleton, R. E. Slusher, J. B. Judkins, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883–885 (1997).
[CrossRef]

J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1232–1245 (1997).
[CrossRef]

Espinosa-Luna, R.

K. M. Salas-Alcántara, R. Espinosa-Luna, and I. Torres-Gómez, “Polarimetric Mueller-Stokes analysis of photonic crystal fibers with mechanically induced long-period gratings,” Opt. Eng. 51, 085005 (2012).
[CrossRef]

R. Espinosa-Luna, G. Atondo-Rubio, E. Bernabeu, and S. Hinojosa-Ruíz, “Dealing depolarization of light in Mueller matrices with scalar metrics,” Optik 121, 1058–1068 (2010).
[CrossRef]

R. Espinosa-Luna, G. Atondo-Rubio, and A. Mendoza-Suárez, “Complete determination of the conical Mueller matrix for one-dimensional rough metallic surfaces,” Opt. Commun. 257, 62–71 (2006).
[CrossRef]

G. Atondo-Rubio, R. Espinosa-Luna, and A. Mendoza-Suárez, “Mueller matrix determination for one-dimensional rough surface with a reduced number of measurements,” Opt. Commun. 244, 7–13 (2005).
[CrossRef]

Fontaine, M.

Gaylord, T. K.

Ghatak, A.

A. Ghatak and K. Thyagarajan, An Introduction to Fiber Optics (Cambridge University, 1998).

Goldstein, D. H.

D. H. Goldstein, Polarized Light (CRC Press, 2011).

Gong, Y. D.

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274, 116–123 (2007).
[CrossRef]

Gu, X. J.

Henninot, J. F.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, and L. Rivoallan, “Long-period fiber grating as a wavelength selective polarization element,” Electron. Lett. 33, 616–617 (1997).
[CrossRef]

Hinojosa-Ruíz, S.

R. Espinosa-Luna, G. Atondo-Rubio, E. Bernabeu, and S. Hinojosa-Ruíz, “Dealing depolarization of light in Mueller matrices with scalar metrics,” Optik 121, 1058–1068 (2010).
[CrossRef]

Hyung, R. S.

Ishii, Y.

K. Nishide, A. Wada, Y. Ishii, K. Shima, and S. Okude, “PDL suppression on long-period fiber gratings by azimuthally isotropic exposure,” IEICE Trans. Electron. 85, 934–939 (2002).

Judkins, J. B.

Kemme, S. A.

Kim, D. Y.

H. Ryu, Y. Park, and D. Y. Kim, “Asymmetric stress distribution analysis on the polarization dependent loss in a CO2 laser-written long period fiber grating,” in Optical Fiber Communication Conference (OFC) (IEEE, 2003), Vol. 2, pp. 569–570.

Kurkov, A. S.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, and L. Rivoallan, “Long-period fiber grating as a wavelength selective polarization element,” Electron. Lett. 33, 616–617 (1997).
[CrossRef]

Kutz, J. N.

J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1232–1245 (1997).
[CrossRef]

LaRochelle, S.

Leleu, B.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, and L. Rivoallan, “Long-period fiber grating as a wavelength selective polarization element,” Electron. Lett. 33, 616–617 (1997).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. R. Pedrazzani, J. B. Judkins, and V. Bhatia, “Long-period fiber-grating as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, and P. J. Lemaire, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21, 336–338 (1996).
[CrossRef]

Li, S. P.

M. K. Pandit, K. S. Chiang, Z. H. Chen, and S. P. Li, “Tunable long-period fiber gratings for EDFA Gain and ASE equalization,” Microwave Opt. Technol. Let. 25, 181–184 (2000).
[CrossRef]

Lin, C. Y.

Luo, S.

Martínez-Rios, A.

D. E. Ceballos-Herrera, I. Torres-Gómez, A. Martínez-Rios, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sensors J. 10, 1200–1205 (2010).
[CrossRef]

A. Martínez-Rios, D. Monzón-Hernández, I. Torres-Gómez, and G. Salceda-Delgado, “Long period fibre gratings,” in Fiber Optic Sensors, M. Yasin, ed. Chap. 11 (InTech, 2012).

Melo, M.

G. Rego, M. Melo, J. L. Santos, and H. M. Salgado, “Polarization dependent loss of arc-induced long-period fiber gratings,” Opt. Commun. 262, 152–156 (2006).
[CrossRef]

Mendoza-Suárez, A.

R. Espinosa-Luna, G. Atondo-Rubio, and A. Mendoza-Suárez, “Complete determination of the conical Mueller matrix for one-dimensional rough metallic surfaces,” Opt. Commun. 257, 62–71 (2006).
[CrossRef]

G. Atondo-Rubio, R. Espinosa-Luna, and A. Mendoza-Suárez, “Mueller matrix determination for one-dimensional rough surface with a reduced number of measurements,” Opt. Commun. 244, 7–13 (2005).
[CrossRef]

Mikulic, P.

Monzón-Hernández, D.

A. Martínez-Rios, D. Monzón-Hernández, I. Torres-Gómez, and G. Salceda-Delgado, “Long period fibre gratings,” in Fiber Optic Sensors, M. Yasin, ed. Chap. 11 (InTech, 2012).

Ning, G. X.

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274, 116–123 (2007).
[CrossRef]

Nishide, K.

K. Nishide, A. Wada, Y. Ishii, K. Shima, and S. Okude, “PDL suppression on long-period fiber gratings by azimuthally isotropic exposure,” IEICE Trans. Electron. 85, 934–939 (2002).

Okude, S.

K. Nishide, A. Wada, Y. Ishii, K. Shima, and S. Okude, “PDL suppression on long-period fiber gratings by azimuthally isotropic exposure,” IEICE Trans. Electron. 85, 934–939 (2002).

Pandit, M. K.

M. K. Pandit, K. S. Chiang, Z. H. Chen, and S. P. Li, “Tunable long-period fiber gratings for EDFA Gain and ASE equalization,” Microwave Opt. Technol. Let. 25, 181–184 (2000).
[CrossRef]

Park, Y.

H. Ryu, Y. Park, and D. Y. Kim, “Asymmetric stress distribution analysis on the polarization dependent loss in a CO2 laser-written long period fiber grating,” in Optical Fiber Communication Conference (OFC) (IEEE, 2003), Vol. 2, pp. 569–570.

Pedrazzani, J. R.

A. M. Vengsarkar, P. J. Lemaire, J. R. Pedrazzani, J. B. Judkins, and V. Bhatia, “Long-period fiber-grating as band-rejection filters,” J. Lightwave Technol. 14, 58–65 (1996).
[CrossRef]

A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, and P. J. Lemaire, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21, 336–338 (1996).
[CrossRef]

Phipss, G. S.

Qian, J. R.

J. R. Qian and H. F. Chen, “Gain flattening fiber filters using phase-shifted long period gratings,” Electron. Lett. 34, 1132–1133 (1998).
[CrossRef]

Rego, G.

G. Rego, M. Melo, J. L. Santos, and H. M. Salgado, “Polarization dependent loss of arc-induced long-period fiber gratings,” Opt. Commun. 262, 152–156 (2006).
[CrossRef]

Renner, H.

Rivoallan, L.

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, and L. Rivoallan, “Long-period fiber grating as a wavelength selective polarization element,” Electron. Lett. 33, 616–617 (1997).
[CrossRef]

Ryu, H.

H. Ryu, Y. Park, and D. Y. Kim, “Asymmetric stress distribution analysis on the polarization dependent loss in a CO2 laser-written long period fiber grating,” in Optical Fiber Communication Conference (OFC) (IEEE, 2003), Vol. 2, pp. 569–570.

Sabatke, D. S.

Salas-Alcántara, K. M.

K. M. Salas-Alcántara, R. Espinosa-Luna, and I. Torres-Gómez, “Polarimetric Mueller-Stokes analysis of photonic crystal fibers with mechanically induced long-period gratings,” Opt. Eng. 51, 085005 (2012).
[CrossRef]

Salceda-Delgado, G.

A. Martínez-Rios, D. Monzón-Hernández, I. Torres-Gómez, and G. Salceda-Delgado, “Long period fibre gratings,” in Fiber Optic Sensors, M. Yasin, ed. Chap. 11 (InTech, 2012).

Salgado, H. M.

G. Rego, M. Melo, J. L. Santos, and H. M. Salgado, “Polarization dependent loss of arc-induced long-period fiber gratings,” Opt. Commun. 262, 152–156 (2006).
[CrossRef]

Sanchez-Mondragon, J. J.

D. E. Ceballos-Herrera, I. Torres-Gómez, A. Martínez-Rios, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sensors J. 10, 1200–1205 (2010).
[CrossRef]

Santos, J. L.

G. Rego, M. Melo, J. L. Santos, and H. M. Salgado, “Polarization dependent loss of arc-induced long-period fiber gratings,” Opt. Commun. 262, 152–156 (2006).
[CrossRef]

Seong, O. T.

Shima, K.

K. Nishide, A. Wada, Y. Ishii, K. Shima, and S. Okude, “PDL suppression on long-period fiber gratings by azimuthally isotropic exposure,” IEICE Trans. Electron. 85, 934–939 (2002).

Shum, P.

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274, 116–123 (2007).
[CrossRef]

Slusher, R. E.

B. J. Eggleton, R. E. Slusher, J. B. Judkins, and A. M. Vengsarkar, “All-optical switching in long-period fiber gratings,” Opt. Lett. 22, 883–885 (1997).
[CrossRef]

J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1232–1245 (1997).
[CrossRef]

Stark, J. B.

J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1232–1245 (1997).
[CrossRef]

Sweatt, W. C.

Thyagarajan, K.

A. Ghatak and K. Thyagarajan, An Introduction to Fiber Optics (Cambridge University, 1998).

Torres-Gómez, I.

K. M. Salas-Alcántara, R. Espinosa-Luna, and I. Torres-Gómez, “Polarimetric Mueller-Stokes analysis of photonic crystal fibers with mechanically induced long-period gratings,” Opt. Eng. 51, 085005 (2012).
[CrossRef]

D. E. Ceballos-Herrera, I. Torres-Gómez, A. Martínez-Rios, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sensors J. 10, 1200–1205 (2010).
[CrossRef]

A. Martínez-Rios, D. Monzón-Hernández, I. Torres-Gómez, and G. Salceda-Delgado, “Long period fibre gratings,” in Fiber Optic Sensors, M. Yasin, ed. Chap. 11 (InTech, 2012).

Tyo, J. S.

Vengsarkar, A. M.

Wada, A.

K. Nishide, A. Wada, Y. Ishii, K. Shima, and S. Okude, “PDL suppression on long-period fiber gratings by azimuthally isotropic exposure,” IEICE Trans. Electron. 85, 934–939 (2002).

Wang, L. A.

Wu, C. Q.

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274, 116–123 (2007).
[CrossRef]

Xia, Y.

Yan, M.

M. Yan, S. Luo, L. Zhan, Z. Zhang, and Y. Xia, “Triple-wavelength switchable erbium-doped fiber laser with cascaded asymmetric exposure long-period fiber gratings,” Opt. Express 15, 3685–3691 (2007).
[CrossRef]

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274, 116–123 (2007).
[CrossRef]

Yongwoo, P.

Youngjoo, C.

Zhan, L.

Zhang, Z.

Zhou, J. Q.

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274, 116–123 (2007).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (3)

A. S. Kurkov, M. Douay, O. Duhem, B. Leleu, J. F. Henninot, J. F. Bayon, and L. Rivoallan, “Long-period fiber grating as a wavelength selective polarization element,” Electron. Lett. 33, 616–617 (1997).
[CrossRef]

J. R. Qian and H. F. Chen, “Gain flattening fiber filters using phase-shifted long period gratings,” Electron. Lett. 34, 1132–1133 (1998).
[CrossRef]

O. Duhem and M. Douay, “Effect of UV-induced birefringence on long-period-grating coupling characteristics,” Electron. Lett. 36, 416–417 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. N. Kutz, B. J. Eggleton, J. B. Stark, and R. E. Slusher, “Nonlinear pulse propagation in long-period fiber gratings: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 3, 1232–1245 (1997).
[CrossRef]

IEEE Sensors J. (1)

D. E. Ceballos-Herrera, I. Torres-Gómez, A. Martínez-Rios, and J. J. Sanchez-Mondragon, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sensors J. 10, 1200–1205 (2010).
[CrossRef]

IEICE Trans. Electron. (1)

K. Nishide, A. Wada, Y. Ishii, K. Shima, and S. Okude, “PDL suppression on long-period fiber gratings by azimuthally isotropic exposure,” IEICE Trans. Electron. 85, 934–939 (2002).

J. Lightwave Technol. (5)

Microwave Opt. Technol. Let. (1)

M. K. Pandit, K. S. Chiang, Z. H. Chen, and S. P. Li, “Tunable long-period fiber gratings for EDFA Gain and ASE equalization,” Microwave Opt. Technol. Let. 25, 181–184 (2000).
[CrossRef]

Opt. Commun. (4)

G. Rego, M. Melo, J. L. Santos, and H. M. Salgado, “Polarization dependent loss of arc-induced long-period fiber gratings,” Opt. Commun. 262, 152–156 (2006).
[CrossRef]

R. Espinosa-Luna, G. Atondo-Rubio, and A. Mendoza-Suárez, “Complete determination of the conical Mueller matrix for one-dimensional rough metallic surfaces,” Opt. Commun. 257, 62–71 (2006).
[CrossRef]

G. Atondo-Rubio, R. Espinosa-Luna, and A. Mendoza-Suárez, “Mueller matrix determination for one-dimensional rough surface with a reduced number of measurements,” Opt. Commun. 244, 7–13 (2005).
[CrossRef]

H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274, 116–123 (2007).
[CrossRef]

Opt. Eng. (1)

K. M. Salas-Alcántara, R. Espinosa-Luna, and I. Torres-Gómez, “Polarimetric Mueller-Stokes analysis of photonic crystal fibers with mechanically induced long-period gratings,” Opt. Eng. 51, 085005 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Optik (1)

R. Espinosa-Luna, G. Atondo-Rubio, E. Bernabeu, and S. Hinojosa-Ruíz, “Dealing depolarization of light in Mueller matrices with scalar metrics,” Optik 121, 1058–1068 (2010).
[CrossRef]

Other (4)

A. Ghatak and K. Thyagarajan, An Introduction to Fiber Optics (Cambridge University, 1998).

D. H. Goldstein, Polarized Light (CRC Press, 2011).

H. Ryu, Y. Park, and D. Y. Kim, “Asymmetric stress distribution analysis on the polarization dependent loss in a CO2 laser-written long period fiber grating,” in Optical Fiber Communication Conference (OFC) (IEEE, 2003), Vol. 2, pp. 569–570.

A. Martínez-Rios, D. Monzón-Hernández, I. Torres-Gómez, and G. Salceda-Delgado, “Long period fibre gratings,” in Fiber Optic Sensors, M. Yasin, ed. Chap. 11 (InTech, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup applied for the determination of the Mueller matrix associated with a UV-LPFG.

Fig. 2.
Fig. 2.

Transmission wavelength response of the UV-LPFG under study, the resonance is centered at 1543 nm.

Fig. 3.
Fig. 3.

Mueller matrix associated to the fiber studied here at 1543 nm with (a) unnormalized gain, (b) output degree of polarization, (c) the Poincaré output sphere, and (d) attenuation.

Fig. 4.
Fig. 4.

Mueller matrix associated with the UV-LPFG with (a) unnormalized gain, (b) the output degree of polarization, (c) the Poincaré output sphere, (d) the attenuation, (e) the total, linear, and circular diattenuation and polarizance parameters, (f) the total diattenuation and polarizance for the fiber with and without the grating, (g) PDL for the fiber with and without the UV-LPFG, and (h) the depolarization index for the fiber with and without the grating.

Tables (2)

Tables Icon

Table 1. Polarization-Dependent Parameters Attainable from the Mueller Matrix

Tables Icon

Table 2. Polarimetric Data Obtained from the Mueller Matrix Associated with the UV-LPFG

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

So=MSi(s0os1os2os3o)=[m00m01m02m03m10m11m12m13m20m21m22m23m30m31m32m33](s0is1is2is3i)=(m00s0i+m01s1i+m02s2i+m03s3im10s0i+m11s1i+m12s2i+m13s3im20s0i+m21s1i+m22s2i+m23s3im30s0i+m31s1i+m32s2i+m33s3i),
S=s0(1cos(2χ)cos(2ψ)cos(2χ)sin(2ψ)sin(2χ)),
0DI(M)={j,k=03mjk2m002}1/2/3m001
0DoP(M,S)=(s1o)2+(s2o)2+(s3o)2s0o=[j=13(mj0s0i+mj1s1i+mj2s2i+mj3s3i)2]12m00s0i+m01s1i+m02s2i+m03s3i1
0Add=(DoP)Maxo(DoP)mino(DoP)Maxo+(DoP)mino1
0D(M)=m012+m022+m032/m001
0P(M)=m102+m202+m302/m001
0Q(M)=j=1,k=03mjk2k=03m0k2=3[DI(M)]2[D(M)]21+[D(M)]2={j,k=13mjk2}/m002+[P(M)]21+[D(M)]23
Tr(MtM)=4m002
PDL=10log(Tmax/Tmin)=10log[m00+(m012+m022+m032)1/2m00(m012+m022+m032)1/2]
0g=s0os0i=m00s0i+m01s1i+m02s2i+m03s3is0i1
Spo=(m00+m01m10+m11m20+m21m30+m31),Sso=(m00m01m10m11m20m21m30m31),S+o=(m00+m02m10+m12m20+m22m30+m32),So=(m00m02m10m12m20m22m30m32)Sro=(m00+m03m10+m13m20+m23m30+m33),Slo=(m00m03m10m13m20m23m30m33).
s0pd=m00+m01,s0sd=m00m01,s0+d=m00+m02,s0d=m00m02,s0rd=m00+m03,s0ld=m00m03.
Spd=(1s1pds2pds3pd)=1s0pd(m00+m01m10+m11m20+m21m30+m31),Ssd=(1s1sds2sds3sd)=1s0sd(m00m01m10m11m20m21m30m31),
S+d=(1s1+ds2+ds3+d)=1s0+d(m00+m02m10+m12m20+m22m30+m32),Sd=(1s1ds2ds3d)=1s0d(m00m02m10m12m20m22m30m32),
Srd=(1s1rds2rds3rd)=1s0rd(m00+m03m10+m13m20+m23m30+m33),Sld=(1s1lds2lds3ld)=1s0ld(m00m03m10m13m20m23m30m33).
m00=12(s0pd+s0sd),m01=12(s0pds0sd),m02=12(s0+ds0d),m03=12(s0rds0ld)m10=12(s1pds0pd+s1sds0sd),m11=12(s1pds0pds1sds0sd),m12=12(s1+ds0+ds1ds0d),m13=12(s1rds0rds1lds0ld)m20=12(s2pds0pd+s2sds0sd),m21=12(s2pds0pds2sds0sd),m22=12(s2+ds0+ds2ds0d),m23=12(s2rds0rds2lds0ld)m30=12(s3pds0pd+s3sds0sd),m31=12(s3pds0pds3sds0sd),m32=12(s3+ds0+ds3ds0d),m33=12(s3rds0rds3lds0ld).
MFiber=[1.00000.00000.00000.00000.01660.43510.76410.46640.04830.13390.47440.87040.00070.88840.43650.1548].
MUV-LPFG1543=[1.00000.00230.02140.02880.03310.11390.37610.88310.04210.24510.87660.35690.00920.96110.18280.1241].

Metrics