Abstract

Nonlinear transmission parameters of monolayer graphene at 1645 nm were obtained. Based on the monolayer graphene saturable absorber, a 1532 nm LD pumped 1645 nm passively Q-switched Er:YAG laser was demonstrated. Under the pump power of 20.8 W, a 1645 nm Q-switched pulse with FWHM of 0.13 nm (without the use of etalon) and energy of 13.5 μJ per pulse can be obtained. To the best of our knowledge, this is the highest pulse energy for graphene-based passively Q-switched Er:YAG laseroperating at 1645 nm, suggesting the potentials of graphene materials for high-energy solid-state laser applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645  nm,” Opt. Express 18, 13673–13678 (2010).
    [CrossRef]
  2. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient Er,Yb-doped fiber laser with 188  W free-running and >100  W tunable output power,” Opt. Express 13, 4916–4921 (2005).
    [CrossRef]
  3. N. W. H. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6  μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
    [CrossRef]
  4. I. S. Moskalev, V. V. Fedorov, V. P. Gapontsev, D. V. Gapontsev, N. S. Platonov, and S. B. Mirov, “Highly efficient, narrow-linewidth, and singlefrequency actively and passively Q-switched fiber-bulk hybrid Er:YAG lasers operating at 1645  nm,” Opt. Express 16, 19427–19433 (2008).
    [CrossRef]
  5. L. Zhu, M. J. Wang, J. Zhou, and W. B. Chen, “Efficient 1645  nm continuous-wave and Q-switched Er:YAG laser pumped by 1532  nm narrow-band laser diode,” Opt. Express 19, 26810–26815 (2011).
    [CrossRef]
  6. I. Kudryashov and A. Katsnelson, “1645  nm Q-switched Er:YAG laser with in-band diode pumping,” Proc. SPIE 7686, 76860B (2010).
    [CrossRef]
  7. A. Aubourg, J. Didierjean, N. Aubry, F. Balembois, and P. Georges, “Passively Q-switched diode-pumped Er:YAG solid-state laser,” Opt. Lett. 38, 938–940 (2013).
    [CrossRef]
  8. M. Nemec, H. Jelankova, J. Sulc, K. Nejezchleb, and V. Skoda, “Passively Q-switched resonantly pumped Er:YAG laser,” Proc. SPIE 7721, 772113 (2010).
    [CrossRef]
  9. H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Zh. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, “Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide,” ASC Nano 4, 7582–7586 (2010).
    [CrossRef]
  10. Q. Wang, H. Teng, Y. W. Zou, Zh. G. Zhang, D. H. Li, R. Wang, Ch. Q. Gao, J. J. Lin, L. W. Guo, and Zh. Y. Wei, “Graphene on SiC as a Q-switcher for a 2  μm laser,” Opt. Lett. 37, 395–397 (2012).
    [CrossRef]
  11. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol. 30, 427–447 (2012).
    [CrossRef]
  12. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
    [CrossRef]
  13. W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25  μm,” Opt. Lett. 36, 4089–4091 (2011).
    [CrossRef]
  14. C. Q. Gao, R. Wang, L. N. Zhu, M. G. Gao, Q. Wang, Z. G. Zhang, Z. Y. Wei, J. J. Lin, and L. W. Guo, “Resonantly pumped 1.645  μm high repetition rate Er:YAG laser Q-switched by a graphene as a saturable absorber,” Opt. Lett. 37, 632–634 (2012).
    [CrossRef]
  15. Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645  nm,” Laser Phys. Lett. 10, 055801 (2013).
    [CrossRef]
  16. Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photon. J. 4, 869–876 (2012).
    [CrossRef]
  17. G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2  μm wavelength,” Opt. Mater. Express 2, 878–883 (2012).
    [CrossRef]
  18. G. P. Zheng, Y. Chen, H. H. Huang, C. J. Zhao, S. B. Lu, S. Q. Chen, H. Zhang, and S. C. Wen, “Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics,” ACS Appl. Mater. Interfaces 5, 10288–10293 (2013).
    [CrossRef]
  19. I. H. Baek, H. W. Lee, S. Bael, B. H. Hong, Y. H. Ahn, D. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:Sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
    [CrossRef]
  20. Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
    [CrossRef]
  21. P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5, 1500707 (2013).
    [CrossRef]

2013 (4)

A. Aubourg, J. Didierjean, N. Aubry, F. Balembois, and P. Georges, “Passively Q-switched diode-pumped Er:YAG solid-state laser,” Opt. Lett. 38, 938–940 (2013).
[CrossRef]

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645  nm,” Laser Phys. Lett. 10, 055801 (2013).
[CrossRef]

G. P. Zheng, Y. Chen, H. H. Huang, C. J. Zhao, S. B. Lu, S. Q. Chen, H. Zhang, and S. C. Wen, “Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics,” ACS Appl. Mater. Interfaces 5, 10288–10293 (2013).
[CrossRef]

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5, 1500707 (2013).
[CrossRef]

2012 (6)

2011 (2)

2010 (5)

I. Kudryashov and A. Katsnelson, “1645  nm Q-switched Er:YAG laser with in-band diode pumping,” Proc. SPIE 7686, 76860B (2010).
[CrossRef]

M. Nemec, H. Jelankova, J. Sulc, K. Nejezchleb, and V. Skoda, “Passively Q-switched resonantly pumped Er:YAG laser,” Proc. SPIE 7721, 772113 (2010).
[CrossRef]

H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Zh. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, “Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide,” ASC Nano 4, 7582–7586 (2010).
[CrossRef]

N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645  nm,” Opt. Express 18, 13673–13678 (2010).
[CrossRef]

N. W. H. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6  μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

2009 (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

2008 (1)

2007 (1)

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[CrossRef]

2005 (1)

Ahn, Y. H.

I. H. Baek, H. W. Lee, S. Bael, B. H. Hong, Y. H. Ahn, D. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:Sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

Aubourg, A.

Aubry, N.

Bae, S.

Baek, I. H.

I. H. Baek, H. W. Lee, S. Bael, B. H. Hong, Y. H. Ahn, D. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:Sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25  μm,” Opt. Lett. 36, 4089–4091 (2011).
[CrossRef]

Bael, S.

I. H. Baek, H. W. Lee, S. Bael, B. H. Hong, Y. H. Ahn, D. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:Sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

Balembois, F.

Bao, Q. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Chang, N. W. H.

N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645  nm,” Opt. Express 18, 13673–13678 (2010).
[CrossRef]

N. W. H. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6  μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

Chen, H.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645  nm,” Laser Phys. Lett. 10, 055801 (2013).
[CrossRef]

Chen, S. Q.

G. P. Zheng, Y. Chen, H. H. Huang, C. J. Zhao, S. B. Lu, S. Q. Chen, H. Zhang, and S. C. Wen, “Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics,” ACS Appl. Mater. Interfaces 5, 10288–10293 (2013).
[CrossRef]

Chen, W. B.

Chen, X. F.

H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Zh. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, “Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide,” ASC Nano 4, 7582–7586 (2010).
[CrossRef]

Chen, Y.

G. P. Zheng, Y. Chen, H. H. Huang, C. J. Zhao, S. B. Lu, S. Q. Chen, H. Zhang, and S. C. Wen, “Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics,” ACS Appl. Mater. Interfaces 5, 10288–10293 (2013).
[CrossRef]

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photon. J. 4, 869–876 (2012).
[CrossRef]

Cho, W. B.

Choi, S. Y.

Clarkson, W. A.

Didierjean, J.

Fan, D. Y.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5, 1500707 (2013).
[CrossRef]

Fan, H. M.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[CrossRef]

Fedorov, V. V.

Feng, Y. P.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[CrossRef]

Gao, C. Q.

Gao, Ch. Q.

Gao, M. G.

Gao, W. L.

Gapontsev, D. V.

Gapontsev, V. P.

Georges, P.

Guo, L. W.

Hong, B. H.

I. H. Baek, H. W. Lee, S. Bael, B. H. Hong, Y. H. Ahn, D. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:Sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25  μm,” Opt. Lett. 36, 4089–4091 (2011).
[CrossRef]

Hosken, D. J.

N. W. H. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6  μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645  nm,” Opt. Express 18, 13673–13678 (2010).
[CrossRef]

Hu, X. B.

H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Zh. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, “Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide,” ASC Nano 4, 7582–7586 (2010).
[CrossRef]

Huang, H. H.

G. P. Zheng, Y. Chen, H. H. Huang, C. J. Zhao, S. B. Lu, S. Q. Chen, H. Zhang, and S. C. Wen, “Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics,” ACS Appl. Mater. Interfaces 5, 10288–10293 (2013).
[CrossRef]

Huang, H. T.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645  nm,” Laser Phys. Lett. 10, 055801 (2013).
[CrossRef]

Jelankova, H.

M. Nemec, H. Jelankova, J. Sulc, K. Nejezchleb, and V. Skoda, “Passively Q-switched resonantly pumped Er:YAG laser,” Proc. SPIE 7721, 772113 (2010).
[CrossRef]

Jiang, M. H.

H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Zh. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, “Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide,” ASC Nano 4, 7582–7586 (2010).
[CrossRef]

Kasim, J.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[CrossRef]

Katsnelson, A.

I. Kudryashov and A. Katsnelson, “1645  nm Q-switched Er:YAG laser with in-band diode pumping,” Proc. SPIE 7686, 76860B (2010).
[CrossRef]

Kim, J. W.

Kim, K.

Kudryashov, I.

I. Kudryashov and A. Katsnelson, “1645  nm Q-switched Er:YAG laser with in-band diode pumping,” Proc. SPIE 7686, 76860B (2010).
[CrossRef]

Lee, H. W.

I. H. Baek, H. W. Lee, S. Bael, B. H. Hong, Y. H. Ahn, D. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:Sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25  μm,” Opt. Lett. 36, 4089–4091 (2011).
[CrossRef]

Li, D. H.

Lin, J. J.

Loh, K. P.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Lu, S. B.

G. P. Zheng, Y. Chen, H. H. Huang, C. J. Zhao, S. B. Lu, S. Q. Chen, H. Zhang, and S. C. Wen, “Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics,” ACS Appl. Mater. Interfaces 5, 10288–10293 (2013).
[CrossRef]

Lv, P.

Ma, J.

Mirov, S. B.

Moskalev, I. S.

Munch, J.

N. W. H. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6  μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645  nm,” Opt. Express 18, 13673–13678 (2010).
[CrossRef]

Nejezchleb, K.

M. Nemec, H. Jelankova, J. Sulc, K. Nejezchleb, and V. Skoda, “Passively Q-switched resonantly pumped Er:YAG laser,” Proc. SPIE 7721, 772113 (2010).
[CrossRef]

Nemec, M.

M. Nemec, H. Jelankova, J. Sulc, K. Nejezchleb, and V. Skoda, “Passively Q-switched resonantly pumped Er:YAG laser,” Proc. SPIE 7721, 772113 (2010).
[CrossRef]

Ni, Z. H.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[CrossRef]

Ottaway, D.

N. W. H. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6  μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

Ottaway, D. J.

Platonov, N. S.

Qian, L. J.

Rotermund, F.

I. H. Baek, H. W. Lee, S. Bael, B. H. Hong, Y. H. Ahn, D. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:Sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25  μm,” Opt. Lett. 36, 4089–4091 (2011).
[CrossRef]

Sahu, J. K.

Shen, D. Y.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645  nm,” Laser Phys. Lett. 10, 055801 (2013).
[CrossRef]

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5, 1500707 (2013).
[CrossRef]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient Er,Yb-doped fiber laser with 188  W free-running and >100  W tunable output power,” Opt. Express 13, 4916–4921 (2005).
[CrossRef]

Shen, Z. X.

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[CrossRef]

Simakov, N.

Skoda, V.

M. Nemec, H. Jelankova, J. Sulc, K. Nejezchleb, and V. Skoda, “Passively Q-switched resonantly pumped Er:YAG laser,” Proc. SPIE 7721, 772113 (2010).
[CrossRef]

Sulc, J.

M. Nemec, H. Jelankova, J. Sulc, K. Nejezchleb, and V. Skoda, “Passively Q-switched resonantly pumped Er:YAG laser,” Proc. SPIE 7721, 772113 (2010).
[CrossRef]

Tang, D. Y.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5, 1500707 (2013).
[CrossRef]

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645  nm,” Laser Phys. Lett. 10, 055801 (2013).
[CrossRef]

G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2  μm wavelength,” Opt. Mater. Express 2, 878–883 (2012).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Tang, P. H.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5, 1500707 (2013).
[CrossRef]

Teng, H.

Veitch, P. J.

N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645  nm,” Opt. Express 18, 13673–13678 (2010).
[CrossRef]

N. W. H. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6  μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

Wang, H. M.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[CrossRef]

Wang, J. Y.

G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2  μm wavelength,” Opt. Mater. Express 2, 878–883 (2012).
[CrossRef]

H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Zh. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, “Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide,” ASC Nano 4, 7582–7586 (2010).
[CrossRef]

Wang, M. J.

Wang, Q.

Wang, R.

Wang, Y.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645  nm,” Laser Phys. Lett. 10, 055801 (2013).
[CrossRef]

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5, 1500707 (2013).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Wang, Z. T.

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photon. J. 4, 869–876 (2012).
[CrossRef]

Wang, Zh. P.

H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Zh. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, “Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide,” ASC Nano 4, 7582–7586 (2010).
[CrossRef]

Wei, Z. Y.

Wei, Zh. Y.

Wen, S. C.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5, 1500707 (2013).
[CrossRef]

G. P. Zheng, Y. Chen, H. H. Huang, C. J. Zhao, S. B. Lu, S. Q. Chen, H. Zhang, and S. C. Wen, “Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics,” ACS Appl. Mater. Interfaces 5, 10288–10293 (2013).
[CrossRef]

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photon. J. 4, 869–876 (2012).
[CrossRef]

Wu, Y. H.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[CrossRef]

Xie, G. Q.

Xu, X. G.

H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Zh. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, “Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide,” ASC Nano 4, 7582–7586 (2010).
[CrossRef]

Yamashita, S.

Yeom, D.

I. H. Baek, H. W. Lee, S. Bael, B. H. Hong, Y. H. Ahn, D. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:Sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25  μm,” Opt. Lett. 36, 4089–4091 (2011).
[CrossRef]

Yu, H. H.

G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2  μm wavelength,” Opt. Mater. Express 2, 878–883 (2012).
[CrossRef]

H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Zh. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, “Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide,” ASC Nano 4, 7582–7586 (2010).
[CrossRef]

Yu, T.

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[CrossRef]

Yuan, P.

Zhang, H.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5, 1500707 (2013).
[CrossRef]

G. P. Zheng, Y. Chen, H. H. Huang, C. J. Zhao, S. B. Lu, S. Q. Chen, H. Zhang, and S. C. Wen, “Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics,” ACS Appl. Mater. Interfaces 5, 10288–10293 (2013).
[CrossRef]

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photon. J. 4, 869–876 (2012).
[CrossRef]

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Zhang, H. J.

G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2  μm wavelength,” Opt. Mater. Express 2, 878–883 (2012).
[CrossRef]

H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Zh. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, “Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide,” ASC Nano 4, 7582–7586 (2010).
[CrossRef]

Zhang, J.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645  nm,” Laser Phys. Lett. 10, 055801 (2013).
[CrossRef]

Zhang, X. Q.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5, 1500707 (2013).
[CrossRef]

Zhang, Z. G.

Zhang, Zh. G.

Zhao, C. J.

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5, 1500707 (2013).
[CrossRef]

G. P. Zheng, Y. Chen, H. H. Huang, C. J. Zhao, S. B. Lu, S. Q. Chen, H. Zhang, and S. C. Wen, “Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics,” ACS Appl. Mater. Interfaces 5, 10288–10293 (2013).
[CrossRef]

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photon. J. 4, 869–876 (2012).
[CrossRef]

Zheng, G. P.

G. P. Zheng, Y. Chen, H. H. Huang, C. J. Zhao, S. B. Lu, S. Q. Chen, H. Zhang, and S. C. Wen, “Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics,” ACS Appl. Mater. Interfaces 5, 10288–10293 (2013).
[CrossRef]

Zhou, J.

Zhu, L.

Zhu, L. N.

Zhu, Z. X.

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645  nm,” Laser Phys. Lett. 10, 055801 (2013).
[CrossRef]

Zhuang, S. D.

H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Zh. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, “Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide,” ASC Nano 4, 7582–7586 (2010).
[CrossRef]

Zou, Y. W.

ACS Appl. Mater. Interfaces (1)

G. P. Zheng, Y. Chen, H. H. Huang, C. J. Zhao, S. B. Lu, S. Q. Chen, H. Zhang, and S. C. Wen, “Improved transfer quality of CVD-grown graphene by ultrasonic processing of target substrates: applications for ultra-fast laser photonics,” ACS Appl. Mater. Interfaces 5, 10288–10293 (2013).
[CrossRef]

Adv. Funct. Mater. (1)

Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[CrossRef]

Appl. Phys. Express (1)

I. H. Baek, H. W. Lee, S. Bael, B. H. Hong, Y. H. Ahn, D. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:Sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[CrossRef]

ASC Nano (1)

H. H. Yu, X. F. Chen, H. J. Zhang, X. G. Xu, X. B. Hu, Zh. P. Wang, J. Y. Wang, S. D. Zhuang, and M. H. Jiang, “Large energy pulse generation modulated by graphene epitaxially grown on silicon carbide,” ASC Nano 4, 7582–7586 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. W. H. Chang, D. J. Hosken, J. Munch, D. Ottaway, and P. J. Veitch, “Stable, single frequency Er:YAG lasers at 1.6  μm,” IEEE J. Quantum Electron. 46, 1039–1042 (2010).
[CrossRef]

IEEE Photon. J. (2)

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber,” IEEE Photon. J. 4, 869–876 (2012).
[CrossRef]

P. H. Tang, X. Q. Zhang, C. J. Zhao, Y. Wang, H. Zhang, D. Y. Shen, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Topological insulator: Bi2Te3 saturable absorber for the passive Q-switching operation of an in-band pumped 1645-nm Er:YAG ceramic laser,” IEEE Photon. J. 5, 1500707 (2013).
[CrossRef]

J. Lightwave Technol. (1)

Laser Phys. Lett. (1)

Z. X. Zhu, Y. Wang, H. Chen, H. T. Huang, D. Y. Shen, J. Zhang, and D. Y. Tang, “A graphene-based passively Q-switched polycrystalline Er:YAG ceramic laser operating at 1645  nm,” Laser Phys. Lett. 10, 055801 (2013).
[CrossRef]

Nano Lett. (1)

Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett. 7, 2758–2763 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Opt. Mater. Express (1)

Proc. SPIE (2)

M. Nemec, H. Jelankova, J. Sulc, K. Nejezchleb, and V. Skoda, “Passively Q-switched resonantly pumped Er:YAG laser,” Proc. SPIE 7721, 772113 (2010).
[CrossRef]

I. Kudryashov and A. Katsnelson, “1645  nm Q-switched Er:YAG laser with in-band diode pumping,” Proc. SPIE 7686, 76860B (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Manifolds of Er:YAG crystal field energy levels.

Fig. 2.
Fig. 2.

Raman spectrum of the graphene SA.

Fig. 3.
Fig. 3.

Linear and nonlinear transmission curve of monolayer graphene SA, and the experimental setup for saturable absorption measurement (inset).

Fig. 4.
Fig. 4.

Setup of the Q-switched Er:YAG laser.

Fig. 5.
Fig. 5.

Relation between the output power and the incident pump power for CW and Q-switched operation.

Fig. 6.
Fig. 6.

Output spectrum of the Q-switched Er:YAG laser.

Fig. 7.
Fig. 7.

Pulse train profiles of the Q-switched Er:YAG laser.

Fig. 8.
Fig. 8.

Pulse width and repetition rate versus incident pump power for Q-switched operation.

Fig. 9.
Fig. 9.

Pulse energy versus incident pump power for Q-switched operation.

Metrics