Abstract

For thermal deformable mirrors (DMs), the thermal field control is important because it will decide aberration correction effects. In order to better manipulate the thermal fields, a simple water convection system is proposed. The water convection system, which can be applied in thermal field bimetal DMs, shows effective thermal fields and influence-function controlling abilities. This is verified by the simulations and the contrast experiments of two prototypes: one of which utilizes air convection, the other uses water convection. Controlling the thermal fields will greatly promote the influence-function adjustability and aberration correction ability of thermal DMs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Dainty, A. V. Koryabin, and A. V. Kudryashov, “Low-order adaptive deformable mirror,” Appl. Opt. 37, 4663–4668 (1998).
    [CrossRef]
  2. M. A. Ealey and J. F. Washeba, “Continuous facesheet low voltage deformable mirrors,” Opt. Eng. 29, 1191–1198 (1990).
    [CrossRef]
  3. K. Uchino, Y. Tsuchiya, S. Nomura, T. Sato, H. Ishikawa, and O. Ikeda, “Deformable mirror using the PMN electrostrictor,” Appl. Opt. 20, 3077–3080 (1981).
    [CrossRef]
  4. G. Brusa and C. D. Vecchio, “Design of an adaptive secondary mirror: a global approach,” Appl. Opt. 37, 4656–4662 (1998).
    [CrossRef]
  5. O. Cugat, S. Basrour, C. Divoux, P. Mounaix, and G. Reyne, “Deformable magnetic mirror for adaptive optics: technological aspects,” Sens. Actuators A 89, 1–9 (2001).
    [CrossRef]
  6. T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” J. Sel. Top. Quantum Electron. 5, 83–89 (1999).
    [CrossRef]
  7. G. Vdovin and M. Loktev, “Deformable mirror with thermal actuators,” Opt. Lett. 27, 677–679 (2002).
    [CrossRef]
  8. C. A. Caicedo, A. Wirth, G. LaRosa, R. Coerver, J. Wilt, and M. Taylor, “Thermal deformable mirror,” Proc. SPIE 6272, 627252 (2006).
    [CrossRef]
  9. S. K. Ravensbergen, P. C. J. N. Rosielle, and M. Steinbuch, “Deformable mirrors with thermo-mechanical actuators for extreme ultraviolet lithography, realization and validation,” Precis. Eng. 37, 353–363 (2013).
    [CrossRef]
  10. L. Truong, E. F. Borra, R. Bergamasco, N. Caron, P. Laird, and A. Ritcey, “Nanoengineered liquid mirrors shaped by thermal fields,” Appl. Opt. 44, 1595–1600 (2005).
    [CrossRef]
  11. B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quantum Gravity 29, 085012 (2012).
    [CrossRef]
  12. M. Kasprzack, B. Canuel, F. Cavalier, R. Day, E. Genin, J. Marque, D. Sentenac, and G. Vajente, “Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams,” Appl. Opt. 52, 2909–2916 (2013).
    [CrossRef]
  13. M. A. Arain, W. Z. Korth, L. F. Williams, R. M. Martin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Adaptive control of modal properties of optical beams using photothermal effects,” Opt. Express 18, 2767–2781 (2010).
    [CrossRef]
  14. R. Lawrence, D. Ottaway, M. Zucker, and P. Fritschel, “Active correction of thermal lensing through external radiative thermal actuation,” Opt. Lett. 29, 2635–2637 (2004).
    [CrossRef]
  15. D. Michel, T. Graf, H. J. Glur, W. Luthy, and H. P. Weber, “Thermo-optically driven adaptive mirror for laser applications,” Appl. Phys. B 79, 721–724 (2004).
    [CrossRef]
  16. F. Reinert and W. Lüthy, “Thermo-optically driven adaptive mirror based on thermal expansion: preparation and resolution,” Opt. Express 13, 10749–10753 (2005).
    [CrossRef]
  17. L. Huang, Q. Xue, P. Yan, M. L. Gong, Z. X. Feng, T. H. Li, and X. K. Ma, “A thermo-field bimetal deformable mirror for wave front correction in high power lasers,” Laser Phys. Lett. 11, 015001 (2014).
    [CrossRef]
  18. J. H. Lee, “A cooled deformable bimorph mirror for a high power laser,” J. Opt. Soc. Korea 10, 57–62 (2006).
    [CrossRef]
  19. S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Active mirrors for intra-cavity compensation of the aspherical thermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
    [CrossRef]
  20. S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37, 5033–5035 (2012).
    [CrossRef]
  21. Q. Xue, L. Huang, P. Yan, M. L. Gong, Z. X. Feng, Y. T. Qiu, T. H. Li, and G. F. Jin, “Research on the particular temperature-induced surface shape of NIF deformable mirror,” Appl. Opt. 52, 280–287 (2013).
    [CrossRef]
  22. C. Bruchmann, M. Appelfelder, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermo-mechanical properties of a deformable mirror with screen printed actuator,” Proc. SPIE 8253, 82530D (2012).
    [CrossRef]

2014 (1)

L. Huang, Q. Xue, P. Yan, M. L. Gong, Z. X. Feng, T. H. Li, and X. K. Ma, “A thermo-field bimetal deformable mirror for wave front correction in high power lasers,” Laser Phys. Lett. 11, 015001 (2014).
[CrossRef]

2013 (3)

2012 (4)

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37, 5033–5035 (2012).
[CrossRef]

B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quantum Gravity 29, 085012 (2012).
[CrossRef]

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Active mirrors for intra-cavity compensation of the aspherical thermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
[CrossRef]

C. Bruchmann, M. Appelfelder, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermo-mechanical properties of a deformable mirror with screen printed actuator,” Proc. SPIE 8253, 82530D (2012).
[CrossRef]

2010 (1)

2006 (2)

J. H. Lee, “A cooled deformable bimorph mirror for a high power laser,” J. Opt. Soc. Korea 10, 57–62 (2006).
[CrossRef]

C. A. Caicedo, A. Wirth, G. LaRosa, R. Coerver, J. Wilt, and M. Taylor, “Thermal deformable mirror,” Proc. SPIE 6272, 627252 (2006).
[CrossRef]

2005 (2)

2004 (2)

R. Lawrence, D. Ottaway, M. Zucker, and P. Fritschel, “Active correction of thermal lensing through external radiative thermal actuation,” Opt. Lett. 29, 2635–2637 (2004).
[CrossRef]

D. Michel, T. Graf, H. J. Glur, W. Luthy, and H. P. Weber, “Thermo-optically driven adaptive mirror for laser applications,” Appl. Phys. B 79, 721–724 (2004).
[CrossRef]

2002 (1)

2001 (1)

O. Cugat, S. Basrour, C. Divoux, P. Mounaix, and G. Reyne, “Deformable magnetic mirror for adaptive optics: technological aspects,” Sens. Actuators A 89, 1–9 (2001).
[CrossRef]

1999 (1)

T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” J. Sel. Top. Quantum Electron. 5, 83–89 (1999).
[CrossRef]

1998 (2)

1990 (1)

M. A. Ealey and J. F. Washeba, “Continuous facesheet low voltage deformable mirrors,” Opt. Eng. 29, 1191–1198 (1990).
[CrossRef]

1981 (1)

Ahmed, M. A.

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Active mirrors for intra-cavity compensation of the aspherical thermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
[CrossRef]

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37, 5033–5035 (2012).
[CrossRef]

Appelfelder, M.

C. Bruchmann, M. Appelfelder, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermo-mechanical properties of a deformable mirror with screen printed actuator,” Proc. SPIE 8253, 82530D (2012).
[CrossRef]

Arain, M. A.

Basrour, S.

O. Cugat, S. Basrour, C. Divoux, P. Mounaix, and G. Reyne, “Deformable magnetic mirror for adaptive optics: technological aspects,” Sens. Actuators A 89, 1–9 (2001).
[CrossRef]

Beckert, E.

C. Bruchmann, M. Appelfelder, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermo-mechanical properties of a deformable mirror with screen printed actuator,” Proc. SPIE 8253, 82530D (2012).
[CrossRef]

Bergamasco, R.

Bifano, T. G.

T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” J. Sel. Top. Quantum Electron. 5, 83–89 (1999).
[CrossRef]

Borra, E. F.

Bruchmann, C.

C. Bruchmann, M. Appelfelder, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermo-mechanical properties of a deformable mirror with screen printed actuator,” Proc. SPIE 8253, 82530D (2012).
[CrossRef]

Brusa, G.

Caicedo, C. A.

C. A. Caicedo, A. Wirth, G. LaRosa, R. Coerver, J. Wilt, and M. Taylor, “Thermal deformable mirror,” Proc. SPIE 6272, 627252 (2006).
[CrossRef]

Canuel, B.

M. Kasprzack, B. Canuel, F. Cavalier, R. Day, E. Genin, J. Marque, D. Sentenac, and G. Vajente, “Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams,” Appl. Opt. 52, 2909–2916 (2013).
[CrossRef]

B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quantum Gravity 29, 085012 (2012).
[CrossRef]

Caron, N.

Cavalier, F.

Coerver, R.

C. A. Caicedo, A. Wirth, G. LaRosa, R. Coerver, J. Wilt, and M. Taylor, “Thermal deformable mirror,” Proc. SPIE 6272, 627252 (2006).
[CrossRef]

Cugat, O.

O. Cugat, S. Basrour, C. Divoux, P. Mounaix, and G. Reyne, “Deformable magnetic mirror for adaptive optics: technological aspects,” Sens. Actuators A 89, 1–9 (2001).
[CrossRef]

Dainty, J. C.

Day, R.

M. Kasprzack, B. Canuel, F. Cavalier, R. Day, E. Genin, J. Marque, D. Sentenac, and G. Vajente, “Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams,” Appl. Opt. 52, 2909–2916 (2013).
[CrossRef]

B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quantum Gravity 29, 085012 (2012).
[CrossRef]

Divoux, C.

O. Cugat, S. Basrour, C. Divoux, P. Mounaix, and G. Reyne, “Deformable magnetic mirror for adaptive optics: technological aspects,” Sens. Actuators A 89, 1–9 (2001).
[CrossRef]

Ealey, M. A.

M. A. Ealey and J. F. Washeba, “Continuous facesheet low voltage deformable mirrors,” Opt. Eng. 29, 1191–1198 (1990).
[CrossRef]

Eberhardt, R.

C. Bruchmann, M. Appelfelder, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermo-mechanical properties of a deformable mirror with screen printed actuator,” Proc. SPIE 8253, 82530D (2012).
[CrossRef]

Feng, Z. X.

L. Huang, Q. Xue, P. Yan, M. L. Gong, Z. X. Feng, T. H. Li, and X. K. Ma, “A thermo-field bimetal deformable mirror for wave front correction in high power lasers,” Laser Phys. Lett. 11, 015001 (2014).
[CrossRef]

Q. Xue, L. Huang, P. Yan, M. L. Gong, Z. X. Feng, Y. T. Qiu, T. H. Li, and G. F. Jin, “Research on the particular temperature-induced surface shape of NIF deformable mirror,” Appl. Opt. 52, 280–287 (2013).
[CrossRef]

Fritschel, P.

Genin, E.

M. Kasprzack, B. Canuel, F. Cavalier, R. Day, E. Genin, J. Marque, D. Sentenac, and G. Vajente, “Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams,” Appl. Opt. 52, 2909–2916 (2013).
[CrossRef]

B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quantum Gravity 29, 085012 (2012).
[CrossRef]

Glur, H. J.

D. Michel, T. Graf, H. J. Glur, W. Luthy, and H. P. Weber, “Thermo-optically driven adaptive mirror for laser applications,” Appl. Phys. B 79, 721–724 (2004).
[CrossRef]

Gong, M. L.

L. Huang, Q. Xue, P. Yan, M. L. Gong, Z. X. Feng, T. H. Li, and X. K. Ma, “A thermo-field bimetal deformable mirror for wave front correction in high power lasers,” Laser Phys. Lett. 11, 015001 (2014).
[CrossRef]

Q. Xue, L. Huang, P. Yan, M. L. Gong, Z. X. Feng, Y. T. Qiu, T. H. Li, and G. F. Jin, “Research on the particular temperature-induced surface shape of NIF deformable mirror,” Appl. Opt. 52, 280–287 (2013).
[CrossRef]

Graf, T.

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Active mirrors for intra-cavity compensation of the aspherical thermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
[CrossRef]

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37, 5033–5035 (2012).
[CrossRef]

D. Michel, T. Graf, H. J. Glur, W. Luthy, and H. P. Weber, “Thermo-optically driven adaptive mirror for laser applications,” Appl. Phys. B 79, 721–724 (2004).
[CrossRef]

Horenstein, M. N.

T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” J. Sel. Top. Quantum Electron. 5, 83–89 (1999).
[CrossRef]

Huang, L.

L. Huang, Q. Xue, P. Yan, M. L. Gong, Z. X. Feng, T. H. Li, and X. K. Ma, “A thermo-field bimetal deformable mirror for wave front correction in high power lasers,” Laser Phys. Lett. 11, 015001 (2014).
[CrossRef]

Q. Xue, L. Huang, P. Yan, M. L. Gong, Z. X. Feng, Y. T. Qiu, T. H. Li, and G. F. Jin, “Research on the particular temperature-induced surface shape of NIF deformable mirror,” Appl. Opt. 52, 280–287 (2013).
[CrossRef]

Ikeda, O.

Ishikawa, H.

Jin, G. F.

Kasprzack, M.

Korth, W. Z.

Koryabin, A. V.

Kudryashov, A. V.

La Penna, P.

B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quantum Gravity 29, 085012 (2012).
[CrossRef]

Laird, P.

LaRosa, G.

C. A. Caicedo, A. Wirth, G. LaRosa, R. Coerver, J. Wilt, and M. Taylor, “Thermal deformable mirror,” Proc. SPIE 6272, 627252 (2006).
[CrossRef]

Lawrence, R.

Lee, J. H.

Li, T. H.

L. Huang, Q. Xue, P. Yan, M. L. Gong, Z. X. Feng, T. H. Li, and X. K. Ma, “A thermo-field bimetal deformable mirror for wave front correction in high power lasers,” Laser Phys. Lett. 11, 015001 (2014).
[CrossRef]

Q. Xue, L. Huang, P. Yan, M. L. Gong, Z. X. Feng, Y. T. Qiu, T. H. Li, and G. F. Jin, “Research on the particular temperature-induced surface shape of NIF deformable mirror,” Appl. Opt. 52, 280–287 (2013).
[CrossRef]

Loktev, M.

Luthy, W.

D. Michel, T. Graf, H. J. Glur, W. Luthy, and H. P. Weber, “Thermo-optically driven adaptive mirror for laser applications,” Appl. Phys. B 79, 721–724 (2004).
[CrossRef]

Lüthy, W.

Ma, X. K.

L. Huang, Q. Xue, P. Yan, M. L. Gong, Z. X. Feng, T. H. Li, and X. K. Ma, “A thermo-field bimetal deformable mirror for wave front correction in high power lasers,” Laser Phys. Lett. 11, 015001 (2014).
[CrossRef]

Mali, R. K.

T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” J. Sel. Top. Quantum Electron. 5, 83–89 (1999).
[CrossRef]

Marque, J.

M. Kasprzack, B. Canuel, F. Cavalier, R. Day, E. Genin, J. Marque, D. Sentenac, and G. Vajente, “Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams,” Appl. Opt. 52, 2909–2916 (2013).
[CrossRef]

B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quantum Gravity 29, 085012 (2012).
[CrossRef]

Martin, R. M.

Michel, D.

D. Michel, T. Graf, H. J. Glur, W. Luthy, and H. P. Weber, “Thermo-optically driven adaptive mirror for laser applications,” Appl. Phys. B 79, 721–724 (2004).
[CrossRef]

Mounaix, P.

O. Cugat, S. Basrour, C. Divoux, P. Mounaix, and G. Reyne, “Deformable magnetic mirror for adaptive optics: technological aspects,” Sens. Actuators A 89, 1–9 (2001).
[CrossRef]

Mueller, G.

Nomura, S.

Ottaway, D.

Perreault, J.

T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” J. Sel. Top. Quantum Electron. 5, 83–89 (1999).
[CrossRef]

Piehler, S.

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37, 5033–5035 (2012).
[CrossRef]

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Active mirrors for intra-cavity compensation of the aspherical thermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
[CrossRef]

Qiu, Y. T.

Ravensbergen, S. K.

S. K. Ravensbergen, P. C. J. N. Rosielle, and M. Steinbuch, “Deformable mirrors with thermo-mechanical actuators for extreme ultraviolet lithography, realization and validation,” Precis. Eng. 37, 353–363 (2013).
[CrossRef]

Reinert, F.

Reitze, D. H.

Reyne, G.

O. Cugat, S. Basrour, C. Divoux, P. Mounaix, and G. Reyne, “Deformable magnetic mirror for adaptive optics: technological aspects,” Sens. Actuators A 89, 1–9 (2001).
[CrossRef]

Ritcey, A.

Rosielle, P. C. J. N.

S. K. Ravensbergen, P. C. J. N. Rosielle, and M. Steinbuch, “Deformable mirrors with thermo-mechanical actuators for extreme ultraviolet lithography, realization and validation,” Precis. Eng. 37, 353–363 (2013).
[CrossRef]

Sato, T.

Sentenac, D.

Steinbuch, M.

S. K. Ravensbergen, P. C. J. N. Rosielle, and M. Steinbuch, “Deformable mirrors with thermo-mechanical actuators for extreme ultraviolet lithography, realization and validation,” Precis. Eng. 37, 353–363 (2013).
[CrossRef]

Tanner, D. B.

Taylor, M.

C. A. Caicedo, A. Wirth, G. LaRosa, R. Coerver, J. Wilt, and M. Taylor, “Thermal deformable mirror,” Proc. SPIE 6272, 627252 (2006).
[CrossRef]

Truong, L.

Tsuchiya, Y.

Tünnermann, A.

C. Bruchmann, M. Appelfelder, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermo-mechanical properties of a deformable mirror with screen printed actuator,” Proc. SPIE 8253, 82530D (2012).
[CrossRef]

Uchino, K.

Vajente, G.

Vdovin, G.

Vecchio, C. D.

Voss, A.

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Active mirrors for intra-cavity compensation of the aspherical thermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
[CrossRef]

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37, 5033–5035 (2012).
[CrossRef]

Washeba, J. F.

M. A. Ealey and J. F. Washeba, “Continuous facesheet low voltage deformable mirrors,” Opt. Eng. 29, 1191–1198 (1990).
[CrossRef]

Weber, H. P.

D. Michel, T. Graf, H. J. Glur, W. Luthy, and H. P. Weber, “Thermo-optically driven adaptive mirror for laser applications,” Appl. Phys. B 79, 721–724 (2004).
[CrossRef]

Weichelt, B.

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Active mirrors for intra-cavity compensation of the aspherical thermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
[CrossRef]

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37, 5033–5035 (2012).
[CrossRef]

Williams, L. F.

Wilt, J.

C. A. Caicedo, A. Wirth, G. LaRosa, R. Coerver, J. Wilt, and M. Taylor, “Thermal deformable mirror,” Proc. SPIE 6272, 627252 (2006).
[CrossRef]

Wirth, A.

C. A. Caicedo, A. Wirth, G. LaRosa, R. Coerver, J. Wilt, and M. Taylor, “Thermal deformable mirror,” Proc. SPIE 6272, 627252 (2006).
[CrossRef]

Xue, Q.

L. Huang, Q. Xue, P. Yan, M. L. Gong, Z. X. Feng, T. H. Li, and X. K. Ma, “A thermo-field bimetal deformable mirror for wave front correction in high power lasers,” Laser Phys. Lett. 11, 015001 (2014).
[CrossRef]

Q. Xue, L. Huang, P. Yan, M. L. Gong, Z. X. Feng, Y. T. Qiu, T. H. Li, and G. F. Jin, “Research on the particular temperature-induced surface shape of NIF deformable mirror,” Appl. Opt. 52, 280–287 (2013).
[CrossRef]

Yan, P.

L. Huang, Q. Xue, P. Yan, M. L. Gong, Z. X. Feng, T. H. Li, and X. K. Ma, “A thermo-field bimetal deformable mirror for wave front correction in high power lasers,” Laser Phys. Lett. 11, 015001 (2014).
[CrossRef]

Q. Xue, L. Huang, P. Yan, M. L. Gong, Z. X. Feng, Y. T. Qiu, T. H. Li, and G. F. Jin, “Research on the particular temperature-induced surface shape of NIF deformable mirror,” Appl. Opt. 52, 280–287 (2013).
[CrossRef]

Zucker, M.

Appl. Opt. (6)

Appl. Phys. B (1)

D. Michel, T. Graf, H. J. Glur, W. Luthy, and H. P. Weber, “Thermo-optically driven adaptive mirror for laser applications,” Appl. Phys. B 79, 721–724 (2004).
[CrossRef]

Classical Quantum Gravity (1)

B. Canuel, R. Day, E. Genin, P. La Penna, and J. Marque, “Wavefront aberration compensation with a thermally deformable mirror,” Classical Quantum Gravity 29, 085012 (2012).
[CrossRef]

J. Opt. Soc. Korea (1)

J. Sel. Top. Quantum Electron. (1)

T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” J. Sel. Top. Quantum Electron. 5, 83–89 (1999).
[CrossRef]

Laser Phys. Lett. (1)

L. Huang, Q. Xue, P. Yan, M. L. Gong, Z. X. Feng, T. H. Li, and X. K. Ma, “A thermo-field bimetal deformable mirror for wave front correction in high power lasers,” Laser Phys. Lett. 11, 015001 (2014).
[CrossRef]

Opt. Eng. (1)

M. A. Ealey and J. F. Washeba, “Continuous facesheet low voltage deformable mirrors,” Opt. Eng. 29, 1191–1198 (1990).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Precis. Eng. (1)

S. K. Ravensbergen, P. C. J. N. Rosielle, and M. Steinbuch, “Deformable mirrors with thermo-mechanical actuators for extreme ultraviolet lithography, realization and validation,” Precis. Eng. 37, 353–363 (2013).
[CrossRef]

Proc. SPIE (3)

C. A. Caicedo, A. Wirth, G. LaRosa, R. Coerver, J. Wilt, and M. Taylor, “Thermal deformable mirror,” Proc. SPIE 6272, 627252 (2006).
[CrossRef]

S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Active mirrors for intra-cavity compensation of the aspherical thermal lens in thin-disk lasers,” Proc. SPIE 8236, 82360J (2012).
[CrossRef]

C. Bruchmann, M. Appelfelder, E. Beckert, R. Eberhardt, and A. Tünnermann, “Thermo-mechanical properties of a deformable mirror with screen printed actuator,” Proc. SPIE 8253, 82530D (2012).
[CrossRef]

Sens. Actuators A (1)

O. Cugat, S. Basrour, C. Divoux, P. Mounaix, and G. Reyne, “Deformable magnetic mirror for adaptive optics: technological aspects,” Sens. Actuators A 89, 1–9 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Principal schematic of the water convection TBDM.

Fig. 2.
Fig. 2.

Working principle of the water convection TBDM.

Fig. 3.
Fig. 3.

(a) Normalized thermal field differences and (b) the influence function differences under different thermal convection boundary conditions [the convection coefficient h=5, 25, 200, 500, 1000W/(m2K)] (the triangles correspond to the actuators’ horizontal positions).

Fig. 4.
Fig. 4.

Normalized influence functions differences of different base materials [(1) ceramics, (2) steel, (3) cast iron, (4) aluminum] in the air convection [(a) h=25W/(m2K)] and water convection [(b) h=1000W/(m2K)] (the triangles correspond to the actuators’ horizontal positions).

Fig. 5.
Fig. 5.

Normalized influence functions differences of different water convection areas [(a) h=1000W/(m2K), the width of water channels d=0, 2, 4, 8 mm] and different base thicknesses [(b), the base thickness t=1, 2, 3 mm] (the triangles correspond to the actuators’ horizontal positions).

Fig. 6.
Fig. 6.

Different thermal fields (in the 80×80mm areas) of water convection [(a) h=800W/(m2K)] and air convection [(b) h=10W/(m2K)] thermal boundary TBDMs.

Fig. 7.
Fig. 7.

Influence functions of the water convection thermal boundary TBDM [(a) the initial shape without actuating; (b)–(e) the typical influence functions with four actuators heating separately].

Fig. 8.
Fig. 8.

Typical influence functions of the air convection thermal boundary TBDM [(a)–(d) are generated separately by the four actuators of similar positions in Figs. 7(b)7(e)].

Fig. 9.
Fig. 9.

Relationship between the thermoelectric cooler (TEC) currents and the influence functions under the air and water convection thermal boundary.

Fig. 10.
Fig. 10.

Dynamic relationship between the time and the influence function of the water convection TBDM.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

i=1i=nSAiqidS=SS1h1(TT1)dS+SS2h2(TT2)dS,
i=1i=nSAi(qi+Δqi)dS=SS1h1(T+ΔTT1)dS+SS2h2(T+ΔTT2)dS.

Metrics