Abstract

We report on the fabrication of channel waveguides in Nd:YAG crystals, using swift C5+ ion irradiation with ion energy of 15 MeV and fluence at 5×1015ions/cm2. A laser-cut shadow mask of a number of open stripes with varied width was covered on the sample surface during the ion irradiation. Channel waveguides were formed in the Nd:YAG crystal due to the refractive index increase along the ion trajectory. Room temperature waveguide laser oscillations at 1064 nm have been observed under 808 nm optical pumping, with laser slope efficiency at 38% and a maximum output power of 36 mW.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Svelto, Principles of Lasers (Springer, 2010).
  2. E. Cantelar, D. Jaque, and G. Lifante, “Waveguide lasers based on dielectric materials,” Opt. Mater. 34, 555–571 (2012).
    [CrossRef]
  3. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13, 626–637 (2007).
    [CrossRef]
  4. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm3+:ZBLAN waveguide laser,” Opt. Lett. 36, 1587–1589 (2011).
    [CrossRef]
  5. E. J. Murphy, Integrated Optical Circuits and Components: Design and Applications (Dekker, 1999).
  6. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
    [CrossRef]
  7. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33, 165–182 (2008).
    [CrossRef]
  8. P. D. Townsend, P. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 2006).
  9. Y. C. Yao, N. N. Dong, F. Chen, L. L. Pang, Z. G. Wang, and Q. M. Lu, “Continuous wave waveguide lasers of swift argon ion irradiated Nd:YVO4 waveguides,” Opt. Express 19, 24252–24257 (2011).
    [CrossRef]
  10. Y. Y. Ren, N. N. Dong, Y. C. Jia, L. L. Pang, Z. G. Wang, Q. M. Lu, and F. Chen, “Efficient laser emissions at 1.06  μm of swift heavy ion irradiated Nd:YCOB waveguides,” Opt. Lett. 36, 4521–4523 (2011).
    [CrossRef]
  11. M. E. Sánchez-Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064  nm,” Appl. Phys. B 94, 215–219 (2008).
  12. F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev. 6, 622–640 (2012).
    [CrossRef]
  13. F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B 105, 871–875 (2011).
    [CrossRef]
  14. H. Hu, F. Lu, X. L. Wang, F. Chen, and K. M. Wang, “Low-loss optical waveguides and Y-branch splitters in lithium niobate fabricated by MeV oxygen ions with low dose,” Opt. Express 20, 21114–21118 (2012).
    [CrossRef]
  15. Y. Lü, J. Xia, W. Cheng, J. Chen, G. Ning, and Z. Liang, “Diode-pumped cw Nd:YAG three-level laser at 869  nm,” Opt. Lett. 35, 3670–3672 (2010).
    [CrossRef]
  16. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
    [CrossRef]
  17. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3  W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100, 131–135 (2010).
    [CrossRef]
  18. E. Flores-Romero, G. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express 12, 2264–2269 (2004).
    [CrossRef]
  19. G. Vázquez, J. Rickards, G. Lifante, M. Domenech, and E. Cantelar, “Low dose carbon implanted waveguides in Nd:YAG,” Opt. Express 11, 1291–1296 (2003).
    [CrossRef]
  20. Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35, 3276–3278 (2010).
    [CrossRef]
  21. Y. Y. Ren, N. N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express 19, 5522–5527 (2011).
    [CrossRef]
  22. Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103, 837–840 (2010).
  23. Y. C. Yao, Y. Tan, N. N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18, 24516–24521 (2010).
    [CrossRef]
  24. A. Benayas, D. Jaque, Y. C. Yao, F. Chen, A. A. Bettiol, A. Rodenas, and A. K. Kar, “Microstructuring of Nd:YAG crystals by proton-beam writing,” Opt. Lett. 35, 3898–3900 (2010).
    [CrossRef]
  25. M. Ezaki, M. Obara, H. Kumagai, and K. Toyoda, “Characterization of Nd:Y3Al5O12 thin films grown on various substrates by pulsed laser deposition,” Appl. Phys. Lett. 69, 2977–2979 (1996).
    [CrossRef]
  26. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20, 3832–3843 (2012).
    [CrossRef]
  27. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92, 111103 (2008).
    [CrossRef]
  28. T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103, 1–4 (2011).
  29. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010).
    [CrossRef]
  30. Y. Y. Ren, F. Chen, Q. M. Lu, and H. J. Ma, “Optical waveguides in Nd:GGG crystals produced by H+ or C3+ ion implantation,” Appl. Opt. 49, 2085–2089 (2010).
    [CrossRef]
  31. Y. Y. Ren, Y. Tan, F. Chen, D. Jaque, H. J. Zhang, J. Y. Wang, and Q. M. Lu, “Optical channel waveguides in Nd:LGS laser crystals produced by proton implantation,” Opt. Express 18, 16258–16263 (2010).
    [CrossRef]
  32. Y. C. Jia, N. N. Dong, F. Chen, J. R. V. de Aldana, S. Akhmadaliev, and S. Q. Zhou, “Continuous wave ridge waveguide lasers in femtosecond laser micromachined ion irradiated Nd:YAG single crystals,” Opt. Mater. Express 2, 657–662 (2012).
    [CrossRef]
  33. Y. C. Jia, C. E. Rüter, S. Akhmadaliev, S. Q. Zhou, F. Chen, and D. Kip, “Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing,” Opt. Mater. Express 3, 433–438 (2013).
    [CrossRef]
  34. Y. C. Jia, N. N. Dong, F. Chen, J. R. V. de Aldana, S. Akhmadaliev, and S. Q. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20, 9763–9768 (2012).
    [CrossRef]
  35. J. F. Ziegler, computer code. SRIM. http://www.srim.org .
  36. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
    [CrossRef]

2013 (1)

2012 (6)

2011 (6)

2010 (9)

Y. Y. Ren, F. Chen, Q. M. Lu, and H. J. Ma, “Optical waveguides in Nd:GGG crystals produced by H+ or C3+ ion implantation,” Appl. Opt. 49, 2085–2089 (2010).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010).
[CrossRef]

Y. Y. Ren, Y. Tan, F. Chen, D. Jaque, H. J. Zhang, J. Y. Wang, and Q. M. Lu, “Optical channel waveguides in Nd:LGS laser crystals produced by proton implantation,” Opt. Express 18, 16258–16263 (2010).
[CrossRef]

Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35, 3276–3278 (2010).
[CrossRef]

Y. Lü, J. Xia, W. Cheng, J. Chen, G. Ning, and Z. Liang, “Diode-pumped cw Nd:YAG three-level laser at 869  nm,” Opt. Lett. 35, 3670–3672 (2010).
[CrossRef]

Y. C. Yao, Y. Tan, N. N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18, 24516–24521 (2010).
[CrossRef]

A. Benayas, D. Jaque, Y. C. Yao, F. Chen, A. A. Bettiol, A. Rodenas, and A. K. Kar, “Microstructuring of Nd:YAG crystals by proton-beam writing,” Opt. Lett. 35, 3898–3900 (2010).
[CrossRef]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3  W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100, 131–135 (2010).
[CrossRef]

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103, 837–840 (2010).

2009 (1)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[CrossRef]

2008 (3)

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92, 111103 (2008).
[CrossRef]

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33, 165–182 (2008).
[CrossRef]

M. E. Sánchez-Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064  nm,” Appl. Phys. B 94, 215–219 (2008).

2007 (2)

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13, 626–637 (2007).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

2004 (1)

2003 (1)

2000 (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef]

1996 (1)

M. Ezaki, M. Obara, H. Kumagai, and K. Toyoda, “Characterization of Nd:Y3Al5O12 thin films grown on various substrates by pulsed laser deposition,” Appl. Phys. Lett. 69, 2977–2979 (1996).
[CrossRef]

Akhmadaliev, S.

Ams, M.

Benayas, A.

Bennion, I.

Bettiol, A. A.

Calmano, T.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103, 1–4 (2011).

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3  W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100, 131–135 (2010).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010).
[CrossRef]

Cantelar, E.

E. Cantelar, D. Jaque, and G. Lifante, “Waveguide lasers based on dielectric materials,” Opt. Mater. 34, 555–571 (2012).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92, 111103 (2008).
[CrossRef]

G. Vázquez, J. Rickards, G. Lifante, M. Domenech, and E. Cantelar, “Low dose carbon implanted waveguides in Nd:YAG,” Opt. Express 11, 1291–1296 (2003).
[CrossRef]

Chandler, P.

P. D. Townsend, P. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 2006).

Chen, F.

Y. C. Jia, C. E. Rüter, S. Akhmadaliev, S. Q. Zhou, F. Chen, and D. Kip, “Ridge waveguide lasers in Nd:YAG crystals produced by combining swift heavy ion irradiation and precise diamond blade dicing,” Opt. Mater. Express 3, 433–438 (2013).
[CrossRef]

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev. 6, 622–640 (2012).
[CrossRef]

H. Hu, F. Lu, X. L. Wang, F. Chen, and K. M. Wang, “Low-loss optical waveguides and Y-branch splitters in lithium niobate fabricated by MeV oxygen ions with low dose,” Opt. Express 20, 21114–21118 (2012).
[CrossRef]

Y. C. Jia, N. N. Dong, F. Chen, J. R. V. de Aldana, S. Akhmadaliev, and S. Q. Zhou, “Continuous wave ridge waveguide lasers in femtosecond laser micromachined ion irradiated Nd:YAG single crystals,” Opt. Mater. Express 2, 657–662 (2012).
[CrossRef]

Y. C. Jia, N. N. Dong, F. Chen, J. R. V. de Aldana, S. Akhmadaliev, and S. Q. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20, 9763–9768 (2012).
[CrossRef]

Y. Y. Ren, N. N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express 19, 5522–5527 (2011).
[CrossRef]

Y. Y. Ren, N. N. Dong, Y. C. Jia, L. L. Pang, Z. G. Wang, Q. M. Lu, and F. Chen, “Efficient laser emissions at 1.06  μm of swift heavy ion irradiated Nd:YCOB waveguides,” Opt. Lett. 36, 4521–4523 (2011).
[CrossRef]

Y. C. Yao, N. N. Dong, F. Chen, L. L. Pang, Z. G. Wang, and Q. M. Lu, “Continuous wave waveguide lasers of swift argon ion irradiated Nd:YVO4 waveguides,” Opt. Express 19, 24252–24257 (2011).
[CrossRef]

A. Benayas, D. Jaque, Y. C. Yao, F. Chen, A. A. Bettiol, A. Rodenas, and A. K. Kar, “Microstructuring of Nd:YAG crystals by proton-beam writing,” Opt. Lett. 35, 3898–3900 (2010).
[CrossRef]

Y. Y. Ren, Y. Tan, F. Chen, D. Jaque, H. J. Zhang, J. Y. Wang, and Q. M. Lu, “Optical channel waveguides in Nd:LGS laser crystals produced by proton implantation,” Opt. Express 18, 16258–16263 (2010).
[CrossRef]

Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35, 3276–3278 (2010).
[CrossRef]

Y. Y. Ren, F. Chen, Q. M. Lu, and H. J. Ma, “Optical waveguides in Nd:GGG crystals produced by H+ or C3+ ion implantation,” Appl. Opt. 49, 2085–2089 (2010).
[CrossRef]

Y. C. Yao, Y. Tan, N. N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18, 24516–24521 (2010).
[CrossRef]

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103, 837–840 (2010).

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33, 165–182 (2008).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

Chen, J.

Cheng, W.

Cundiff, S. T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef]

de Aldana, J. R. V.

Diddams, S. A.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef]

Domenech, M.

Dong, N. N.

Y. C. Jia, N. N. Dong, F. Chen, J. R. V. de Aldana, S. Akhmadaliev, and S. Q. Zhou, “Continuous wave ridge waveguide lasers in femtosecond laser micromachined ion irradiated Nd:YAG single crystals,” Opt. Mater. Express 2, 657–662 (2012).
[CrossRef]

Y. C. Jia, N. N. Dong, F. Chen, J. R. V. de Aldana, S. Akhmadaliev, and S. Q. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20, 9763–9768 (2012).
[CrossRef]

Y. Y. Ren, N. N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express 19, 5522–5527 (2011).
[CrossRef]

Y. C. Yao, N. N. Dong, F. Chen, L. L. Pang, Z. G. Wang, and Q. M. Lu, “Continuous wave waveguide lasers of swift argon ion irradiated Nd:YVO4 waveguides,” Opt. Express 19, 24252–24257 (2011).
[CrossRef]

Y. Y. Ren, N. N. Dong, Y. C. Jia, L. L. Pang, Z. G. Wang, Q. M. Lu, and F. Chen, “Efficient laser emissions at 1.06  μm of swift heavy ion irradiated Nd:YCOB waveguides,” Opt. Lett. 36, 4521–4523 (2011).
[CrossRef]

Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35, 3276–3278 (2010).
[CrossRef]

Y. C. Yao, Y. Tan, N. N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18, 24516–24521 (2010).
[CrossRef]

Ebendorff-Heidepriem, H.

Ezaki, M.

M. Ezaki, M. Obara, H. Kumagai, and K. Toyoda, “Characterization of Nd:Y3Al5O12 thin films grown on various substrates by pulsed laser deposition,” Appl. Phys. Lett. 69, 2977–2979 (1996).
[CrossRef]

Flores-Romero, E.

Fredrich-Thornton, S. T.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103, 1–4 (2011).

Fuerbach, A.

Gross, S.

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef]

Hansch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef]

Hellmig, O.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3  W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100, 131–135 (2010).
[CrossRef]

Holzwarth, R.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef]

Hu, H.

Huber, G.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103, 1–4 (2011).

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3  W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100, 131–135 (2010).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[CrossRef]

Jaque, D.

E. Cantelar, D. Jaque, and G. Lifante, “Waveguide lasers based on dielectric materials,” Opt. Mater. 34, 555–571 (2012).
[CrossRef]

Y. Y. Ren, N. N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express 19, 5522–5527 (2011).
[CrossRef]

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103, 837–840 (2010).

Y. Y. Ren, Y. Tan, F. Chen, D. Jaque, H. J. Zhang, J. Y. Wang, and Q. M. Lu, “Optical channel waveguides in Nd:LGS laser crystals produced by proton implantation,” Opt. Express 18, 16258–16263 (2010).
[CrossRef]

Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35, 3276–3278 (2010).
[CrossRef]

A. Benayas, D. Jaque, Y. C. Yao, F. Chen, A. A. Bettiol, A. Rodenas, and A. K. Kar, “Microstructuring of Nd:YAG crystals by proton-beam writing,” Opt. Lett. 35, 3898–3900 (2010).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92, 111103 (2008).
[CrossRef]

Jia, Y. C.

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef]

Kar, A. K.

Kip, D.

Kuan, K.

Kumagai, H.

M. Ezaki, M. Obara, H. Kumagai, and K. Toyoda, “Characterization of Nd:Y3Al5O12 thin films grown on various substrates by pulsed laser deposition,” Appl. Phys. Lett. 69, 2977–2979 (1996).
[CrossRef]

Lancaster, D. G.

Liang, Z.

Lifante, G.

E. Cantelar, D. Jaque, and G. Lifante, “Waveguide lasers based on dielectric materials,” Opt. Mater. 34, 555–571 (2012).
[CrossRef]

G. Vázquez, J. Rickards, G. Lifante, M. Domenech, and E. Cantelar, “Low dose carbon implanted waveguides in Nd:YAG,” Opt. Express 11, 1291–1296 (2003).
[CrossRef]

Liu, F. Q.

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103, 837–840 (2010).

Lu, F.

Lu, Q. M.

Lü, Y.

Ma, H. J.

Mackenzie, J. I.

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13, 626–637 (2007).
[CrossRef]

Márquez, H.

M. E. Sánchez-Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064  nm,” Appl. Phys. B 94, 215–219 (2008).

E. Flores-Romero, G. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express 12, 2264–2269 (2004).
[CrossRef]

Mejía, E. B.

M. E. Sánchez-Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064  nm,” Appl. Phys. B 94, 215–219 (2008).

Mezentsev, V.

Monro, T. M.

Murphy, E. J.

E. J. Murphy, Integrated Optical Circuits and Components: Design and Applications (Dekker, 1999).

Narusawa, T.

Ning, G.

Nolte, S.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[CrossRef]

Obara, M.

M. Ezaki, M. Obara, H. Kumagai, and K. Toyoda, “Characterization of Nd:Y3Al5O12 thin films grown on various substrates by pulsed laser deposition,” Appl. Phys. Lett. 69, 2977–2979 (1996).
[CrossRef]

Okhrimchuk, A.

Pang, L. L.

Paschke, A. G.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103, 1–4 (2011).

Petermann, K.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103, 1–4 (2011).

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3  W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100, 131–135 (2010).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[CrossRef]

Qiu, F.

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[CrossRef]

Rangel-Rojo, R.

Ranka, J. K.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef]

Ren, Y. Y.

Rickards, J.

Rodenas, A.

A. Benayas, D. Jaque, Y. C. Yao, F. Chen, A. A. Bettiol, A. Rodenas, and A. K. Kar, “Microstructuring of Nd:YAG crystals by proton-beam writing,” Opt. Lett. 35, 3898–3900 (2010).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92, 111103 (2008).
[CrossRef]

Roso, L.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92, 111103 (2008).
[CrossRef]

Rüter, C. E.

Sánchez-Morales, M. E.

M. E. Sánchez-Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064  nm,” Appl. Phys. B 94, 215–219 (2008).

Shestakov, A.

Siebenmorgen, J.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103, 1–4 (2011).

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3  W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100, 131–135 (2010).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[CrossRef]

Svelto, O.

O. Svelto, Principles of Lasers (Springer, 2010).

Tan, Y.

Torchia, G. A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92, 111103 (2008).
[CrossRef]

Townsend, P. D.

P. D. Townsend, P. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 2006).

Toyoda, K.

M. Ezaki, M. Obara, H. Kumagai, and K. Toyoda, “Characterization of Nd:Y3Al5O12 thin films grown on various substrates by pulsed laser deposition,” Appl. Phys. Lett. 69, 2977–2979 (1996).
[CrossRef]

Trejo-Luna, R.

M. E. Sánchez-Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064  nm,” Appl. Phys. B 94, 215–219 (2008).

E. Flores-Romero, G. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express 12, 2264–2269 (2004).
[CrossRef]

Tünnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[CrossRef]

Udem, T.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef]

Vázquez, G.

Vázquez, G. V.

M. E. Sánchez-Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064  nm,” Appl. Phys. B 94, 215–219 (2008).

Wang, J. Y.

Wang, K. M.

H. Hu, F. Lu, X. L. Wang, F. Chen, and K. M. Wang, “Low-loss optical waveguides and Y-branch splitters in lithium niobate fabricated by MeV oxygen ions with low dose,” Opt. Express 20, 21114–21118 (2012).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

Wang, X. L.

H. Hu, F. Lu, X. L. Wang, F. Chen, and K. M. Wang, “Low-loss optical waveguides and Y-branch splitters in lithium niobate fabricated by MeV oxygen ions with low dose,” Opt. Express 20, 21114–21118 (2012).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

Wang, Z. G.

Windeler, R. S.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef]

Withford, M. J.

Xia, J.

Yagi, H.

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103, 1–4 (2011).

Yao, Y. C.

Ye, J.

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef]

Zhang, C.

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103, 837–840 (2010).

Zhang, H. J.

Zhang, L.

P. D. Townsend, P. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 2006).

Zhou, S. Q.

Appl. Opt. (1)

Appl. Phys. B (6)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97, 251–255 (2009).
[CrossRef]

M. E. Sánchez-Morales, G. V. Vázquez, E. B. Mejía, H. Márquez, J. Rickards, and R. Trejo-Luna, “Laser emission in Nd:YVO4 channel waveguides at 1064  nm,” Appl. Phys. B 94, 215–219 (2008).

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3  W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100, 131–135 (2010).
[CrossRef]

Y. Tan, C. Zhang, F. Chen, F. Q. Liu, D. Jaque, and Q. M. Lu, “Room-temperature continuous wave laser oscillations in Nd:YAG ceramic waveguides produced by carbon ion implantation,” Appl. Phys. B 103, 837–840 (2010).

F. Qiu and T. Narusawa, “Refractive index change mechanisms in swift-heavy-ion-implanted Nd:YAG waveguide,” Appl. Phys. B 105, 871–875 (2011).
[CrossRef]

T. Calmano, A. G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103, 1–4 (2011).

Appl. Phys. Lett. (2)

M. Ezaki, M. Obara, H. Kumagai, and K. Toyoda, “Characterization of Nd:Y3Al5O12 thin films grown on various substrates by pulsed laser deposition,” Appl. Phys. Lett. 69, 2977–2979 (1996).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92, 111103 (2008).
[CrossRef]

Crit. Rev. Solid State Mater. Sci. (1)

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33, 165–182 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13, 626–637 (2007).
[CrossRef]

Laser Photon. Rev. (1)

F. Chen, “Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev. 6, 622–640 (2012).
[CrossRef]

Opt. Express (10)

G. Vázquez, J. Rickards, G. Lifante, M. Domenech, and E. Cantelar, “Low dose carbon implanted waveguides in Nd:YAG,” Opt. Express 11, 1291–1296 (2003).
[CrossRef]

E. Flores-Romero, G. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express 12, 2264–2269 (2004).
[CrossRef]

Y. C. Yao, Y. Tan, N. N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18, 24516–24521 (2010).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18, 16035–16041 (2010).
[CrossRef]

Y. Y. Ren, Y. Tan, F. Chen, D. Jaque, H. J. Zhang, J. Y. Wang, and Q. M. Lu, “Optical channel waveguides in Nd:LGS laser crystals produced by proton implantation,” Opt. Express 18, 16258–16263 (2010).
[CrossRef]

Y. Y. Ren, N. N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express 19, 5522–5527 (2011).
[CrossRef]

Y. C. Yao, N. N. Dong, F. Chen, L. L. Pang, Z. G. Wang, and Q. M. Lu, “Continuous wave waveguide lasers of swift argon ion irradiated Nd:YVO4 waveguides,” Opt. Express 19, 24252–24257 (2011).
[CrossRef]

A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express 20, 3832–3843 (2012).
[CrossRef]

Y. C. Jia, N. N. Dong, F. Chen, J. R. V. de Aldana, S. Akhmadaliev, and S. Q. Zhou, “Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation,” Opt. Express 20, 9763–9768 (2012).
[CrossRef]

H. Hu, F. Lu, X. L. Wang, F. Chen, and K. M. Wang, “Low-loss optical waveguides and Y-branch splitters in lithium niobate fabricated by MeV oxygen ions with low dose,” Opt. Express 20, 21114–21118 (2012).
[CrossRef]

Opt. Lett. (5)

Opt. Mater. (2)

E. Cantelar, D. Jaque, and G. Lifante, “Waveguide lasers based on dielectric materials,” Opt. Mater. 34, 555–571 (2012).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: a review,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

Opt. Mater. Express (2)

Phys. Rev. Lett. (1)

S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hansch, “Direct link between microwave and optical frequencies with a 300  THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
[CrossRef]

Other (4)

J. F. Ziegler, computer code. SRIM. http://www.srim.org .

O. Svelto, Principles of Lasers (Springer, 2010).

E. J. Murphy, Integrated Optical Circuits and Components: Design and Applications (Dekker, 1999).

P. D. Townsend, P. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the fabrication process of the Nd:YAG waveguides. (a) Ni shadow mask used. Slits with different width in the Ni foil were produced by laser fine cutting. (b) C5+ ion implantation process, in which the Ni foil was mounted on top of the sample to form channel waveguides.

Fig. 2.
Fig. 2.

Energy deposition process of the 15 MeV C5+ beams. Electronic stopping power Se (red-dashed line) and nuclear stopping power Sn (blue solid line) as function of the depth, based on SRIM calculation.

Fig. 3.
Fig. 3.

(a)–(d) End-face modal profiles obtained for waveguides with width of 20, 40, 60, 100 μm respectively, captured with TM polarization.

Fig. 4.
Fig. 4.

Metalloscope image of the cross section of the sample, focusing on a waveguide structure with width of 100 μm.

Fig. 5.
Fig. 5.

(a) Laser oscillation spectra from the 100 μm waveguide, showing a keen-edged peak at 1064.2 nm. A mode image of the waveguide laser is shown as inset. (b) Measured output laser power as a function of the absorbed pump power (balls) from the waveguide. The blue solid line shows the linear fit of the data.

Metrics