Abstract

A high-speed scanning stroboscopic fringe-pattern projection system is designed. A high-speed rotating polygon mirror and a line-structured laser cooperate to produce stable and unambiguous stroboscopic fringe patterns. The system combines the rapidity of the grating projection with the high accuracy of the line-structured laser light source. The fringe patterns have fast frame rate, great density, high precision, and high brightness, with convenience and accuracy in adjusting brightness, frequency, linewidth, and the amount of phase shift. The characteristics and the stability of this system are verified by experiments. Experimental results show that the finest linewidth can reach 40 μm and that the minimum fringe cycle is 80 μm. Circuit modulation makes the light source system flexibly adjustable, easy to control in real time, and convenient to project various fringe patterns. Combined with different light intensity adjustment algorithms and 3D computation models, the 3D topography with high accuracy can be obtained for objects measured under different environments or objects with different sizes, morphologies, and optical properties. The proposed system shows a broad application prospect for fast 3D shape precision measurements, particularly in the industrial field of 3D online detection for precision devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48, 133–140 (2010).
    [CrossRef]
  2. C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20, 19493–19510 (2012).
  3. Z. Li and Y. Li, “Gamma-distorted fringe image modeling and accurate gamma correction for fast phase measuring profilometry,” Opt. Lett. 36, 154–156 (2011).
    [CrossRef]
  4. S. Zhang and S.-T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48, 033604 (2009).
    [CrossRef]
  5. S. Lei and S. Zhang, “Digital sinusoidal fringe pattern generation: defocusing binary patterns VS focusing sinusoidal patterns,” Opt. Lasers Eng. 48, 561–569 (2010).
    [CrossRef]
  6. Z. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218–225 (2010).
    [CrossRef]
  7. Y. Wang and S. Zhang, “Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing,” Appl. Opt. 51, 861–872 (2012).
    [CrossRef]
  8. L. Huang, Q. Kemao, B. Pan, and A. K. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Lasers Eng. 48, 141–148 (2010).
    [CrossRef]
  9. K. I. Joo, C. S. Park, M. K. Park, K. W. Park, J. S. Park, Y. Seo, J. Hahn, and H. R. Kim, “Multi-spatial-frequency and phase-shifting profilometry using a liquid crystal phase modulator,” Appl. Opt. 51, 2624–2632 (2012).
    [CrossRef]
  10. Y. Liu, X. Su, and Q. Zhang, “A novel encoded-phase technique for phase measuring profilometry,” Opt. Express 19, 14137–14144 (2011).
  11. E. H. Kim, J. Hahn, H. Kim, and B. Lee, “Profilometry without phase unwrapping using multi-frequency and four-step phase-shift sinusoidal fringe projection,” Opt. Express 17, 7818–7830 (2009).
  12. S. Li, W. Chen, and X. Su, “Reliability-guided phase unwrapping in wavelet-transform profilometry,” Appl. Opt. 47, 3369–3377 (2008).
    [CrossRef]
  13. B. Pan, Q. Kemao, L. Huang, and A. Asundi, “Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry,” Opt. Lett. 34, 416–418 (2009).
    [CrossRef]
  14. S. Zhang and S.-T. Yau, “Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector,” Appl. Opt. 46, 36–43 (2007).
    [CrossRef]
  15. Y. Yin, X. Peng, A. Li, X. Liu, and B. Z. Gao, “Calibration of fringe projection profilometry with bundle adjustment strategy,” Opt. Lett. 37, 542–544 (2012).
    [CrossRef]
  16. L. Huang, P. S. Chua, and A. Asundi, “Least-squares calibration method for fringe projection profilometry considering camera lens distortion,” Appl. Opt. 49, 1539–1548 (2010).
    [CrossRef]
  17. S. Lei and S. Zhang, “Flexible 3-D shape measurement using projector defocusing,” Opt. Lett. 34, 3080–3082 (2009).
    [CrossRef]
  18. Z. Wang, H. Du, S. Park, and H. Xie, “Three-dimensional shape measurement with a fast and accurate approach,” Appl. Opt. 48, 1052–1061 (2009).
    [CrossRef]
  19. S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48, 149–158 (2010).
    [CrossRef]
  20. F. Deng, W. F. Sze, J. Deng, K. S. Fung, W. H. Leung, and E. Y. Lam, “Regularized multiframe phase-shifting algorithm for three-dimensional profilometry,” Appl. Opt. 51, 33–42 (2012).
    [CrossRef]
  21. Y.-C. Park, S.-J. Ahn, M.-H. Kang, Y.-C. Kwon, and S.-J. Ahn, “Ultra high-speed 3-dimensional profilometry using a laser grating projection system,” J. Opt. Soc. Korea 13, 464–467 (2009).
  22. B. Liu, P. Wang, Y. Zeng, and C. Sun, “Measuring method for micro-diameter based on structured-light vision technology,” Chin. Opt. Lett. 8, 666–669 (2010).
    [CrossRef]
  23. P. S. Huang and S. Zhang, “Fast three-step phase-shifting algorithm,” Appl. Opt. 45, 5086–5091 (2006).
    [CrossRef]
  24. G. A. Ayubi, J. M. Di Martino, J. L. Flores, and J. A. Ferrari, “Binary coded linear fringes for three-dimensional shape profiling,” Opt. Eng. 51, 103601 (2012).
    [CrossRef]
  25. T. Wakayama and T. Yoshizawa, “Compact camera for three-dimensional profilometry incorporating a single MEMS mirror,” Opt. Eng. 51, 013601 (2012).
    [CrossRef]
  26. M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “Coherent two-beam interference fringe projection for highspeed three-dimensional shape measurements,” Appl. Opt. 52, 2306–2311 (2013).
    [CrossRef]
  27. Y. Wang and S. Zhang, “Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing,” Opt. Lett. 35, 4121–4123 (2010).
    [CrossRef]
  28. G. A. Ayubi, J. A. Ayubi, J. Matias Di Martino, and J. A. Ferrari, “Pulse-width modulation in defocused three-dimensional fringe projection,” Opt. Lett. 35, 3682–3684 (2010).
    [CrossRef]
  29. H. Fujita, K. Yamatan, M. Yamamoto, Y. Otani, A. Suguro, S. Morokawa, and T. Yoshizawa, “Three-dimensional profilometry using liquid crystal grating,” in Optical Technology and Image Processing for Fluids and Solids Diagnostics 2002 (International Society for Optics and Photonics, 2003), pp. 51–60.

2013 (1)

2012 (7)

2011 (2)

2010 (9)

S. Lei and S. Zhang, “Digital sinusoidal fringe pattern generation: defocusing binary patterns VS focusing sinusoidal patterns,” Opt. Lasers Eng. 48, 561–569 (2010).
[CrossRef]

Z. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218–225 (2010).
[CrossRef]

L. Huang, P. S. Chua, and A. Asundi, “Least-squares calibration method for fringe projection profilometry considering camera lens distortion,” Appl. Opt. 49, 1539–1548 (2010).
[CrossRef]

L. Huang, Q. Kemao, B. Pan, and A. K. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Lasers Eng. 48, 141–148 (2010).
[CrossRef]

B. Liu, P. Wang, Y. Zeng, and C. Sun, “Measuring method for micro-diameter based on structured-light vision technology,” Chin. Opt. Lett. 8, 666–669 (2010).
[CrossRef]

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48, 133–140 (2010).
[CrossRef]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48, 149–158 (2010).
[CrossRef]

Y. Wang and S. Zhang, “Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing,” Opt. Lett. 35, 4121–4123 (2010).
[CrossRef]

G. A. Ayubi, J. A. Ayubi, J. Matias Di Martino, and J. A. Ferrari, “Pulse-width modulation in defocused three-dimensional fringe projection,” Opt. Lett. 35, 3682–3684 (2010).
[CrossRef]

2009 (6)

2008 (1)

2007 (1)

2006 (1)

Ahn, S.-J.

Asundi, A.

Asundi, A. K.

L. Huang, Q. Kemao, B. Pan, and A. K. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Lasers Eng. 48, 141–148 (2010).
[CrossRef]

Ayubi, G. A.

G. A. Ayubi, J. M. Di Martino, J. L. Flores, and J. A. Ferrari, “Binary coded linear fringes for three-dimensional shape profiling,” Opt. Eng. 51, 103601 (2012).
[CrossRef]

G. A. Ayubi, J. A. Ayubi, J. Matias Di Martino, and J. A. Ferrari, “Pulse-width modulation in defocused three-dimensional fringe projection,” Opt. Lett. 35, 3682–3684 (2010).
[CrossRef]

Ayubi, J. A.

Barnes, J. C.

Z. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218–225 (2010).
[CrossRef]

Chen, Q.

Chen, W.

Chua, P. S.

Deng, F.

Deng, J.

Di Martino, J. M.

G. A. Ayubi, J. M. Di Martino, J. L. Flores, and J. A. Ferrari, “Binary coded linear fringes for three-dimensional shape profiling,” Opt. Eng. 51, 103601 (2012).
[CrossRef]

Du, H.

Feng, F.

Feng, S.

Ferrari, J. A.

G. A. Ayubi, J. M. Di Martino, J. L. Flores, and J. A. Ferrari, “Binary coded linear fringes for three-dimensional shape profiling,” Opt. Eng. 51, 103601 (2012).
[CrossRef]

G. A. Ayubi, J. A. Ayubi, J. Matias Di Martino, and J. A. Ferrari, “Pulse-width modulation in defocused three-dimensional fringe projection,” Opt. Lett. 35, 3682–3684 (2010).
[CrossRef]

Flores, J. L.

G. A. Ayubi, J. M. Di Martino, J. L. Flores, and J. A. Ferrari, “Binary coded linear fringes for three-dimensional shape profiling,” Opt. Eng. 51, 103601 (2012).
[CrossRef]

Fujita, H.

H. Fujita, K. Yamatan, M. Yamamoto, Y. Otani, A. Suguro, S. Morokawa, and T. Yoshizawa, “Three-dimensional profilometry using liquid crystal grating,” in Optical Technology and Image Processing for Fluids and Solids Diagnostics 2002 (International Society for Optics and Photonics, 2003), pp. 51–60.

Fung, K. S.

Gao, B. Z.

Gorthi, S. S.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48, 133–140 (2010).
[CrossRef]

Grosse, M.

Gu, G.

Hahn, J.

Harendt, B.

Huang, L.

Huang, P. S.

Joo, K. I.

Kang, M.-H.

Kemao, Q.

L. Huang, Q. Kemao, B. Pan, and A. K. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Lasers Eng. 48, 141–148 (2010).
[CrossRef]

B. Pan, Q. Kemao, L. Huang, and A. Asundi, “Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry,” Opt. Lett. 34, 416–418 (2009).
[CrossRef]

Kim, E. H.

Kim, H.

Kim, H. R.

Kowarschik, R.

Kwon, Y.-C.

Lam, E. Y.

Lee, B.

Lei, S.

S. Lei and S. Zhang, “Digital sinusoidal fringe pattern generation: defocusing binary patterns VS focusing sinusoidal patterns,” Opt. Lasers Eng. 48, 561–569 (2010).
[CrossRef]

S. Lei and S. Zhang, “Flexible 3-D shape measurement using projector defocusing,” Opt. Lett. 34, 3080–3082 (2009).
[CrossRef]

Leung, W. H.

Li, A.

Li, S.

Li, Y.

Li, Z.

Liu, B.

Liu, X.

Liu, Y.

Matias Di Martino, J.

Morokawa, S.

H. Fujita, K. Yamatan, M. Yamamoto, Y. Otani, A. Suguro, S. Morokawa, and T. Yoshizawa, “Three-dimensional profilometry using liquid crystal grating,” in Optical Technology and Image Processing for Fluids and Solids Diagnostics 2002 (International Society for Optics and Photonics, 2003), pp. 51–60.

Nguyen, D. A.

Z. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218–225 (2010).
[CrossRef]

Otani, Y.

H. Fujita, K. Yamatan, M. Yamamoto, Y. Otani, A. Suguro, S. Morokawa, and T. Yoshizawa, “Three-dimensional profilometry using liquid crystal grating,” in Optical Technology and Image Processing for Fluids and Solids Diagnostics 2002 (International Society for Optics and Photonics, 2003), pp. 51–60.

Pan, B.

L. Huang, Q. Kemao, B. Pan, and A. K. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Lasers Eng. 48, 141–148 (2010).
[CrossRef]

B. Pan, Q. Kemao, L. Huang, and A. Asundi, “Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry,” Opt. Lett. 34, 416–418 (2009).
[CrossRef]

Park, C. S.

Park, J. S.

Park, K. W.

Park, M. K.

Park, S.

Park, Y.-C.

Peng, X.

Rastogi, P.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48, 133–140 (2010).
[CrossRef]

Schaffer, M.

Seo, Y.

Su, X.

Suguro, A.

H. Fujita, K. Yamatan, M. Yamamoto, Y. Otani, A. Suguro, S. Morokawa, and T. Yoshizawa, “Three-dimensional profilometry using liquid crystal grating,” in Optical Technology and Image Processing for Fluids and Solids Diagnostics 2002 (International Society for Optics and Photonics, 2003), pp. 51–60.

Sun, C.

Sze, W. F.

Wakayama, T.

T. Wakayama and T. Yoshizawa, “Compact camera for three-dimensional profilometry incorporating a single MEMS mirror,” Opt. Eng. 51, 013601 (2012).
[CrossRef]

Wang, P.

Wang, Y.

Wang, Z.

Z. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218–225 (2010).
[CrossRef]

Z. Wang, H. Du, S. Park, and H. Xie, “Three-dimensional shape measurement with a fast and accurate approach,” Appl. Opt. 48, 1052–1061 (2009).
[CrossRef]

Xie, H.

Yamamoto, M.

H. Fujita, K. Yamatan, M. Yamamoto, Y. Otani, A. Suguro, S. Morokawa, and T. Yoshizawa, “Three-dimensional profilometry using liquid crystal grating,” in Optical Technology and Image Processing for Fluids and Solids Diagnostics 2002 (International Society for Optics and Photonics, 2003), pp. 51–60.

Yamatan, K.

H. Fujita, K. Yamatan, M. Yamamoto, Y. Otani, A. Suguro, S. Morokawa, and T. Yoshizawa, “Three-dimensional profilometry using liquid crystal grating,” in Optical Technology and Image Processing for Fluids and Solids Diagnostics 2002 (International Society for Optics and Photonics, 2003), pp. 51–60.

Yau, S.-T.

Yin, Y.

Yoshizawa, T.

T. Wakayama and T. Yoshizawa, “Compact camera for three-dimensional profilometry incorporating a single MEMS mirror,” Opt. Eng. 51, 013601 (2012).
[CrossRef]

H. Fujita, K. Yamatan, M. Yamamoto, Y. Otani, A. Suguro, S. Morokawa, and T. Yoshizawa, “Three-dimensional profilometry using liquid crystal grating,” in Optical Technology and Image Processing for Fluids and Solids Diagnostics 2002 (International Society for Optics and Photonics, 2003), pp. 51–60.

Zeng, Y.

Zhang, Q.

Zhang, S.

Zuo, C.

Appl. Opt. (9)

Y. Wang and S. Zhang, “Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing,” Appl. Opt. 51, 861–872 (2012).
[CrossRef]

K. I. Joo, C. S. Park, M. K. Park, K. W. Park, J. S. Park, Y. Seo, J. Hahn, and H. R. Kim, “Multi-spatial-frequency and phase-shifting profilometry using a liquid crystal phase modulator,” Appl. Opt. 51, 2624–2632 (2012).
[CrossRef]

S. Li, W. Chen, and X. Su, “Reliability-guided phase unwrapping in wavelet-transform profilometry,” Appl. Opt. 47, 3369–3377 (2008).
[CrossRef]

S. Zhang and S.-T. Yau, “Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector,” Appl. Opt. 46, 36–43 (2007).
[CrossRef]

L. Huang, P. S. Chua, and A. Asundi, “Least-squares calibration method for fringe projection profilometry considering camera lens distortion,” Appl. Opt. 49, 1539–1548 (2010).
[CrossRef]

Z. Wang, H. Du, S. Park, and H. Xie, “Three-dimensional shape measurement with a fast and accurate approach,” Appl. Opt. 48, 1052–1061 (2009).
[CrossRef]

F. Deng, W. F. Sze, J. Deng, K. S. Fung, W. H. Leung, and E. Y. Lam, “Regularized multiframe phase-shifting algorithm for three-dimensional profilometry,” Appl. Opt. 51, 33–42 (2012).
[CrossRef]

M. Schaffer, M. Grosse, B. Harendt, and R. Kowarschik, “Coherent two-beam interference fringe projection for highspeed three-dimensional shape measurements,” Appl. Opt. 52, 2306–2311 (2013).
[CrossRef]

P. S. Huang and S. Zhang, “Fast three-step phase-shifting algorithm,” Appl. Opt. 45, 5086–5091 (2006).
[CrossRef]

Chin. Opt. Lett. (1)

J. Opt. Soc. Korea (1)

Opt. Eng. (3)

G. A. Ayubi, J. M. Di Martino, J. L. Flores, and J. A. Ferrari, “Binary coded linear fringes for three-dimensional shape profiling,” Opt. Eng. 51, 103601 (2012).
[CrossRef]

T. Wakayama and T. Yoshizawa, “Compact camera for three-dimensional profilometry incorporating a single MEMS mirror,” Opt. Eng. 51, 013601 (2012).
[CrossRef]

S. Zhang and S.-T. Yau, “High dynamic range scanning technique,” Opt. Eng. 48, 033604 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lasers Eng. (5)

L. Huang, Q. Kemao, B. Pan, and A. K. Asundi, “Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry,” Opt. Lasers Eng. 48, 141–148 (2010).
[CrossRef]

S. Lei and S. Zhang, “Digital sinusoidal fringe pattern generation: defocusing binary patterns VS focusing sinusoidal patterns,” Opt. Lasers Eng. 48, 561–569 (2010).
[CrossRef]

Z. Wang, D. A. Nguyen, and J. C. Barnes, “Some practical considerations in fringe projection profilometry,” Opt. Lasers Eng. 48, 218–225 (2010).
[CrossRef]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48, 149–158 (2010).
[CrossRef]

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: whither we are?” Opt. Lasers Eng. 48, 133–140 (2010).
[CrossRef]

Opt. Lett. (6)

Other (1)

H. Fujita, K. Yamatan, M. Yamamoto, Y. Otani, A. Suguro, S. Morokawa, and T. Yoshizawa, “Three-dimensional profilometry using liquid crystal grating,” in Optical Technology and Image Processing for Fluids and Solids Diagnostics 2002 (International Society for Optics and Photonics, 2003), pp. 51–60.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Stroboscopic fringe-pattern projection system setup.

Fig. 2.
Fig. 2.

Scheme of the fringe patterns’ projection range, density, and linewidth.

Fig. 3.
Fig. 3.

Fringe pattern captured with finest linewidth and minimum fringe cycle. (a) Field of view, (b) fringe pattern captured, (c) enlargement of part fringes, and (d) gray value distribution of the 20th line.

Fig. 4.
Fig. 4.

Fringe patterns captured with exponential frequency division modulation.

Fig. 5.
Fig. 5.

Fringe patterns captured with exponential pulsewidth increasing modulation.

Fig. 6.
Fig. 6.

Fringe patterns captured with four-step phase shifting.

Fig. 7.
Fig. 7.

Fringe pattern captured and image processing in multi-line-structured light mode. (a) Fringe pattern captured, (b) image binarization, (c) image thinning, (d) light strips center extraction, and (e) line fitting.

Fig. 8.
Fig. 8.

Deviation of the fitting lines’ horizontal ordinate changing with time (pixels).

Fig. 9.
Fig. 9.

Measurement for PCB solder paste. (a), (b) Fringe patterns projected on the BGA packages’ solder paste and (c), (d) on the pin flat pack solder paste. (a), (c) p=4p0, pwm=1/2. (b), (d) pwm=1/16. (e), (g) Correspondingly calculated phase map and (f), (h) distribution of the fringes’ center. (i)–(l) Recovered 3D shape of the measured surface using corresponding method.

Fig. 10.
Fig. 10.

Measurement for the gauge block. (a), (c) Captured fringe patterns, (b) correspondingly calculated phase map, (d) distribution of the fringe center, (e) height distribution using phase profilometry, (f) height distribution using multiline center extraction, and (g) comparison of the cross section of the 256th row of the height distribution.

Tables (1)

Tables Icon

Table 1. Mean Value, Fringe Cycle, Maximum Deviation Relative to the Mean Value, and RMS Error of the Fitting Lines’ Horizontal Ordinate (Pixels)

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

L=2dtanθ.
L=2dθ.
ΔL=dΔθ=dωΔt,
p=dωΔT=dω/flaser.
Δw=dωΔton.
pwm={Δw/p=Δton/ΔT(Δton>Δton0)Δwmin/p=Δton0/ΔT(ΔtonΔton0).
t0+Δts;Δts=nΔT/Ns(n=0,1,Ns1),
φ0+Δφs;Δφs=2nπ/Ns(n=0,1,Ns1),
ΔtexpΔtexpmin=Δθ/ω.
Δtexp=θ/ω.
{ΔT=p/dω=p/6123Δton=Δw/dω=Δw/6123pwm={Δw/p=Δton/ΔT(Δton>Δton0)Δwmin/p=Δton0/ΔT(ΔtonΔton0)Δton0=Δwmin/6123=6.7ust0+Δts;Δts=nΔT/Ns(n=0,1,Ns1)Δtexp=θ/ω=8.3ms.
p0=2Δwmin=80μm;ΔT0=2Δton0=6.7μs,flaser0=75kHz;pwm0=50%.
p0768/112*μ=85μm;Δwmin=p0/2=42.5μm.
ΔTf=NfΔT0pf=Nfp0,Δton=ΔTfpwmf(Nf=2,4,8,pwmf=1/2,1/16).
Δtonp=ΔTppwmpΔw=pwmppp(pwmp=1/2,1/4,1/8,1/16).
Δts=nΔTs/Ns(n=0,1,Ns1),Ns=4;ΔTs=NfΔT0(Nf=4,8).

Metrics