Abstract

The optogalvanic (OG) effect has been observed in a Eu/Ne hollow cathode discharge lamp using pulsed laser irradiation. An OG spectrum is recorded in dye laser wavelength region 574–602 nm using a boxcar-averager. In total 41 atomic lines are observed. Of these, 38 lines are assigned to neon transitions. Two lines observed corresponding to wavelengths 576.519 and 601.815 nm are assigned to europium transitions; (4f76s2, S87/24f76s6p, zP67/2) and (4f76s2, S87/24f76s6p, zP89/2), respectively, and the remaining line at 582.475 nm could not be assigned. The effect of the discharge current on europium as well as neon OG signals is also studied. At moderate discharge current values, an extra positive peak is observed in neon OG signal for the transition (1s52p2) at 588.189 nm, which is explained by Penning-ionization process using the quasi-resonant energy transfer interactions between excited neon and europium atoms lying in 2p2 and D109/2 states, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990).
    [CrossRef]
  2. H. O. Behrens and G. H. Guthijhrlein, “High resolution optogalvanic spectroscopy as a useful tool in the determination of atomic hyperfine parameters and isotopic shifts,” J. Phys. Colloq. 44, 7–149 (1983).
  3. Z. B. Goldschmidt, Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner and L. Eyring, eds. (North-Holland, 1978), pp. 1–171.
  4. B. Furmann and D. Stefanska, “Isotope shift and hyperfine structure in even configurations of neutral europium,” J. Phys. B 44, 225005 (2011).
    [CrossRef]
  5. S. G. Nakhate, M. A. N. Razvi, and S. A. Ahmad, “New odd-parity energy levels of europium atoms in the 43200–45000  cm-1 region by laser photo ionization spectroscopy,” J. Phys. B 33, 191–199 (2000).
    [CrossRef]
  6. S. Bhattacharyya, R. D. Souza, P. M. Rao, and M. A. N. Razvi, “Investigation of new odd-parity auto-ionization Rydberg levels of neutral europium,” Spectrochim. Acta, Part B 58, 469–478 (2003).
    [CrossRef]
  7. G. V. S. G. Acharyulu, M. Sankari, P. V. Kiran Kumar, and M. V. Suryanarayana, “Hyperfine structure and isotope shift measurements of 4f7 6s2 (8S7/2) → 4f7 6s6p (8P9/2) 601.815  nm transition in Eu I by laser induced atomic beam fluorescence spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 133, 251–263 (2014).
    [CrossRef]
  8. W. Kaelber, “Optogalvanic spectroscopy of europium,” (U.S. Department of Commerce, 1985).
  9. H. D. Kronfeldt and D. J. Webber, “Doppler free two photon spectroscopy in Eu: Fine structure, hyperfine structures and isotope shifts of odd levels between 34400 and 38700  cm-1,” Phys. Rev. A 43, 4837–4844 (1991).
    [CrossRef]
  10. A. Mokhariwale, S. K. Agrawal, V. K. Saini, and S. V. Nakhe, “Wavelength scanner for precision tuning of pulsed dye laser,” J. Instrum. Soc. India 43, 5–6 (2013).
  11. C. E. Moore, Atomic Energy Levels, Vol. 3 of National Standard Reference Data Series (National Bureau of Standards, 1971).
  12. S. H. Ashworth and J. M. Brown, “An atlas of optogalvanic transitions in neon,” (Rutherford Appleton Laboratory, 1991).
  13. C. Haridass, H. Major, P. Misra, and X. L. Han, Ultraviolet Spectroscopy and UV Lasers, P. Misra and M. A. Dubinskii, eds. (Marcel Dekker, 2002), Chap. 2, pp. 33–69.
  14. X. L. Han, M. C. Blosser, P. Misra, and C. Haridass, “Abrupt changes in neon discharge plasma detected via the optogalvanic effect,” Thin Solid Films 521, 155–157 (2012).
    [CrossRef]
  15. K. C. Smyth, B. L. Bentz, C. G. Bruhn, and W. W. Harrison, “The role of Penning ionization of the minor species in a neon hollow cathode discharge,” J. Am. Chem. Soc. 101, 797–799 (1979).
    [CrossRef]
  16. V. K. Saini, V. K. Shrivastava, and R. Khare, “Anomalous behavior of optogalvanic signal in a miniature neon discharge lamp,” Opt. Commun. 281, 129–134 (2008).
    [CrossRef]
  17. P. Kumar, V. K. Saini, G. S. Purbia, O. Prakash, S. K. Dixit, and S. V. Nakhe, “Studies on inverse optogalvanic and Penning ionization effects in ytterbium and neon transitions in Yb-Ne hollow cathode lamp,” Opt. Commun. 313, 42–48 (2014).
    [CrossRef]
  18. I. Tsuruji and K. Masahiro, “Optogalvanic effect in Cs/Ne hollow cathode discharge,” J. Phys. Soc. Jpn. 59, 3807–3810 (1990).
    [CrossRef]
  19. E. C. Jung, S. P. Rho, J. Lee, and H. Cho, “Effect of Penning ionization on the optogalvanic signal of Argon/rare-earth metal hollow cathode discharge,” Opt. Commun. 149, 283–288 (1998).
    [CrossRef]
  20. N. E. Small-Warren and L. Y. C. Chiu, “Lifetime of the metastable 3P2 and 3P0 states of the rare gas atoms,” Phys. Rev. A 11, 1777–1783 (1975).
    [CrossRef]
  21. F. A. Sharpton, R. M. John, C. C. St. Lin, and F. E. Fajen, “Experimental and theoretical studies of electron impact excitation of neon,” Phys. Rev. A 2, 1305–1322 (1970).
    [CrossRef]
  22. R. Shuker, A. Ben-Amar, and G. Erez, “Optogalvanic spectroscopy of quasi-resonant Penning ionization,” J. Appl. Phys. 54, 5685–5690 (1983).
    [CrossRef]
  23. E. C. Jung and J. Lee, “Specific behavior of dynamic optogalvanic signals of an argon hollow cathode discharge,” Opt. Commun. 161, 149–155 (1999).
    [CrossRef]
  24. N. K. Pircha, R. Feaver, T. H. Gilani, R. Ahmed, R. Ali, and M. A. Baig, “The study of the 1S4 → 2pj optogalvanic transients in a neon discharge plasma,” Opt. Commun. 282, 2532–2538 (2009).
    [CrossRef]

2014 (2)

G. V. S. G. Acharyulu, M. Sankari, P. V. Kiran Kumar, and M. V. Suryanarayana, “Hyperfine structure and isotope shift measurements of 4f7 6s2 (8S7/2) → 4f7 6s6p (8P9/2) 601.815  nm transition in Eu I by laser induced atomic beam fluorescence spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 133, 251–263 (2014).
[CrossRef]

P. Kumar, V. K. Saini, G. S. Purbia, O. Prakash, S. K. Dixit, and S. V. Nakhe, “Studies on inverse optogalvanic and Penning ionization effects in ytterbium and neon transitions in Yb-Ne hollow cathode lamp,” Opt. Commun. 313, 42–48 (2014).
[CrossRef]

2013 (1)

A. Mokhariwale, S. K. Agrawal, V. K. Saini, and S. V. Nakhe, “Wavelength scanner for precision tuning of pulsed dye laser,” J. Instrum. Soc. India 43, 5–6 (2013).

2012 (1)

X. L. Han, M. C. Blosser, P. Misra, and C. Haridass, “Abrupt changes in neon discharge plasma detected via the optogalvanic effect,” Thin Solid Films 521, 155–157 (2012).
[CrossRef]

2011 (1)

B. Furmann and D. Stefanska, “Isotope shift and hyperfine structure in even configurations of neutral europium,” J. Phys. B 44, 225005 (2011).
[CrossRef]

2009 (1)

N. K. Pircha, R. Feaver, T. H. Gilani, R. Ahmed, R. Ali, and M. A. Baig, “The study of the 1S4 → 2pj optogalvanic transients in a neon discharge plasma,” Opt. Commun. 282, 2532–2538 (2009).
[CrossRef]

2008 (1)

V. K. Saini, V. K. Shrivastava, and R. Khare, “Anomalous behavior of optogalvanic signal in a miniature neon discharge lamp,” Opt. Commun. 281, 129–134 (2008).
[CrossRef]

2003 (1)

S. Bhattacharyya, R. D. Souza, P. M. Rao, and M. A. N. Razvi, “Investigation of new odd-parity auto-ionization Rydberg levels of neutral europium,” Spectrochim. Acta, Part B 58, 469–478 (2003).
[CrossRef]

2000 (1)

S. G. Nakhate, M. A. N. Razvi, and S. A. Ahmad, “New odd-parity energy levels of europium atoms in the 43200–45000  cm-1 region by laser photo ionization spectroscopy,” J. Phys. B 33, 191–199 (2000).
[CrossRef]

1999 (1)

E. C. Jung and J. Lee, “Specific behavior of dynamic optogalvanic signals of an argon hollow cathode discharge,” Opt. Commun. 161, 149–155 (1999).
[CrossRef]

1998 (1)

E. C. Jung, S. P. Rho, J. Lee, and H. Cho, “Effect of Penning ionization on the optogalvanic signal of Argon/rare-earth metal hollow cathode discharge,” Opt. Commun. 149, 283–288 (1998).
[CrossRef]

1991 (1)

H. D. Kronfeldt and D. J. Webber, “Doppler free two photon spectroscopy in Eu: Fine structure, hyperfine structures and isotope shifts of odd levels between 34400 and 38700  cm-1,” Phys. Rev. A 43, 4837–4844 (1991).
[CrossRef]

1990 (2)

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990).
[CrossRef]

I. Tsuruji and K. Masahiro, “Optogalvanic effect in Cs/Ne hollow cathode discharge,” J. Phys. Soc. Jpn. 59, 3807–3810 (1990).
[CrossRef]

1983 (2)

R. Shuker, A. Ben-Amar, and G. Erez, “Optogalvanic spectroscopy of quasi-resonant Penning ionization,” J. Appl. Phys. 54, 5685–5690 (1983).
[CrossRef]

H. O. Behrens and G. H. Guthijhrlein, “High resolution optogalvanic spectroscopy as a useful tool in the determination of atomic hyperfine parameters and isotopic shifts,” J. Phys. Colloq. 44, 7–149 (1983).

1979 (1)

K. C. Smyth, B. L. Bentz, C. G. Bruhn, and W. W. Harrison, “The role of Penning ionization of the minor species in a neon hollow cathode discharge,” J. Am. Chem. Soc. 101, 797–799 (1979).
[CrossRef]

1975 (1)

N. E. Small-Warren and L. Y. C. Chiu, “Lifetime of the metastable 3P2 and 3P0 states of the rare gas atoms,” Phys. Rev. A 11, 1777–1783 (1975).
[CrossRef]

1970 (1)

F. A. Sharpton, R. M. John, C. C. St. Lin, and F. E. Fajen, “Experimental and theoretical studies of electron impact excitation of neon,” Phys. Rev. A 2, 1305–1322 (1970).
[CrossRef]

Acharyulu, G. V. S. G.

G. V. S. G. Acharyulu, M. Sankari, P. V. Kiran Kumar, and M. V. Suryanarayana, “Hyperfine structure and isotope shift measurements of 4f7 6s2 (8S7/2) → 4f7 6s6p (8P9/2) 601.815  nm transition in Eu I by laser induced atomic beam fluorescence spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 133, 251–263 (2014).
[CrossRef]

Agrawal, S. K.

A. Mokhariwale, S. K. Agrawal, V. K. Saini, and S. V. Nakhe, “Wavelength scanner for precision tuning of pulsed dye laser,” J. Instrum. Soc. India 43, 5–6 (2013).

Ahmad, S. A.

S. G. Nakhate, M. A. N. Razvi, and S. A. Ahmad, “New odd-parity energy levels of europium atoms in the 43200–45000  cm-1 region by laser photo ionization spectroscopy,” J. Phys. B 33, 191–199 (2000).
[CrossRef]

Ahmed, R.

N. K. Pircha, R. Feaver, T. H. Gilani, R. Ahmed, R. Ali, and M. A. Baig, “The study of the 1S4 → 2pj optogalvanic transients in a neon discharge plasma,” Opt. Commun. 282, 2532–2538 (2009).
[CrossRef]

Ali, R.

N. K. Pircha, R. Feaver, T. H. Gilani, R. Ahmed, R. Ali, and M. A. Baig, “The study of the 1S4 → 2pj optogalvanic transients in a neon discharge plasma,” Opt. Commun. 282, 2532–2538 (2009).
[CrossRef]

Ashworth, S. H.

S. H. Ashworth and J. M. Brown, “An atlas of optogalvanic transitions in neon,” (Rutherford Appleton Laboratory, 1991).

Baig, M. A.

N. K. Pircha, R. Feaver, T. H. Gilani, R. Ahmed, R. Ali, and M. A. Baig, “The study of the 1S4 → 2pj optogalvanic transients in a neon discharge plasma,” Opt. Commun. 282, 2532–2538 (2009).
[CrossRef]

Barbieri, B.

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990).
[CrossRef]

Behrens, H. O.

H. O. Behrens and G. H. Guthijhrlein, “High resolution optogalvanic spectroscopy as a useful tool in the determination of atomic hyperfine parameters and isotopic shifts,” J. Phys. Colloq. 44, 7–149 (1983).

Ben-Amar, A.

R. Shuker, A. Ben-Amar, and G. Erez, “Optogalvanic spectroscopy of quasi-resonant Penning ionization,” J. Appl. Phys. 54, 5685–5690 (1983).
[CrossRef]

Bentz, B. L.

K. C. Smyth, B. L. Bentz, C. G. Bruhn, and W. W. Harrison, “The role of Penning ionization of the minor species in a neon hollow cathode discharge,” J. Am. Chem. Soc. 101, 797–799 (1979).
[CrossRef]

Beverini, N.

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990).
[CrossRef]

Bhattacharyya, S.

S. Bhattacharyya, R. D. Souza, P. M. Rao, and M. A. N. Razvi, “Investigation of new odd-parity auto-ionization Rydberg levels of neutral europium,” Spectrochim. Acta, Part B 58, 469–478 (2003).
[CrossRef]

Blosser, M. C.

X. L. Han, M. C. Blosser, P. Misra, and C. Haridass, “Abrupt changes in neon discharge plasma detected via the optogalvanic effect,” Thin Solid Films 521, 155–157 (2012).
[CrossRef]

Brown, J. M.

S. H. Ashworth and J. M. Brown, “An atlas of optogalvanic transitions in neon,” (Rutherford Appleton Laboratory, 1991).

Bruhn, C. G.

K. C. Smyth, B. L. Bentz, C. G. Bruhn, and W. W. Harrison, “The role of Penning ionization of the minor species in a neon hollow cathode discharge,” J. Am. Chem. Soc. 101, 797–799 (1979).
[CrossRef]

Chiu, L. Y. C.

N. E. Small-Warren and L. Y. C. Chiu, “Lifetime of the metastable 3P2 and 3P0 states of the rare gas atoms,” Phys. Rev. A 11, 1777–1783 (1975).
[CrossRef]

Cho, H.

E. C. Jung, S. P. Rho, J. Lee, and H. Cho, “Effect of Penning ionization on the optogalvanic signal of Argon/rare-earth metal hollow cathode discharge,” Opt. Commun. 149, 283–288 (1998).
[CrossRef]

Dixit, S. K.

P. Kumar, V. K. Saini, G. S. Purbia, O. Prakash, S. K. Dixit, and S. V. Nakhe, “Studies on inverse optogalvanic and Penning ionization effects in ytterbium and neon transitions in Yb-Ne hollow cathode lamp,” Opt. Commun. 313, 42–48 (2014).
[CrossRef]

Erez, G.

R. Shuker, A. Ben-Amar, and G. Erez, “Optogalvanic spectroscopy of quasi-resonant Penning ionization,” J. Appl. Phys. 54, 5685–5690 (1983).
[CrossRef]

Fajen, F. E.

F. A. Sharpton, R. M. John, C. C. St. Lin, and F. E. Fajen, “Experimental and theoretical studies of electron impact excitation of neon,” Phys. Rev. A 2, 1305–1322 (1970).
[CrossRef]

Feaver, R.

N. K. Pircha, R. Feaver, T. H. Gilani, R. Ahmed, R. Ali, and M. A. Baig, “The study of the 1S4 → 2pj optogalvanic transients in a neon discharge plasma,” Opt. Commun. 282, 2532–2538 (2009).
[CrossRef]

Furmann, B.

B. Furmann and D. Stefanska, “Isotope shift and hyperfine structure in even configurations of neutral europium,” J. Phys. B 44, 225005 (2011).
[CrossRef]

Gilani, T. H.

N. K. Pircha, R. Feaver, T. H. Gilani, R. Ahmed, R. Ali, and M. A. Baig, “The study of the 1S4 → 2pj optogalvanic transients in a neon discharge plasma,” Opt. Commun. 282, 2532–2538 (2009).
[CrossRef]

Goldschmidt, Z. B.

Z. B. Goldschmidt, Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner and L. Eyring, eds. (North-Holland, 1978), pp. 1–171.

Guthijhrlein, G. H.

H. O. Behrens and G. H. Guthijhrlein, “High resolution optogalvanic spectroscopy as a useful tool in the determination of atomic hyperfine parameters and isotopic shifts,” J. Phys. Colloq. 44, 7–149 (1983).

Han, X. L.

X. L. Han, M. C. Blosser, P. Misra, and C. Haridass, “Abrupt changes in neon discharge plasma detected via the optogalvanic effect,” Thin Solid Films 521, 155–157 (2012).
[CrossRef]

C. Haridass, H. Major, P. Misra, and X. L. Han, Ultraviolet Spectroscopy and UV Lasers, P. Misra and M. A. Dubinskii, eds. (Marcel Dekker, 2002), Chap. 2, pp. 33–69.

Haridass, C.

X. L. Han, M. C. Blosser, P. Misra, and C. Haridass, “Abrupt changes in neon discharge plasma detected via the optogalvanic effect,” Thin Solid Films 521, 155–157 (2012).
[CrossRef]

C. Haridass, H. Major, P. Misra, and X. L. Han, Ultraviolet Spectroscopy and UV Lasers, P. Misra and M. A. Dubinskii, eds. (Marcel Dekker, 2002), Chap. 2, pp. 33–69.

Harrison, W. W.

K. C. Smyth, B. L. Bentz, C. G. Bruhn, and W. W. Harrison, “The role of Penning ionization of the minor species in a neon hollow cathode discharge,” J. Am. Chem. Soc. 101, 797–799 (1979).
[CrossRef]

John, R. M.

F. A. Sharpton, R. M. John, C. C. St. Lin, and F. E. Fajen, “Experimental and theoretical studies of electron impact excitation of neon,” Phys. Rev. A 2, 1305–1322 (1970).
[CrossRef]

Jung, E. C.

E. C. Jung and J. Lee, “Specific behavior of dynamic optogalvanic signals of an argon hollow cathode discharge,” Opt. Commun. 161, 149–155 (1999).
[CrossRef]

E. C. Jung, S. P. Rho, J. Lee, and H. Cho, “Effect of Penning ionization on the optogalvanic signal of Argon/rare-earth metal hollow cathode discharge,” Opt. Commun. 149, 283–288 (1998).
[CrossRef]

Kaelber, W.

W. Kaelber, “Optogalvanic spectroscopy of europium,” (U.S. Department of Commerce, 1985).

Khare, R.

V. K. Saini, V. K. Shrivastava, and R. Khare, “Anomalous behavior of optogalvanic signal in a miniature neon discharge lamp,” Opt. Commun. 281, 129–134 (2008).
[CrossRef]

Kiran Kumar, P. V.

G. V. S. G. Acharyulu, M. Sankari, P. V. Kiran Kumar, and M. V. Suryanarayana, “Hyperfine structure and isotope shift measurements of 4f7 6s2 (8S7/2) → 4f7 6s6p (8P9/2) 601.815  nm transition in Eu I by laser induced atomic beam fluorescence spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 133, 251–263 (2014).
[CrossRef]

Kronfeldt, H. D.

H. D. Kronfeldt and D. J. Webber, “Doppler free two photon spectroscopy in Eu: Fine structure, hyperfine structures and isotope shifts of odd levels between 34400 and 38700  cm-1,” Phys. Rev. A 43, 4837–4844 (1991).
[CrossRef]

Kumar, P.

P. Kumar, V. K. Saini, G. S. Purbia, O. Prakash, S. K. Dixit, and S. V. Nakhe, “Studies on inverse optogalvanic and Penning ionization effects in ytterbium and neon transitions in Yb-Ne hollow cathode lamp,” Opt. Commun. 313, 42–48 (2014).
[CrossRef]

Lee, J.

E. C. Jung and J. Lee, “Specific behavior of dynamic optogalvanic signals of an argon hollow cathode discharge,” Opt. Commun. 161, 149–155 (1999).
[CrossRef]

E. C. Jung, S. P. Rho, J. Lee, and H. Cho, “Effect of Penning ionization on the optogalvanic signal of Argon/rare-earth metal hollow cathode discharge,” Opt. Commun. 149, 283–288 (1998).
[CrossRef]

Major, H.

C. Haridass, H. Major, P. Misra, and X. L. Han, Ultraviolet Spectroscopy and UV Lasers, P. Misra and M. A. Dubinskii, eds. (Marcel Dekker, 2002), Chap. 2, pp. 33–69.

Masahiro, K.

I. Tsuruji and K. Masahiro, “Optogalvanic effect in Cs/Ne hollow cathode discharge,” J. Phys. Soc. Jpn. 59, 3807–3810 (1990).
[CrossRef]

Misra, P.

X. L. Han, M. C. Blosser, P. Misra, and C. Haridass, “Abrupt changes in neon discharge plasma detected via the optogalvanic effect,” Thin Solid Films 521, 155–157 (2012).
[CrossRef]

C. Haridass, H. Major, P. Misra, and X. L. Han, Ultraviolet Spectroscopy and UV Lasers, P. Misra and M. A. Dubinskii, eds. (Marcel Dekker, 2002), Chap. 2, pp. 33–69.

Mokhariwale, A.

A. Mokhariwale, S. K. Agrawal, V. K. Saini, and S. V. Nakhe, “Wavelength scanner for precision tuning of pulsed dye laser,” J. Instrum. Soc. India 43, 5–6 (2013).

Moore, C. E.

C. E. Moore, Atomic Energy Levels, Vol. 3 of National Standard Reference Data Series (National Bureau of Standards, 1971).

Nakhate, S. G.

S. G. Nakhate, M. A. N. Razvi, and S. A. Ahmad, “New odd-parity energy levels of europium atoms in the 43200–45000  cm-1 region by laser photo ionization spectroscopy,” J. Phys. B 33, 191–199 (2000).
[CrossRef]

Nakhe, S. V.

P. Kumar, V. K. Saini, G. S. Purbia, O. Prakash, S. K. Dixit, and S. V. Nakhe, “Studies on inverse optogalvanic and Penning ionization effects in ytterbium and neon transitions in Yb-Ne hollow cathode lamp,” Opt. Commun. 313, 42–48 (2014).
[CrossRef]

A. Mokhariwale, S. K. Agrawal, V. K. Saini, and S. V. Nakhe, “Wavelength scanner for precision tuning of pulsed dye laser,” J. Instrum. Soc. India 43, 5–6 (2013).

Pircha, N. K.

N. K. Pircha, R. Feaver, T. H. Gilani, R. Ahmed, R. Ali, and M. A. Baig, “The study of the 1S4 → 2pj optogalvanic transients in a neon discharge plasma,” Opt. Commun. 282, 2532–2538 (2009).
[CrossRef]

Prakash, O.

P. Kumar, V. K. Saini, G. S. Purbia, O. Prakash, S. K. Dixit, and S. V. Nakhe, “Studies on inverse optogalvanic and Penning ionization effects in ytterbium and neon transitions in Yb-Ne hollow cathode lamp,” Opt. Commun. 313, 42–48 (2014).
[CrossRef]

Purbia, G. S.

P. Kumar, V. K. Saini, G. S. Purbia, O. Prakash, S. K. Dixit, and S. V. Nakhe, “Studies on inverse optogalvanic and Penning ionization effects in ytterbium and neon transitions in Yb-Ne hollow cathode lamp,” Opt. Commun. 313, 42–48 (2014).
[CrossRef]

Rao, P. M.

S. Bhattacharyya, R. D. Souza, P. M. Rao, and M. A. N. Razvi, “Investigation of new odd-parity auto-ionization Rydberg levels of neutral europium,” Spectrochim. Acta, Part B 58, 469–478 (2003).
[CrossRef]

Razvi, M. A. N.

S. Bhattacharyya, R. D. Souza, P. M. Rao, and M. A. N. Razvi, “Investigation of new odd-parity auto-ionization Rydberg levels of neutral europium,” Spectrochim. Acta, Part B 58, 469–478 (2003).
[CrossRef]

S. G. Nakhate, M. A. N. Razvi, and S. A. Ahmad, “New odd-parity energy levels of europium atoms in the 43200–45000  cm-1 region by laser photo ionization spectroscopy,” J. Phys. B 33, 191–199 (2000).
[CrossRef]

Rho, S. P.

E. C. Jung, S. P. Rho, J. Lee, and H. Cho, “Effect of Penning ionization on the optogalvanic signal of Argon/rare-earth metal hollow cathode discharge,” Opt. Commun. 149, 283–288 (1998).
[CrossRef]

Saini, V. K.

P. Kumar, V. K. Saini, G. S. Purbia, O. Prakash, S. K. Dixit, and S. V. Nakhe, “Studies on inverse optogalvanic and Penning ionization effects in ytterbium and neon transitions in Yb-Ne hollow cathode lamp,” Opt. Commun. 313, 42–48 (2014).
[CrossRef]

A. Mokhariwale, S. K. Agrawal, V. K. Saini, and S. V. Nakhe, “Wavelength scanner for precision tuning of pulsed dye laser,” J. Instrum. Soc. India 43, 5–6 (2013).

V. K. Saini, V. K. Shrivastava, and R. Khare, “Anomalous behavior of optogalvanic signal in a miniature neon discharge lamp,” Opt. Commun. 281, 129–134 (2008).
[CrossRef]

Sankari, M.

G. V. S. G. Acharyulu, M. Sankari, P. V. Kiran Kumar, and M. V. Suryanarayana, “Hyperfine structure and isotope shift measurements of 4f7 6s2 (8S7/2) → 4f7 6s6p (8P9/2) 601.815  nm transition in Eu I by laser induced atomic beam fluorescence spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 133, 251–263 (2014).
[CrossRef]

Sasso, A.

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990).
[CrossRef]

Sharpton, F. A.

F. A. Sharpton, R. M. John, C. C. St. Lin, and F. E. Fajen, “Experimental and theoretical studies of electron impact excitation of neon,” Phys. Rev. A 2, 1305–1322 (1970).
[CrossRef]

Shrivastava, V. K.

V. K. Saini, V. K. Shrivastava, and R. Khare, “Anomalous behavior of optogalvanic signal in a miniature neon discharge lamp,” Opt. Commun. 281, 129–134 (2008).
[CrossRef]

Shuker, R.

R. Shuker, A. Ben-Amar, and G. Erez, “Optogalvanic spectroscopy of quasi-resonant Penning ionization,” J. Appl. Phys. 54, 5685–5690 (1983).
[CrossRef]

Small-Warren, N. E.

N. E. Small-Warren and L. Y. C. Chiu, “Lifetime of the metastable 3P2 and 3P0 states of the rare gas atoms,” Phys. Rev. A 11, 1777–1783 (1975).
[CrossRef]

Smyth, K. C.

K. C. Smyth, B. L. Bentz, C. G. Bruhn, and W. W. Harrison, “The role of Penning ionization of the minor species in a neon hollow cathode discharge,” J. Am. Chem. Soc. 101, 797–799 (1979).
[CrossRef]

Souza, R. D.

S. Bhattacharyya, R. D. Souza, P. M. Rao, and M. A. N. Razvi, “Investigation of new odd-parity auto-ionization Rydberg levels of neutral europium,” Spectrochim. Acta, Part B 58, 469–478 (2003).
[CrossRef]

St. Lin, C. C.

F. A. Sharpton, R. M. John, C. C. St. Lin, and F. E. Fajen, “Experimental and theoretical studies of electron impact excitation of neon,” Phys. Rev. A 2, 1305–1322 (1970).
[CrossRef]

Stefanska, D.

B. Furmann and D. Stefanska, “Isotope shift and hyperfine structure in even configurations of neutral europium,” J. Phys. B 44, 225005 (2011).
[CrossRef]

Suryanarayana, M. V.

G. V. S. G. Acharyulu, M. Sankari, P. V. Kiran Kumar, and M. V. Suryanarayana, “Hyperfine structure and isotope shift measurements of 4f7 6s2 (8S7/2) → 4f7 6s6p (8P9/2) 601.815  nm transition in Eu I by laser induced atomic beam fluorescence spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 133, 251–263 (2014).
[CrossRef]

Tsuruji, I.

I. Tsuruji and K. Masahiro, “Optogalvanic effect in Cs/Ne hollow cathode discharge,” J. Phys. Soc. Jpn. 59, 3807–3810 (1990).
[CrossRef]

Webber, D. J.

H. D. Kronfeldt and D. J. Webber, “Doppler free two photon spectroscopy in Eu: Fine structure, hyperfine structures and isotope shifts of odd levels between 34400 and 38700  cm-1,” Phys. Rev. A 43, 4837–4844 (1991).
[CrossRef]

J. Am. Chem. Soc. (1)

K. C. Smyth, B. L. Bentz, C. G. Bruhn, and W. W. Harrison, “The role of Penning ionization of the minor species in a neon hollow cathode discharge,” J. Am. Chem. Soc. 101, 797–799 (1979).
[CrossRef]

J. Appl. Phys. (1)

R. Shuker, A. Ben-Amar, and G. Erez, “Optogalvanic spectroscopy of quasi-resonant Penning ionization,” J. Appl. Phys. 54, 5685–5690 (1983).
[CrossRef]

J. Instrum. Soc. India (1)

A. Mokhariwale, S. K. Agrawal, V. K. Saini, and S. V. Nakhe, “Wavelength scanner for precision tuning of pulsed dye laser,” J. Instrum. Soc. India 43, 5–6 (2013).

J. Phys. B (2)

B. Furmann and D. Stefanska, “Isotope shift and hyperfine structure in even configurations of neutral europium,” J. Phys. B 44, 225005 (2011).
[CrossRef]

S. G. Nakhate, M. A. N. Razvi, and S. A. Ahmad, “New odd-parity energy levels of europium atoms in the 43200–45000  cm-1 region by laser photo ionization spectroscopy,” J. Phys. B 33, 191–199 (2000).
[CrossRef]

J. Phys. Colloq. (1)

H. O. Behrens and G. H. Guthijhrlein, “High resolution optogalvanic spectroscopy as a useful tool in the determination of atomic hyperfine parameters and isotopic shifts,” J. Phys. Colloq. 44, 7–149 (1983).

J. Phys. Soc. Jpn. (1)

I. Tsuruji and K. Masahiro, “Optogalvanic effect in Cs/Ne hollow cathode discharge,” J. Phys. Soc. Jpn. 59, 3807–3810 (1990).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

G. V. S. G. Acharyulu, M. Sankari, P. V. Kiran Kumar, and M. V. Suryanarayana, “Hyperfine structure and isotope shift measurements of 4f7 6s2 (8S7/2) → 4f7 6s6p (8P9/2) 601.815  nm transition in Eu I by laser induced atomic beam fluorescence spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 133, 251–263 (2014).
[CrossRef]

Opt. Commun. (5)

E. C. Jung, S. P. Rho, J. Lee, and H. Cho, “Effect of Penning ionization on the optogalvanic signal of Argon/rare-earth metal hollow cathode discharge,” Opt. Commun. 149, 283–288 (1998).
[CrossRef]

E. C. Jung and J. Lee, “Specific behavior of dynamic optogalvanic signals of an argon hollow cathode discharge,” Opt. Commun. 161, 149–155 (1999).
[CrossRef]

N. K. Pircha, R. Feaver, T. H. Gilani, R. Ahmed, R. Ali, and M. A. Baig, “The study of the 1S4 → 2pj optogalvanic transients in a neon discharge plasma,” Opt. Commun. 282, 2532–2538 (2009).
[CrossRef]

V. K. Saini, V. K. Shrivastava, and R. Khare, “Anomalous behavior of optogalvanic signal in a miniature neon discharge lamp,” Opt. Commun. 281, 129–134 (2008).
[CrossRef]

P. Kumar, V. K. Saini, G. S. Purbia, O. Prakash, S. K. Dixit, and S. V. Nakhe, “Studies on inverse optogalvanic and Penning ionization effects in ytterbium and neon transitions in Yb-Ne hollow cathode lamp,” Opt. Commun. 313, 42–48 (2014).
[CrossRef]

Phys. Rev. A (3)

N. E. Small-Warren and L. Y. C. Chiu, “Lifetime of the metastable 3P2 and 3P0 states of the rare gas atoms,” Phys. Rev. A 11, 1777–1783 (1975).
[CrossRef]

F. A. Sharpton, R. M. John, C. C. St. Lin, and F. E. Fajen, “Experimental and theoretical studies of electron impact excitation of neon,” Phys. Rev. A 2, 1305–1322 (1970).
[CrossRef]

H. D. Kronfeldt and D. J. Webber, “Doppler free two photon spectroscopy in Eu: Fine structure, hyperfine structures and isotope shifts of odd levels between 34400 and 38700  cm-1,” Phys. Rev. A 43, 4837–4844 (1991).
[CrossRef]

Rev. Mod. Phys. (1)

B. Barbieri, N. Beverini, and A. Sasso, “Optogalvanic spectroscopy,” Rev. Mod. Phys. 62, 603–644 (1990).
[CrossRef]

Spectrochim. Acta, Part B (1)

S. Bhattacharyya, R. D. Souza, P. M. Rao, and M. A. N. Razvi, “Investigation of new odd-parity auto-ionization Rydberg levels of neutral europium,” Spectrochim. Acta, Part B 58, 469–478 (2003).
[CrossRef]

Thin Solid Films (1)

X. L. Han, M. C. Blosser, P. Misra, and C. Haridass, “Abrupt changes in neon discharge plasma detected via the optogalvanic effect,” Thin Solid Films 521, 155–157 (2012).
[CrossRef]

Other (5)

Z. B. Goldschmidt, Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner and L. Eyring, eds. (North-Holland, 1978), pp. 1–171.

W. Kaelber, “Optogalvanic spectroscopy of europium,” (U.S. Department of Commerce, 1985).

C. E. Moore, Atomic Energy Levels, Vol. 3 of National Standard Reference Data Series (National Bureau of Standards, 1971).

S. H. Ashworth and J. M. Brown, “An atlas of optogalvanic transitions in neon,” (Rutherford Appleton Laboratory, 1991).

C. Haridass, H. Major, P. Misra, and X. L. Han, Ultraviolet Spectroscopy and UV Lasers, P. Misra and M. A. Dubinskii, eds. (Marcel Dekker, 2002), Chap. 2, pp. 33–69.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the OG experimental setup.

Fig. 2.
Fig. 2.

OG spectrum of Eu/Ne HC discharge in the wavelength range of 574.700–583.010 nm.

Fig. 3.
Fig. 3.

OG spectrum of Eu/Ne HC discharge in the wavelength range of 585.100–592.000 nm.

Fig. 4.
Fig. 4.

OG spectrum of Eu/Ne HC discharge in the wavelength range of 593.400–602.000 nm.

Fig. 5.
Fig. 5.

Temporal evolution of OG signal for europium transition (4f76s2, S87/24f76s6p, zP67/2) at 576.519 nm for different discharge current values.

Fig. 6.
Fig. 6.

Temporal evolution of OG signals for neon transition (1s52p2) at 588.189 nm for different discharge current values.

Fig. 7.
Fig. 7.

Partial energy level diagram of Eu/Ne relevant to OG effect and energy transfer through quasi-resonant energy levels [11].

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S(t)=j=1jmaxaj1bj[exp(bjt)exp(tτ)],
Ne*(2p2)+Eu*(D109/2)Ne(S10)+Eu++*(P67/2)+e+ΔE(314cm1)
Ne*(1s5)+Ca(S10)Ne(S10)+Ca+*(7d)+e+ΔE(200cm1).

Metrics