Abstract

An approach is presented to characterize and correct stray light in spectra measured with array spectroradiometers and caused by out-of-spectral range radiation. A prerequisite for out-of-range stray light correction is knowledge of the spectral irradiance not measured by the instrument itself. A way of solving this problem for solar UV measurements is shown. The effect of out-of-range stray light is especially important for solar UV spectroradiometers typically having a spectral range narrower than that of the silicon detectors in use. Two different types of instruments used for solar UV measurements were characterized and corrected for out-of-range and in-range stray light. As a hardware solution to the out-of-range stray light problem, a bandpass filter was fitted in one array spectroradiometer. Results of test measurements using this modified instrument are also shown.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Seckmeyer, A. Bais, G. Bernhard, M. Blumthaler, S. Drüke, P. Kiedron, K. Lantz, R. McKenzie, S. Riechelmann, “Instruments to measure solar ultraviolet radiation Part 4: array spectroradiometers,” (World Meteorological Organization, 2010).
  2. Y. Zong, S. W. Brown, B. C. Johnson, K. R. Lykke, Y. Ohno, “Simple spectral stray light correction method for array spectroradiometers,” Appl. Opt. 45, 1111–1119 (2006).
    [CrossRef]
  3. S. Nevas, G. Wübbeler, A. Sperling, C. Elster, A. Teuber, “Simultaneous correction of bandpass and stray light effects in array spectroradiometer data,” Metrologia 49, S43–S47 (2012).
    [CrossRef]
  4. L. Egli, J. Gröbner, M. Smid, G. Porrovecchio, T. Burnitt, K. Nield, S. Gibson, J. Dubard, S. Nevas, M. Tormen, “New technologies to reduce stray light for measuring solar UV with array spectroradiometers,” in AIP Conf. Proceedings (AIP, 2013), Vol. 1531, pp. 825–828.
  5. M. Shaw, T. Goodman, “Array-based goniospectroradiometer for measurement of spectral radiant intensity and spectral total flux of light sources,” Appl. Opt. 47, 2637–2647 (2008).
    [CrossRef]
  6. F. Shindo, E. Woolliams, B. Scott, S. Harris, “Characterization and calibration of compact array spectrometers in the ultraviolet spectral region,” in AIP Conf. Proceedings (AIP, 2013), Vol. 1531, pp. 809–812.
  7. S. Nevas, M. Lindemann, A. Sperling, A. Teuber, R. Maass, “Colorimetry of LEDs with array spectroradiometers,” MAPAN—J. Metrol. Soc. India 24, 153–162 (2009).

2012 (1)

S. Nevas, G. Wübbeler, A. Sperling, C. Elster, A. Teuber, “Simultaneous correction of bandpass and stray light effects in array spectroradiometer data,” Metrologia 49, S43–S47 (2012).
[CrossRef]

2009 (1)

S. Nevas, M. Lindemann, A. Sperling, A. Teuber, R. Maass, “Colorimetry of LEDs with array spectroradiometers,” MAPAN—J. Metrol. Soc. India 24, 153–162 (2009).

2008 (1)

2006 (1)

Bais, A.

G. Seckmeyer, A. Bais, G. Bernhard, M. Blumthaler, S. Drüke, P. Kiedron, K. Lantz, R. McKenzie, S. Riechelmann, “Instruments to measure solar ultraviolet radiation Part 4: array spectroradiometers,” (World Meteorological Organization, 2010).

Bernhard, G.

G. Seckmeyer, A. Bais, G. Bernhard, M. Blumthaler, S. Drüke, P. Kiedron, K. Lantz, R. McKenzie, S. Riechelmann, “Instruments to measure solar ultraviolet radiation Part 4: array spectroradiometers,” (World Meteorological Organization, 2010).

Blumthaler, M.

G. Seckmeyer, A. Bais, G. Bernhard, M. Blumthaler, S. Drüke, P. Kiedron, K. Lantz, R. McKenzie, S. Riechelmann, “Instruments to measure solar ultraviolet radiation Part 4: array spectroradiometers,” (World Meteorological Organization, 2010).

Brown, S. W.

Burnitt, T.

L. Egli, J. Gröbner, M. Smid, G. Porrovecchio, T. Burnitt, K. Nield, S. Gibson, J. Dubard, S. Nevas, M. Tormen, “New technologies to reduce stray light for measuring solar UV with array spectroradiometers,” in AIP Conf. Proceedings (AIP, 2013), Vol. 1531, pp. 825–828.

Drüke, S.

G. Seckmeyer, A. Bais, G. Bernhard, M. Blumthaler, S. Drüke, P. Kiedron, K. Lantz, R. McKenzie, S. Riechelmann, “Instruments to measure solar ultraviolet radiation Part 4: array spectroradiometers,” (World Meteorological Organization, 2010).

Dubard, J.

L. Egli, J. Gröbner, M. Smid, G. Porrovecchio, T. Burnitt, K. Nield, S. Gibson, J. Dubard, S. Nevas, M. Tormen, “New technologies to reduce stray light for measuring solar UV with array spectroradiometers,” in AIP Conf. Proceedings (AIP, 2013), Vol. 1531, pp. 825–828.

Egli, L.

L. Egli, J. Gröbner, M. Smid, G. Porrovecchio, T. Burnitt, K. Nield, S. Gibson, J. Dubard, S. Nevas, M. Tormen, “New technologies to reduce stray light for measuring solar UV with array spectroradiometers,” in AIP Conf. Proceedings (AIP, 2013), Vol. 1531, pp. 825–828.

Elster, C.

S. Nevas, G. Wübbeler, A. Sperling, C. Elster, A. Teuber, “Simultaneous correction of bandpass and stray light effects in array spectroradiometer data,” Metrologia 49, S43–S47 (2012).
[CrossRef]

Gibson, S.

L. Egli, J. Gröbner, M. Smid, G. Porrovecchio, T. Burnitt, K. Nield, S. Gibson, J. Dubard, S. Nevas, M. Tormen, “New technologies to reduce stray light for measuring solar UV with array spectroradiometers,” in AIP Conf. Proceedings (AIP, 2013), Vol. 1531, pp. 825–828.

Goodman, T.

Gröbner, J.

L. Egli, J. Gröbner, M. Smid, G. Porrovecchio, T. Burnitt, K. Nield, S. Gibson, J. Dubard, S. Nevas, M. Tormen, “New technologies to reduce stray light for measuring solar UV with array spectroradiometers,” in AIP Conf. Proceedings (AIP, 2013), Vol. 1531, pp. 825–828.

Harris, S.

F. Shindo, E. Woolliams, B. Scott, S. Harris, “Characterization and calibration of compact array spectrometers in the ultraviolet spectral region,” in AIP Conf. Proceedings (AIP, 2013), Vol. 1531, pp. 809–812.

Johnson, B. C.

Kiedron, P.

G. Seckmeyer, A. Bais, G. Bernhard, M. Blumthaler, S. Drüke, P. Kiedron, K. Lantz, R. McKenzie, S. Riechelmann, “Instruments to measure solar ultraviolet radiation Part 4: array spectroradiometers,” (World Meteorological Organization, 2010).

Lantz, K.

G. Seckmeyer, A. Bais, G. Bernhard, M. Blumthaler, S. Drüke, P. Kiedron, K. Lantz, R. McKenzie, S. Riechelmann, “Instruments to measure solar ultraviolet radiation Part 4: array spectroradiometers,” (World Meteorological Organization, 2010).

Lindemann, M.

S. Nevas, M. Lindemann, A. Sperling, A. Teuber, R. Maass, “Colorimetry of LEDs with array spectroradiometers,” MAPAN—J. Metrol. Soc. India 24, 153–162 (2009).

Lykke, K. R.

Maass, R.

S. Nevas, M. Lindemann, A. Sperling, A. Teuber, R. Maass, “Colorimetry of LEDs with array spectroradiometers,” MAPAN—J. Metrol. Soc. India 24, 153–162 (2009).

McKenzie, R.

G. Seckmeyer, A. Bais, G. Bernhard, M. Blumthaler, S. Drüke, P. Kiedron, K. Lantz, R. McKenzie, S. Riechelmann, “Instruments to measure solar ultraviolet radiation Part 4: array spectroradiometers,” (World Meteorological Organization, 2010).

Nevas, S.

S. Nevas, G. Wübbeler, A. Sperling, C. Elster, A. Teuber, “Simultaneous correction of bandpass and stray light effects in array spectroradiometer data,” Metrologia 49, S43–S47 (2012).
[CrossRef]

S. Nevas, M. Lindemann, A. Sperling, A. Teuber, R. Maass, “Colorimetry of LEDs with array spectroradiometers,” MAPAN—J. Metrol. Soc. India 24, 153–162 (2009).

L. Egli, J. Gröbner, M. Smid, G. Porrovecchio, T. Burnitt, K. Nield, S. Gibson, J. Dubard, S. Nevas, M. Tormen, “New technologies to reduce stray light for measuring solar UV with array spectroradiometers,” in AIP Conf. Proceedings (AIP, 2013), Vol. 1531, pp. 825–828.

Nield, K.

L. Egli, J. Gröbner, M. Smid, G. Porrovecchio, T. Burnitt, K. Nield, S. Gibson, J. Dubard, S. Nevas, M. Tormen, “New technologies to reduce stray light for measuring solar UV with array spectroradiometers,” in AIP Conf. Proceedings (AIP, 2013), Vol. 1531, pp. 825–828.

Ohno, Y.

Porrovecchio, G.

L. Egli, J. Gröbner, M. Smid, G. Porrovecchio, T. Burnitt, K. Nield, S. Gibson, J. Dubard, S. Nevas, M. Tormen, “New technologies to reduce stray light for measuring solar UV with array spectroradiometers,” in AIP Conf. Proceedings (AIP, 2013), Vol. 1531, pp. 825–828.

Riechelmann, S.

G. Seckmeyer, A. Bais, G. Bernhard, M. Blumthaler, S. Drüke, P. Kiedron, K. Lantz, R. McKenzie, S. Riechelmann, “Instruments to measure solar ultraviolet radiation Part 4: array spectroradiometers,” (World Meteorological Organization, 2010).

Scott, B.

F. Shindo, E. Woolliams, B. Scott, S. Harris, “Characterization and calibration of compact array spectrometers in the ultraviolet spectral region,” in AIP Conf. Proceedings (AIP, 2013), Vol. 1531, pp. 809–812.

Seckmeyer, G.

G. Seckmeyer, A. Bais, G. Bernhard, M. Blumthaler, S. Drüke, P. Kiedron, K. Lantz, R. McKenzie, S. Riechelmann, “Instruments to measure solar ultraviolet radiation Part 4: array spectroradiometers,” (World Meteorological Organization, 2010).

Shaw, M.

Shindo, F.

F. Shindo, E. Woolliams, B. Scott, S. Harris, “Characterization and calibration of compact array spectrometers in the ultraviolet spectral region,” in AIP Conf. Proceedings (AIP, 2013), Vol. 1531, pp. 809–812.

Smid, M.

L. Egli, J. Gröbner, M. Smid, G. Porrovecchio, T. Burnitt, K. Nield, S. Gibson, J. Dubard, S. Nevas, M. Tormen, “New technologies to reduce stray light for measuring solar UV with array spectroradiometers,” in AIP Conf. Proceedings (AIP, 2013), Vol. 1531, pp. 825–828.

Sperling, A.

S. Nevas, G. Wübbeler, A. Sperling, C. Elster, A. Teuber, “Simultaneous correction of bandpass and stray light effects in array spectroradiometer data,” Metrologia 49, S43–S47 (2012).
[CrossRef]

S. Nevas, M. Lindemann, A. Sperling, A. Teuber, R. Maass, “Colorimetry of LEDs with array spectroradiometers,” MAPAN—J. Metrol. Soc. India 24, 153–162 (2009).

Teuber, A.

S. Nevas, G. Wübbeler, A. Sperling, C. Elster, A. Teuber, “Simultaneous correction of bandpass and stray light effects in array spectroradiometer data,” Metrologia 49, S43–S47 (2012).
[CrossRef]

S. Nevas, M. Lindemann, A. Sperling, A. Teuber, R. Maass, “Colorimetry of LEDs with array spectroradiometers,” MAPAN—J. Metrol. Soc. India 24, 153–162 (2009).

Tormen, M.

L. Egli, J. Gröbner, M. Smid, G. Porrovecchio, T. Burnitt, K. Nield, S. Gibson, J. Dubard, S. Nevas, M. Tormen, “New technologies to reduce stray light for measuring solar UV with array spectroradiometers,” in AIP Conf. Proceedings (AIP, 2013), Vol. 1531, pp. 825–828.

Woolliams, E.

F. Shindo, E. Woolliams, B. Scott, S. Harris, “Characterization and calibration of compact array spectrometers in the ultraviolet spectral region,” in AIP Conf. Proceedings (AIP, 2013), Vol. 1531, pp. 809–812.

Wübbeler, G.

S. Nevas, G. Wübbeler, A. Sperling, C. Elster, A. Teuber, “Simultaneous correction of bandpass and stray light effects in array spectroradiometer data,” Metrologia 49, S43–S47 (2012).
[CrossRef]

Zong, Y.

Appl. Opt. (2)

MAPAN—J. Metrol. Soc. India (1)

S. Nevas, M. Lindemann, A. Sperling, A. Teuber, R. Maass, “Colorimetry of LEDs with array spectroradiometers,” MAPAN—J. Metrol. Soc. India 24, 153–162 (2009).

Metrologia (1)

S. Nevas, G. Wübbeler, A. Sperling, C. Elster, A. Teuber, “Simultaneous correction of bandpass and stray light effects in array spectroradiometer data,” Metrologia 49, S43–S47 (2012).
[CrossRef]

Other (3)

L. Egli, J. Gröbner, M. Smid, G. Porrovecchio, T. Burnitt, K. Nield, S. Gibson, J. Dubard, S. Nevas, M. Tormen, “New technologies to reduce stray light for measuring solar UV with array spectroradiometers,” in AIP Conf. Proceedings (AIP, 2013), Vol. 1531, pp. 825–828.

F. Shindo, E. Woolliams, B. Scott, S. Harris, “Characterization and calibration of compact array spectrometers in the ultraviolet spectral region,” in AIP Conf. Proceedings (AIP, 2013), Vol. 1531, pp. 809–812.

G. Seckmeyer, A. Bais, G. Bernhard, M. Blumthaler, S. Drüke, P. Kiedron, K. Lantz, R. McKenzie, S. Riechelmann, “Instruments to measure solar ultraviolet radiation Part 4: array spectroradiometers,” (World Meteorological Organization, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

PLACOS setup adapted to the out-of-range stray light characterization of array spectroradiometers. OPO, optical parametric oscillator; SHG, second-harmonic generator; IO, input optics (diffuser head) connected via a multimode fiber to an array spectroradiometer; BS, beam splitter; MA, microlens array-based beam homogenizer; DP, depolarizer; DM, dichroic mirror; VA, variable attenuator.

Fig. 2.
Fig. 2.

Line-spread functions of the AVOS spectroradiometer at several laser wavelengths. They are used to take into account internal stray light created within the spectral range of the instrument.

Fig. 3.
Fig. 3.

Responsivity of the AVOS array spectroradiometer with respect to irradiance at the out-of-range wavelengths, 440–1100 nm. These data can be used to correct the OoR stray light contribution.

Fig. 4.
Fig. 4.

Solar UV irradiance at SZA of 42° measured by the AVOS array spectroradiometer in a clear sky measurement campaign in Davos. Solid red curve is the solar spectrum without any stray light correction applied. Dashed blue and dash-dotted green curves are the solar spectra corrected exclusively for the InR and the combined OoR and InR stray light, respectively. Thin black curve shows the solar spectral irradiance measured with a Brewer spectroradiometer based on a scanning double monochromator.

Fig. 5.
Fig. 5.

Line-spread functions of USB4000 array spectroradiometer of IMU at several laser wavelengths. They are used to take into account internal stray light created within the spectral range of the instrument.

Fig. 6.
Fig. 6.

Responsivity of the USB4000 array spectroradiometer with respect to irradiance at the out-of-range wavelengths, 890 to 1100 nm. These data can be used to correct the OoR stray light contribution.

Fig. 7.
Fig. 7.

Solar UV irradiance at SZA of 27.4° measured by the array spectroradiometer of IMU. Solid red curve is the solar spectrum measured by the instrument without any stray light correction applied. Dashed blue and dashed–dotted green curves are the solar spectra corrected for the OoR as well as the combined OoR and InR stray light, respectively. Thin black curve shows the solar spectral irradiance measured with a scanning double monochromator-based instrument of type Bentham DTM300.

Fig. 8.
Fig. 8.

Effect of an overestimation of the solar irradiance values from 440 to 1100 nm on the stray light correction of the AVOS spectroradiometer. The thick red curve (nominal) shows fraction of the measured solar irradiance caused by the OoR and InR stray light and its effect determined with the help of Eq. (4). The other three curves represent factions of the stray light in the measured irradiance values for the case where the OoR solar irradiance was overestimated by a factor of 1.1, 1.5, and 2.

Fig. 9.
Fig. 9.

Effect of an overestimation of the solar irradiance values throughout 890–1100 nm wavelengths on the stray light correction of USB4000 spectroradiometer. The thick red curve (nominal) shows fraction of the measured solar irradiance caused by the OoR and InR stray light and its effect determined with the help of Eq. (4). The other three curves represent factions of the stray light in the measured irradiance values for the case where the OoR solar irradiance was overestimated by a factor of 1.1, 1.5 and 2.

Fig. 10.
Fig. 10.

Solar UV irradiance measured by the AVOS array spectroradiometer with built-in DUG11X filter. Solid red curve shows measurement data of the instrument. Dashed blue curve is the solar spectra corrected for the InR stray light. Thin black curve shows the solar spectral irradiance measured with a scanning Brewer instrument based on a double monochromator.

Tables (2)

Tables Icon

Table 1. Reduction of Stray Light Level in Solar UV Irradiances Measured by AVOS and USB4000 Array Spectroradiometers a

Tables Icon

Table 2. Solar UV Irradiance Measured by AVOS with Built-in DUG11X Bandpass Filter a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Y s _ spec = D · Y IB + Δ ,
Δ = s OoR · E OoR · δ λ ,
Y meas = Y IB + D · Y IB + Δ .
Y IB = [ I + D ] 1 · [ Y meas Δ ] = A 1 · [ Y meas Δ ] .

Metrics