Abstract

A dual-wavelength (DW) fiber laser with a closely spaced single longitudinal mode (SLM) output is proposed and demonstrated. The proposed fiber laser utilizes a conventional fiber Bragg grating with a center wavelength of about 1546.8 nm in conjunction with an ultranarrow bandwidth tunable optical filter to generate the desired DW SLM output. Observations with a very high resolution optical spectrum analyzer, which was capable of achieving resolutions up to 0.16 pm, revealed detailed spectral characteristics not characteristically seen before. A channel spacing of up to 58 nm was realized, and spacing as small as 2 pm was achieved. The minimum channel spacing and its resulting beat frequency are the narrowest observed yet to the best of our knowledge for a DW fiber laser at room temperature.

© 2014 Optical Society of America

Full Article  |  PDF Article
Related Articles
C-band wavelength-swept single-longitudinal-mode erbium-doped fiber ring laser

Kang Zhang and Jin U. Kang
Opt. Express 16(18) 14173-14179 (2008)

Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating

Ming Li, Xuxing Chen, Takeo Fujii, Yoshitaka Kudo, Hongpu Li, and Yves Painchaud
Opt. Lett. 34(11) 1717-1719 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription