Abstract

A dual-wavelength (DW) fiber laser with a closely spaced single longitudinal mode (SLM) output is proposed and demonstrated. The proposed fiber laser utilizes a conventional fiber Bragg grating with a center wavelength of about 1546.8 nm in conjunction with an ultranarrow bandwidth tunable optical filter to generate the desired DW SLM output. Observations with a very high resolution optical spectrum analyzer, which was capable of achieving resolutions up to 0.16 pm, revealed detailed spectral characteristics not characteristically seen before. A channel spacing of up to 58 nm was realized, and spacing as small as 2 pm was achieved. The minimum channel spacing and its resulting beat frequency are the narrowest observed yet to the best of our knowledge for a DW fiber laser at room temperature.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
    [CrossRef]
  2. A. Rosen, M. A. Stuchly, and A. V. Vorst, “Applications of RF/microwaves in medicine,” IEEE Trans. Microwave Theor. Tech. 50, 963–974 (2002).
    [CrossRef]
  3. N. J. Gomes, M. Morant, A. Alphones, B. Cabon, J. E. Mitchell, C. Lethien, and S. Iezekiel, “Radio-over-fiber transport for the support of wireless broadband services,” J. Opt. Netw. 8, 156–178 (2009).
    [CrossRef]
  4. M. Feng, S. C. Shen, D. C. Caruth, and A. J. Huang, “Device technologies for RF front-end circuits in next-generation wireless communications,” Proc. IEEE 92, 354–375 (2004).
    [CrossRef]
  5. P. Bouyer, T. L. Gustavson, K. G. Haritos, and M. A. Kasevich, “Dual-frequency Brillouin fiber laser for optical generation of tunable low-noise radio frequency/microwave frequency,” Opt. Lett. 21, 1502–1504 (1996).
    [CrossRef]
  6. H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, “Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module,” IEEE Photon. Technol. Lett. 18, 2344–2346 (2006).
    [CrossRef]
  7. U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 16–18 (2008).
  8. J. Liu, L. Zhan, P. Xiao, Q. Shen, G. Wang, Z. Wu, X. Liu, and L. Zhang, “Optical generation of tunable microwave signal using cascaded Brillouin fiber laser,” IEEE Photon. Technol. Lett. 24, 22–24 (2012).
    [CrossRef]
  9. G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wideband continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theor. Tech. 53, 3090–3097 (2005).
    [CrossRef]
  10. X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theor. Tech. 54, 804–809 (2006).
    [CrossRef]
  11. A. W. Al-Alimi, M. H. Al-Mansoori, A. F. Abas, M. A. Mahdi, F. R. M. Adikan, and M. Ajiya, “A stabilized tunable dual wavelength erbium-doped fiber laser with equal output power,” Laser Phys. 19, 1850–1853 (2009).
    [CrossRef]
  12. L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1  W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett. 92, 051111 (2008).
    [CrossRef]
  13. H. Ahmad, A. A. Latif, M. I. M. A. Khudus, A. Z. Zulkifli, M. Z. Zulkifli, K. Thambiratnam, and S. W. Harun, “Highly stable graphene-assisted tunable dual-wavelength erbium-doped fiber laser,” Appl. Opt. 52, 818–823 (2013).
    [CrossRef]
  14. H. Ahmad, A. A. Latif, J. M. Talib, and S. W. Harun, “Tunable, low frequency microwave generation from AWG based closely-spaced dual-wavelength single-longitudinal-mode fibre laser,” J. Eur. Opt. Soc. 8, 1–5 (2013).
    [CrossRef]
  15. H. Zhu, C. Tu, T. Lei, W. Guo, Y. Li, F. Lu, X. Dong, and D. Wei, “Dual-wavelength narrow-linewidth light source with ultranarrow wavelength spacing based on the pump-induced thermal effects in an Er-Yb-codoped distributed-Bragg-reflector fiber laser,” Opt. Eng. 47, 094301 (2008).
    [CrossRef]
  16. Y. Geng, X. Tan, X. Li, and J. Yao, “Compact and widely tunable terahertz source based on a dual-wavelength intracavity optical parametric oscillation,” Appl. Phys. B 99, 181–185 (2010).
    [CrossRef]
  17. T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36, 1414–1416 (2000).
    [CrossRef]
  18. M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch,” Dual tunable wavelength Er, Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10, 1554–1556 (1998).
    [CrossRef]
  19. J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
    [CrossRef]
  20. D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, and P. Shum, “A stable dual-wavelength fiber laser with tunable wavelength spacing using a polarization-maintaining linear cavity,” Appl. Phys. B 81, 807–811 (2005).
    [CrossRef]
  21. J. Xiu-Jie, L. Yan-Ge, S. Li-Bin, G. Zhan-Cheng, F. Sheng-Gui, L. Feng-Nian, Y. Shu-Zhong, and D. Xiao-Yi, “Realization of stable narrow linewidth dual-wavelength lasing in an erbium-doped fibre laser by cleaving the wavelength-selective filter spectrum,” Chin. Phys. Lett 23, 2092–2094 (2006).
    [CrossRef]

2013

H. Ahmad, A. A. Latif, J. M. Talib, and S. W. Harun, “Tunable, low frequency microwave generation from AWG based closely-spaced dual-wavelength single-longitudinal-mode fibre laser,” J. Eur. Opt. Soc. 8, 1–5 (2013).
[CrossRef]

H. Ahmad, A. A. Latif, M. I. M. A. Khudus, A. Z. Zulkifli, M. Z. Zulkifli, K. Thambiratnam, and S. W. Harun, “Highly stable graphene-assisted tunable dual-wavelength erbium-doped fiber laser,” Appl. Opt. 52, 818–823 (2013).
[CrossRef]

2012

J. Liu, L. Zhan, P. Xiao, Q. Shen, G. Wang, Z. Wu, X. Liu, and L. Zhang, “Optical generation of tunable microwave signal using cascaded Brillouin fiber laser,” IEEE Photon. Technol. Lett. 24, 22–24 (2012).
[CrossRef]

2010

Y. Geng, X. Tan, X. Li, and J. Yao, “Compact and widely tunable terahertz source based on a dual-wavelength intracavity optical parametric oscillation,” Appl. Phys. B 99, 181–185 (2010).
[CrossRef]

2009

A. W. Al-Alimi, M. H. Al-Mansoori, A. F. Abas, M. A. Mahdi, F. R. M. Adikan, and M. Ajiya, “A stabilized tunable dual wavelength erbium-doped fiber laser with equal output power,” Laser Phys. 19, 1850–1853 (2009).
[CrossRef]

N. J. Gomes, M. Morant, A. Alphones, B. Cabon, J. E. Mitchell, C. Lethien, and S. Iezekiel, “Radio-over-fiber transport for the support of wireless broadband services,” J. Opt. Netw. 8, 156–178 (2009).
[CrossRef]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[CrossRef]

2008

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1  W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett. 92, 051111 (2008).
[CrossRef]

H. Zhu, C. Tu, T. Lei, W. Guo, Y. Li, F. Lu, X. Dong, and D. Wei, “Dual-wavelength narrow-linewidth light source with ultranarrow wavelength spacing based on the pump-induced thermal effects in an Er-Yb-codoped distributed-Bragg-reflector fiber laser,” Opt. Eng. 47, 094301 (2008).
[CrossRef]

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 16–18 (2008).

2006

H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, “Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module,” IEEE Photon. Technol. Lett. 18, 2344–2346 (2006).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[CrossRef]

J. Xiu-Jie, L. Yan-Ge, S. Li-Bin, G. Zhan-Cheng, F. Sheng-Gui, L. Feng-Nian, Y. Shu-Zhong, and D. Xiao-Yi, “Realization of stable narrow linewidth dual-wavelength lasing in an erbium-doped fibre laser by cleaving the wavelength-selective filter spectrum,” Chin. Phys. Lett 23, 2092–2094 (2006).
[CrossRef]

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theor. Tech. 54, 804–809 (2006).
[CrossRef]

2005

D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, and P. Shum, “A stable dual-wavelength fiber laser with tunable wavelength spacing using a polarization-maintaining linear cavity,” Appl. Phys. B 81, 807–811 (2005).
[CrossRef]

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wideband continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theor. Tech. 53, 3090–3097 (2005).
[CrossRef]

2004

M. Feng, S. C. Shen, D. C. Caruth, and A. J. Huang, “Device technologies for RF front-end circuits in next-generation wireless communications,” Proc. IEEE 92, 354–375 (2004).
[CrossRef]

2002

A. Rosen, M. A. Stuchly, and A. V. Vorst, “Applications of RF/microwaves in medicine,” IEEE Trans. Microwave Theor. Tech. 50, 963–974 (2002).
[CrossRef]

2000

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36, 1414–1416 (2000).
[CrossRef]

1998

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch,” Dual tunable wavelength Er, Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10, 1554–1556 (1998).
[CrossRef]

1996

Abas, A. F.

A. W. Al-Alimi, M. H. Al-Mansoori, A. F. Abas, M. A. Mahdi, F. R. M. Adikan, and M. Ajiya, “A stabilized tunable dual wavelength erbium-doped fiber laser with equal output power,” Laser Phys. 19, 1850–1853 (2009).
[CrossRef]

Adikan, F. R. M.

A. W. Al-Alimi, M. H. Al-Mansoori, A. F. Abas, M. A. Mahdi, F. R. M. Adikan, and M. Ajiya, “A stabilized tunable dual wavelength erbium-doped fiber laser with equal output power,” Laser Phys. 19, 1850–1853 (2009).
[CrossRef]

Ahmad, H.

H. Ahmad, A. A. Latif, M. I. M. A. Khudus, A. Z. Zulkifli, M. Z. Zulkifli, K. Thambiratnam, and S. W. Harun, “Highly stable graphene-assisted tunable dual-wavelength erbium-doped fiber laser,” Appl. Opt. 52, 818–823 (2013).
[CrossRef]

H. Ahmad, A. A. Latif, J. M. Talib, and S. W. Harun, “Tunable, low frequency microwave generation from AWG based closely-spaced dual-wavelength single-longitudinal-mode fibre laser,” J. Eur. Opt. Soc. 8, 1–5 (2013).
[CrossRef]

Ajiya, M.

A. W. Al-Alimi, M. H. Al-Mansoori, A. F. Abas, M. A. Mahdi, F. R. M. Adikan, and M. Ajiya, “A stabilized tunable dual wavelength erbium-doped fiber laser with equal output power,” Laser Phys. 19, 1850–1853 (2009).
[CrossRef]

Al-Alimi, A. W.

A. W. Al-Alimi, M. H. Al-Mansoori, A. F. Abas, M. A. Mahdi, F. R. M. Adikan, and M. Ajiya, “A stabilized tunable dual wavelength erbium-doped fiber laser with equal output power,” Laser Phys. 19, 1850–1853 (2009).
[CrossRef]

Albert, J.

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1  W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett. 92, 051111 (2008).
[CrossRef]

Al-Mansoori, M. H.

A. W. Al-Alimi, M. H. Al-Mansoori, A. F. Abas, M. A. Mahdi, F. R. M. Adikan, and M. Ajiya, “A stabilized tunable dual wavelength erbium-doped fiber laser with equal output power,” Laser Phys. 19, 1850–1853 (2009).
[CrossRef]

Alouini, M.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch,” Dual tunable wavelength Er, Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10, 1554–1556 (1998).
[CrossRef]

Alphones, A.

Bélisle, C.

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wideband continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theor. Tech. 53, 3090–3097 (2005).
[CrossRef]

Bouyer, P.

Bretenaker, F.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch,” Dual tunable wavelength Er, Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10, 1554–1556 (1998).
[CrossRef]

Broberg, B.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 16–18 (2008).

Brunel, M.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch,” Dual tunable wavelength Er, Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10, 1554–1556 (1998).
[CrossRef]

Bruun, M.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 16–18 (2008).

Cabon, B.

Caruth, D. C.

M. Feng, S. C. Shen, D. C. Caruth, and A. J. Huang, “Device technologies for RF front-end circuits in next-generation wireless communications,” Proc. IEEE 92, 354–375 (2004).
[CrossRef]

Chen, X.

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theor. Tech. 54, 804–809 (2006).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[CrossRef]

Dai, Y.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[CrossRef]

Deng, Z.

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theor. Tech. 54, 804–809 (2006).
[CrossRef]

Dong, X.

H. Zhu, C. Tu, T. Lei, W. Guo, Y. Li, F. Lu, X. Dong, and D. Wei, “Dual-wavelength narrow-linewidth light source with ultranarrow wavelength spacing based on the pump-induced thermal effects in an Er-Yb-codoped distributed-Bragg-reflector fiber laser,” Opt. Eng. 47, 094301 (2008).
[CrossRef]

Dong, X. Y.

D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, and P. Shum, “A stable dual-wavelength fiber laser with tunable wavelength spacing using a polarization-maintaining linear cavity,” Appl. Phys. B 81, 807–811 (2005).
[CrossRef]

Feng, M.

M. Feng, S. C. Shen, D. C. Caruth, and A. J. Huang, “Device technologies for RF front-end circuits in next-generation wireless communications,” Proc. IEEE 92, 354–375 (2004).
[CrossRef]

Feng-Nian, L.

J. Xiu-Jie, L. Yan-Ge, S. Li-Bin, G. Zhan-Cheng, F. Sheng-Gui, L. Feng-Nian, Y. Shu-Zhong, and D. Xiao-Yi, “Realization of stable narrow linewidth dual-wavelength lasing in an erbium-doped fibre laser by cleaving the wavelength-selective filter spectrum,” Chin. Phys. Lett 23, 2092–2094 (2006).
[CrossRef]

Geng, Y.

Y. Geng, X. Tan, X. Li, and J. Yao, “Compact and widely tunable terahertz source based on a dual-wavelength intracavity optical parametric oscillation,” Appl. Phys. B 99, 181–185 (2010).
[CrossRef]

Gliese, U.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 16–18 (2008).

Gomes, N. J.

Guo, W.

H. Zhu, C. Tu, T. Lei, W. Guo, Y. Li, F. Lu, X. Dong, and D. Wei, “Dual-wavelength narrow-linewidth light source with ultranarrow wavelength spacing based on the pump-induced thermal effects in an Er-Yb-codoped distributed-Bragg-reflector fiber laser,” Opt. Eng. 47, 094301 (2008).
[CrossRef]

Gustavson, T. L.

Haritos, K. G.

Harun, S. W.

H. Ahmad, A. A. Latif, J. M. Talib, and S. W. Harun, “Tunable, low frequency microwave generation from AWG based closely-spaced dual-wavelength single-longitudinal-mode fibre laser,” J. Eur. Opt. Soc. 8, 1–5 (2013).
[CrossRef]

H. Ahmad, A. A. Latif, M. I. M. A. Khudus, A. Z. Zulkifli, M. Z. Zulkifli, K. Thambiratnam, and S. W. Harun, “Highly stable graphene-assisted tunable dual-wavelength erbium-doped fiber laser,” Appl. Opt. 52, 818–823 (2013).
[CrossRef]

Huang, A. J.

M. Feng, S. C. Shen, D. C. Caruth, and A. J. Huang, “Device technologies for RF front-end circuits in next-generation wireless communications,” Proc. IEEE 92, 354–375 (2004).
[CrossRef]

Iezekiel, S.

Ito, H.

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36, 1414–1416 (2000).
[CrossRef]

Kasevich, M. A.

Khudus, M. I. M. A.

Latif, A. A.

H. Ahmad, A. A. Latif, M. I. M. A. Khudus, A. Z. Zulkifli, M. Z. Zulkifli, K. Thambiratnam, and S. W. Harun, “Highly stable graphene-assisted tunable dual-wavelength erbium-doped fiber laser,” Appl. Opt. 52, 818–823 (2013).
[CrossRef]

H. Ahmad, A. A. Latif, J. M. Talib, and S. W. Harun, “Tunable, low frequency microwave generation from AWG based closely-spaced dual-wavelength single-longitudinal-mode fibre laser,” J. Eur. Opt. Soc. 8, 1–5 (2013).
[CrossRef]

Le Floch, A.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch,” Dual tunable wavelength Er, Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10, 1554–1556 (1998).
[CrossRef]

Lei, T.

H. Zhu, C. Tu, T. Lei, W. Guo, Y. Li, F. Lu, X. Dong, and D. Wei, “Dual-wavelength narrow-linewidth light source with ultranarrow wavelength spacing based on the pump-induced thermal effects in an Er-Yb-codoped distributed-Bragg-reflector fiber laser,” Opt. Eng. 47, 094301 (2008).
[CrossRef]

Lethien, C.

Li, L.

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1  W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett. 92, 051111 (2008).
[CrossRef]

Li, X.

Y. Geng, X. Tan, X. Li, and J. Yao, “Compact and widely tunable terahertz source based on a dual-wavelength intracavity optical parametric oscillation,” Appl. Phys. B 99, 181–185 (2010).
[CrossRef]

Li, Y.

H. Zhu, C. Tu, T. Lei, W. Guo, Y. Li, F. Lu, X. Dong, and D. Wei, “Dual-wavelength narrow-linewidth light source with ultranarrow wavelength spacing based on the pump-induced thermal effects in an Er-Yb-codoped distributed-Bragg-reflector fiber laser,” Opt. Eng. 47, 094301 (2008).
[CrossRef]

Li-Bin, S.

J. Xiu-Jie, L. Yan-Ge, S. Li-Bin, G. Zhan-Cheng, F. Sheng-Gui, L. Feng-Nian, Y. Shu-Zhong, and D. Xiao-Yi, “Realization of stable narrow linewidth dual-wavelength lasing in an erbium-doped fibre laser by cleaving the wavelength-selective filter spectrum,” Chin. Phys. Lett 23, 2092–2094 (2006).
[CrossRef]

Lindgren, S.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 16–18 (2008).

Lintz Christensen, E.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 16–18 (2008).

Liu, D.

D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, and P. Shum, “A stable dual-wavelength fiber laser with tunable wavelength spacing using a polarization-maintaining linear cavity,” Appl. Phys. B 81, 807–811 (2005).
[CrossRef]

Liu, J.

J. Liu, L. Zhan, P. Xiao, Q. Shen, G. Wang, Z. Wu, X. Liu, and L. Zhang, “Optical generation of tunable microwave signal using cascaded Brillouin fiber laser,” IEEE Photon. Technol. Lett. 24, 22–24 (2012).
[CrossRef]

Liu, X.

J. Liu, L. Zhan, P. Xiao, Q. Shen, G. Wang, Z. Wu, X. Liu, and L. Zhang, “Optical generation of tunable microwave signal using cascaded Brillouin fiber laser,” IEEE Photon. Technol. Lett. 24, 22–24 (2012).
[CrossRef]

Lu, F.

H. Zhu, C. Tu, T. Lei, W. Guo, Y. Li, F. Lu, X. Dong, and D. Wei, “Dual-wavelength narrow-linewidth light source with ultranarrow wavelength spacing based on the pump-induced thermal effects in an Er-Yb-codoped distributed-Bragg-reflector fiber laser,” Opt. Eng. 47, 094301 (2008).
[CrossRef]

Mahdi, M. A.

A. W. Al-Alimi, M. H. Al-Mansoori, A. F. Abas, M. A. Mahdi, F. R. M. Adikan, and M. Ajiya, “A stabilized tunable dual wavelength erbium-doped fiber laser with equal output power,” Laser Phys. 19, 1850–1853 (2009).
[CrossRef]

Mitchell, J. E.

Moloney, J. V.

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1  W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett. 92, 051111 (2008).
[CrossRef]

Morant, M.

Ngo, N. Q.

D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, and P. Shum, “A stable dual-wavelength fiber laser with tunable wavelength spacing using a polarization-maintaining linear cavity,” Appl. Phys. B 81, 807–811 (2005).
[CrossRef]

Nielsen, T. N.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 16–18 (2008).

Paquet, S.

H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, “Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module,” IEEE Photon. Technol. Lett. 18, 2344–2346 (2006).
[CrossRef]

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wideband continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theor. Tech. 53, 3090–3097 (2005).
[CrossRef]

Peyghambarian, N.

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1  W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett. 92, 051111 (2008).
[CrossRef]

Qi, G. H.

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wideband continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theor. Tech. 53, 3090–3097 (2005).
[CrossRef]

Rideout, H. R.

H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, “Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module,” IEEE Photon. Technol. Lett. 18, 2344–2346 (2006).
[CrossRef]

Rosen, A.

A. Rosen, M. A. Stuchly, and A. V. Vorst, “Applications of RF/microwaves in medicine,” IEEE Trans. Microwave Theor. Tech. 50, 963–974 (2002).
[CrossRef]

Schülzgen, A.

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1  W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett. 92, 051111 (2008).
[CrossRef]

Seregelyi, J.

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wideband continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theor. Tech. 53, 3090–3097 (2005).
[CrossRef]

Seregelyi, J. S.

H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, “Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module,” IEEE Photon. Technol. Lett. 18, 2344–2346 (2006).
[CrossRef]

Shen, Q.

J. Liu, L. Zhan, P. Xiao, Q. Shen, G. Wang, Z. Wu, X. Liu, and L. Zhang, “Optical generation of tunable microwave signal using cascaded Brillouin fiber laser,” IEEE Photon. Technol. Lett. 24, 22–24 (2012).
[CrossRef]

Shen, S. C.

M. Feng, S. C. Shen, D. C. Caruth, and A. J. Huang, “Device technologies for RF front-end circuits in next-generation wireless communications,” Proc. IEEE 92, 354–375 (2004).
[CrossRef]

Sheng-Gui, F.

J. Xiu-Jie, L. Yan-Ge, S. Li-Bin, G. Zhan-Cheng, F. Sheng-Gui, L. Feng-Nian, Y. Shu-Zhong, and D. Xiao-Yi, “Realization of stable narrow linewidth dual-wavelength lasing in an erbium-doped fibre laser by cleaving the wavelength-selective filter spectrum,” Chin. Phys. Lett 23, 2092–2094 (2006).
[CrossRef]

Shikata, J.

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36, 1414–1416 (2000).
[CrossRef]

Shum, P.

D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, and P. Shum, “A stable dual-wavelength fiber laser with tunable wavelength spacing using a polarization-maintaining linear cavity,” Appl. Phys. B 81, 807–811 (2005).
[CrossRef]

Shu-Zhong, Y.

J. Xiu-Jie, L. Yan-Ge, S. Li-Bin, G. Zhan-Cheng, F. Sheng-Gui, L. Feng-Nian, Y. Shu-Zhong, and D. Xiao-Yi, “Realization of stable narrow linewidth dual-wavelength lasing in an erbium-doped fibre laser by cleaving the wavelength-selective filter spectrum,” Chin. Phys. Lett 23, 2092–2094 (2006).
[CrossRef]

Stubkjzr, K. E.

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 16–18 (2008).

Stuchly, M. A.

A. Rosen, M. A. Stuchly, and A. V. Vorst, “Applications of RF/microwaves in medicine,” IEEE Trans. Microwave Theor. Tech. 50, 963–974 (2002).
[CrossRef]

Sun, J.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[CrossRef]

Talib, J. M.

H. Ahmad, A. A. Latif, J. M. Talib, and S. W. Harun, “Tunable, low frequency microwave generation from AWG based closely-spaced dual-wavelength single-longitudinal-mode fibre laser,” J. Eur. Opt. Soc. 8, 1–5 (2013).
[CrossRef]

Tan, X.

Y. Geng, X. Tan, X. Li, and J. Yao, “Compact and widely tunable terahertz source based on a dual-wavelength intracavity optical parametric oscillation,” Appl. Phys. B 99, 181–185 (2010).
[CrossRef]

Taniuchi, T.

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36, 1414–1416 (2000).
[CrossRef]

Thambiratnam, K.

Tjin, S. C.

D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, and P. Shum, “A stable dual-wavelength fiber laser with tunable wavelength spacing using a polarization-maintaining linear cavity,” Appl. Phys. B 81, 807–811 (2005).
[CrossRef]

Tu, C.

H. Zhu, C. Tu, T. Lei, W. Guo, Y. Li, F. Lu, X. Dong, and D. Wei, “Dual-wavelength narrow-linewidth light source with ultranarrow wavelength spacing based on the pump-induced thermal effects in an Er-Yb-codoped distributed-Bragg-reflector fiber laser,” Opt. Eng. 47, 094301 (2008).
[CrossRef]

Vallet, M.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch,” Dual tunable wavelength Er, Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10, 1554–1556 (1998).
[CrossRef]

Vorst, A. V.

A. Rosen, M. A. Stuchly, and A. V. Vorst, “Applications of RF/microwaves in medicine,” IEEE Trans. Microwave Theor. Tech. 50, 963–974 (2002).
[CrossRef]

Wang, G.

J. Liu, L. Zhan, P. Xiao, Q. Shen, G. Wang, Z. Wu, X. Liu, and L. Zhang, “Optical generation of tunable microwave signal using cascaded Brillouin fiber laser,” IEEE Photon. Technol. Lett. 24, 22–24 (2012).
[CrossRef]

Wei, D.

H. Zhu, C. Tu, T. Lei, W. Guo, Y. Li, F. Lu, X. Dong, and D. Wei, “Dual-wavelength narrow-linewidth light source with ultranarrow wavelength spacing based on the pump-induced thermal effects in an Er-Yb-codoped distributed-Bragg-reflector fiber laser,” Opt. Eng. 47, 094301 (2008).
[CrossRef]

Wu, Z.

J. Liu, L. Zhan, P. Xiao, Q. Shen, G. Wang, Z. Wu, X. Liu, and L. Zhang, “Optical generation of tunable microwave signal using cascaded Brillouin fiber laser,” IEEE Photon. Technol. Lett. 24, 22–24 (2012).
[CrossRef]

Xiao, P.

J. Liu, L. Zhan, P. Xiao, Q. Shen, G. Wang, Z. Wu, X. Liu, and L. Zhang, “Optical generation of tunable microwave signal using cascaded Brillouin fiber laser,” IEEE Photon. Technol. Lett. 24, 22–24 (2012).
[CrossRef]

Xiao-Yi, D.

J. Xiu-Jie, L. Yan-Ge, S. Li-Bin, G. Zhan-Cheng, F. Sheng-Gui, L. Feng-Nian, Y. Shu-Zhong, and D. Xiao-Yi, “Realization of stable narrow linewidth dual-wavelength lasing in an erbium-doped fibre laser by cleaving the wavelength-selective filter spectrum,” Chin. Phys. Lett 23, 2092–2094 (2006).
[CrossRef]

Xie, S.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[CrossRef]

Xiu-Jie, J.

J. Xiu-Jie, L. Yan-Ge, S. Li-Bin, G. Zhan-Cheng, F. Sheng-Gui, L. Feng-Nian, Y. Shu-Zhong, and D. Xiao-Yi, “Realization of stable narrow linewidth dual-wavelength lasing in an erbium-doped fibre laser by cleaving the wavelength-selective filter spectrum,” Chin. Phys. Lett 23, 2092–2094 (2006).
[CrossRef]

Yan-Ge, L.

J. Xiu-Jie, L. Yan-Ge, S. Li-Bin, G. Zhan-Cheng, F. Sheng-Gui, L. Feng-Nian, Y. Shu-Zhong, and D. Xiao-Yi, “Realization of stable narrow linewidth dual-wavelength lasing in an erbium-doped fibre laser by cleaving the wavelength-selective filter spectrum,” Chin. Phys. Lett 23, 2092–2094 (2006).
[CrossRef]

Yao, J.

Y. Geng, X. Tan, X. Li, and J. Yao, “Compact and widely tunable terahertz source based on a dual-wavelength intracavity optical parametric oscillation,” Appl. Phys. B 99, 181–185 (2010).
[CrossRef]

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009).
[CrossRef]

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theor. Tech. 54, 804–809 (2006).
[CrossRef]

H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, “Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module,” IEEE Photon. Technol. Lett. 18, 2344–2346 (2006).
[CrossRef]

Yao, J. P.

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wideband continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theor. Tech. 53, 3090–3097 (2005).
[CrossRef]

Zhan, L.

J. Liu, L. Zhan, P. Xiao, Q. Shen, G. Wang, Z. Wu, X. Liu, and L. Zhang, “Optical generation of tunable microwave signal using cascaded Brillouin fiber laser,” IEEE Photon. Technol. Lett. 24, 22–24 (2012).
[CrossRef]

Zhan-Cheng, G.

J. Xiu-Jie, L. Yan-Ge, S. Li-Bin, G. Zhan-Cheng, F. Sheng-Gui, L. Feng-Nian, Y. Shu-Zhong, and D. Xiao-Yi, “Realization of stable narrow linewidth dual-wavelength lasing in an erbium-doped fibre laser by cleaving the wavelength-selective filter spectrum,” Chin. Phys. Lett 23, 2092–2094 (2006).
[CrossRef]

Zhang, L.

J. Liu, L. Zhan, P. Xiao, Q. Shen, G. Wang, Z. Wu, X. Liu, and L. Zhang, “Optical generation of tunable microwave signal using cascaded Brillouin fiber laser,” IEEE Photon. Technol. Lett. 24, 22–24 (2012).
[CrossRef]

Zhang, Y.

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[CrossRef]

Zhu, H.

H. Zhu, C. Tu, T. Lei, W. Guo, Y. Li, F. Lu, X. Dong, and D. Wei, “Dual-wavelength narrow-linewidth light source with ultranarrow wavelength spacing based on the pump-induced thermal effects in an Er-Yb-codoped distributed-Bragg-reflector fiber laser,” Opt. Eng. 47, 094301 (2008).
[CrossRef]

Zhu, X.

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1  W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett. 92, 051111 (2008).
[CrossRef]

Zulkifli, A. Z.

Zulkifli, M. Z.

Appl. Opt.

Appl. Phys. B

Y. Geng, X. Tan, X. Li, and J. Yao, “Compact and widely tunable terahertz source based on a dual-wavelength intracavity optical parametric oscillation,” Appl. Phys. B 99, 181–185 (2010).
[CrossRef]

D. Liu, N. Q. Ngo, X. Y. Dong, S. C. Tjin, and P. Shum, “A stable dual-wavelength fiber laser with tunable wavelength spacing using a polarization-maintaining linear cavity,” Appl. Phys. B 81, 807–811 (2005).
[CrossRef]

Appl. Phys. Lett.

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1  W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett. 92, 051111 (2008).
[CrossRef]

Chin. Phys. Lett

J. Xiu-Jie, L. Yan-Ge, S. Li-Bin, G. Zhan-Cheng, F. Sheng-Gui, L. Feng-Nian, Y. Shu-Zhong, and D. Xiao-Yi, “Realization of stable narrow linewidth dual-wavelength lasing in an erbium-doped fibre laser by cleaving the wavelength-selective filter spectrum,” Chin. Phys. Lett 23, 2092–2094 (2006).
[CrossRef]

Electron. Lett.

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36, 1414–1416 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. Le Floch,” Dual tunable wavelength Er, Yb:glass laser for terahertz beat frequency generation,” IEEE Photon. Technol. Lett. 10, 1554–1556 (1998).
[CrossRef]

J. Sun, Y. Dai, X. Chen, Y. Zhang, and S. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).
[CrossRef]

H. R. Rideout, J. S. Seregelyi, S. Paquet, and J. Yao, “Discriminator-aided optical phase-lock loop incorporating a frequency down-conversion module,” IEEE Photon. Technol. Lett. 18, 2344–2346 (2006).
[CrossRef]

U. Gliese, T. N. Nielsen, M. Bruun, E. Lintz Christensen, K. E. Stubkjzr, S. Lindgren, and B. Broberg, “A wideband heterodyne optical phase-locked loop for generation of 3–18  GHz microwave carriers,” IEEE Photon. Technol. Lett. 4, 16–18 (2008).

J. Liu, L. Zhan, P. Xiao, Q. Shen, G. Wang, Z. Wu, X. Liu, and L. Zhang, “Optical generation of tunable microwave signal using cascaded Brillouin fiber laser,” IEEE Photon. Technol. Lett. 24, 22–24 (2012).
[CrossRef]

IEEE Trans. Microwave Theor. Tech.

G. H. Qi, J. P. Yao, J. Seregelyi, S. Paquet, and C. Bélisle, “Generation and distribution of a wideband continuously tunable millimeter-wave signal with an optical external modulation technique,” IEEE Trans. Microwave Theor. Tech. 53, 3090–3097 (2005).
[CrossRef]

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microwave Theor. Tech. 54, 804–809 (2006).
[CrossRef]

A. Rosen, M. A. Stuchly, and A. V. Vorst, “Applications of RF/microwaves in medicine,” IEEE Trans. Microwave Theor. Tech. 50, 963–974 (2002).
[CrossRef]

J. Eur. Opt. Soc.

H. Ahmad, A. A. Latif, J. M. Talib, and S. W. Harun, “Tunable, low frequency microwave generation from AWG based closely-spaced dual-wavelength single-longitudinal-mode fibre laser,” J. Eur. Opt. Soc. 8, 1–5 (2013).
[CrossRef]

J. Lightwave Technol.

J. Opt. Netw.

Laser Phys.

A. W. Al-Alimi, M. H. Al-Mansoori, A. F. Abas, M. A. Mahdi, F. R. M. Adikan, and M. Ajiya, “A stabilized tunable dual wavelength erbium-doped fiber laser with equal output power,” Laser Phys. 19, 1850–1853 (2009).
[CrossRef]

Opt. Eng.

H. Zhu, C. Tu, T. Lei, W. Guo, Y. Li, F. Lu, X. Dong, and D. Wei, “Dual-wavelength narrow-linewidth light source with ultranarrow wavelength spacing based on the pump-induced thermal effects in an Er-Yb-codoped distributed-Bragg-reflector fiber laser,” Opt. Eng. 47, 094301 (2008).
[CrossRef]

Opt. Lett.

Proc. IEEE

M. Feng, S. C. Shen, D. C. Caruth, and A. J. Huang, “Device technologies for RF front-end circuits in next-generation wireless communications,” Proc. IEEE 92, 354–375 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed tunable DW spacing using a tunable filter. LD, laser diode; EDF, erbium-doped fiber; WDM, wavelength division multiplexer; FBG, fiber Bragg grating; OSA/PD, optical spectrum analyzer/potential difference; UNB, ultranarrow bandwidth; PC, polarization controller.

Fig. 2.
Fig. 2.

Enlarged FBG’s reflectivity output spectrum observed from 0.02 nm to 0.16 pm resolutions on an OSA with a 0.5 nm span (inset: the FBG reflection spectrum observed from a 0.02 nm resolution on an OSA with a 100 nm span).

Fig. 3.
Fig. 3.

DW fiber laser output with different spacing. (a) Output spectrum taken from OSA 2 with a resolution of 0.02 nm, (b) output spectrum taken from OSA 1 with a resolution of 0.16 pm and giving a DW spacing of 2 pm with a signal-to-noise ratio (SNR) of 37.5 dB, (c) spectrum from OSA 1 giving a DW spacing of 30.5 pm with a SNR of 57 dB, (d) spectrum from OSA 1 giving a DW spacing of 32.5 pm with a SNR of 58 dB, and (e) spectrum from OSA 1 giving a DW spacing of 58.0 pm with a SNR of 56.5.

Fig. 4.
Fig. 4.

RF beat spectrum at a DW spacing of 2 pm.

Fig. 5.
Fig. 5.

RF beat spectrum with respect to each different wavelength spacing as shown in Figures 3(b)3(e).

Metrics