Abstract

Based on digital holographic tomography, a method for measuring the three-dimensional (3D) configuration of a transparent object with tiny scattering is proposed. By rotating a Michelson interferometer around static specimen, a series of the phase change distributions of reconstructed object beams carrying the structure information of specimen can be obtained at complete angle range, and the rotation of specimen can be avoided. In addition, phase multiplication of the interferometer can be used to improve the measurement sensitivity of specimen with tiny scattering. And then, as an example, the tomographic maps and 3D configurations of an ultrasonic standing wave field are measured according to the filtered-backprojection algorithm. The comparison between experimental and simulation results is provided to certify the feasibility and reliability of the proposed method.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Montgomery and D. L. Reuss, “Effects of refraction on axisymmetric flame temperatures measured by holographic interferometry,” Appl. Opt. 21, 1373–1380 (1982).
    [CrossRef]
  2. S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179–1187 (1992).
    [CrossRef]
  3. F. Charrière, A. Marian, F. Montfort, J. Kuehn, and T. Colomb, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178–180 (2006).
    [CrossRef]
  4. H. Turbell, “Cone-beam reconstruction using filtered backprojection,” Ph.D. dissertation (Linköping University, 2001).
  5. F. A. Monroy-Ramirez, A. E. Dolinko, and J. Garcia-Sucerquia, “Internal inspection of semi-transparent objects by digital holographic micro-tomography,” Optik 124, 3314–3318 (2013).
    [CrossRef]
  6. F. Charrière, N. Pavillon, T. Colomb, and C. Depeursinge, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005–7013 (2006).
    [CrossRef]
  7. I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. SPIE 7376, 737613 (2010).
    [CrossRef]
  8. H. Gao, J. Chen, H. Xie, R. Li, Z. Xu, S. Jiang, and Y. Zhang, “Soft x-ray holographic tomography for biological specimen,” Proc. SPIE 5143, 215–223 (2003).
    [CrossRef]
  9. Y. C. Lin, C. J. Cheng, and T. C. Poon, “Projection tomographic imaging by digital holographic microscopy,” in Proceedings of IEEE Conference on Information Photonics (IEEE, 2011), pp 1–2.
  10. W. J. Qu, C. O. Choo, V. R. Singh, Y. J. Yu, and A. Asundi, “Quasi-physical phase compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 26, 2005–2011 (2009).
    [CrossRef]
  11. H. Zhang, J. Xie, J. Liu, and Y. Wang, “Optical reconstruction of 3D images by use of pure-phasecomputer-generated holograms,” Chin. Opt. Lett. 7, 1101–1103 (2009).
    [CrossRef]
  12. Y. Montelongo, H. Butt, T. Butler, T. D. Wilkinson, and G. A. J. Amaratunga, “Computer generated holograms for carbon nanotube arrays,” Nanoscale 5, 4217–4222 (2013).
    [CrossRef]
  13. A. Haakea and J. Duala, “Micro-manipulation of small particles by node position control of an ultrasonic standing wave,” Ultrasonics 40, 317–322 (2002).
    [CrossRef]
  14. K. J. Gåsvik, Optical Metrology, 3rd ed. (Wiley, 2001).
  15. M. S. Howe, Acoustics of Fluid-Structure Interactions (Cambridge University, 1991).

2013

F. A. Monroy-Ramirez, A. E. Dolinko, and J. Garcia-Sucerquia, “Internal inspection of semi-transparent objects by digital holographic micro-tomography,” Optik 124, 3314–3318 (2013).
[CrossRef]

Y. Montelongo, H. Butt, T. Butler, T. D. Wilkinson, and G. A. J. Amaratunga, “Computer generated holograms for carbon nanotube arrays,” Nanoscale 5, 4217–4222 (2013).
[CrossRef]

2010

I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. SPIE 7376, 737613 (2010).
[CrossRef]

2009

2006

2003

H. Gao, J. Chen, H. Xie, R. Li, Z. Xu, S. Jiang, and Y. Zhang, “Soft x-ray holographic tomography for biological specimen,” Proc. SPIE 5143, 215–223 (2003).
[CrossRef]

2002

A. Haakea and J. Duala, “Micro-manipulation of small particles by node position control of an ultrasonic standing wave,” Ultrasonics 40, 317–322 (2002).
[CrossRef]

1992

S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179–1187 (1992).
[CrossRef]

1982

Amaratunga, G. A. J.

Y. Montelongo, H. Butt, T. Butler, T. D. Wilkinson, and G. A. J. Amaratunga, “Computer generated holograms for carbon nanotube arrays,” Nanoscale 5, 4217–4222 (2013).
[CrossRef]

Arfire, C.

I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. SPIE 7376, 737613 (2010).
[CrossRef]

Asundi, A.

Bergoënd, I.

I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. SPIE 7376, 737613 (2010).
[CrossRef]

Butler, T.

Y. Montelongo, H. Butt, T. Butler, T. D. Wilkinson, and G. A. J. Amaratunga, “Computer generated holograms for carbon nanotube arrays,” Nanoscale 5, 4217–4222 (2013).
[CrossRef]

Butt, H.

Y. Montelongo, H. Butt, T. Butler, T. D. Wilkinson, and G. A. J. Amaratunga, “Computer generated holograms for carbon nanotube arrays,” Nanoscale 5, 4217–4222 (2013).
[CrossRef]

Charrière, F.

Chen, J.

H. Gao, J. Chen, H. Xie, R. Li, Z. Xu, S. Jiang, and Y. Zhang, “Soft x-ray holographic tomography for biological specimen,” Proc. SPIE 5143, 215–223 (2003).
[CrossRef]

Cheng, C. J.

Y. C. Lin, C. J. Cheng, and T. C. Poon, “Projection tomographic imaging by digital holographic microscopy,” in Proceedings of IEEE Conference on Information Photonics (IEEE, 2011), pp 1–2.

Choo, C. O.

Colomb, T.

Depeursinge, C.

I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. SPIE 7376, 737613 (2010).
[CrossRef]

F. Charrière, N. Pavillon, T. Colomb, and C. Depeursinge, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005–7013 (2006).
[CrossRef]

Dolinko, A. E.

F. A. Monroy-Ramirez, A. E. Dolinko, and J. Garcia-Sucerquia, “Internal inspection of semi-transparent objects by digital holographic micro-tomography,” Optik 124, 3314–3318 (2013).
[CrossRef]

Duala, J.

A. Haakea and J. Duala, “Micro-manipulation of small particles by node position control of an ultrasonic standing wave,” Ultrasonics 40, 317–322 (2002).
[CrossRef]

Fujiwara, T.

S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179–1187 (1992).
[CrossRef]

Gao, H.

H. Gao, J. Chen, H. Xie, R. Li, Z. Xu, S. Jiang, and Y. Zhang, “Soft x-ray holographic tomography for biological specimen,” Proc. SPIE 5143, 215–223 (2003).
[CrossRef]

Garcia-Sucerquia, J.

F. A. Monroy-Ramirez, A. E. Dolinko, and J. Garcia-Sucerquia, “Internal inspection of semi-transparent objects by digital holographic micro-tomography,” Optik 124, 3314–3318 (2013).
[CrossRef]

Gåsvik, K. J.

K. J. Gåsvik, Optical Metrology, 3rd ed. (Wiley, 2001).

Haakea, A.

A. Haakea and J. Duala, “Micro-manipulation of small particles by node position control of an ultrasonic standing wave,” Ultrasonics 40, 317–322 (2002).
[CrossRef]

Howe, M. S.

M. S. Howe, Acoustics of Fluid-Structure Interactions (Cambridge University, 1991).

Jiang, S.

H. Gao, J. Chen, H. Xie, R. Li, Z. Xu, S. Jiang, and Y. Zhang, “Soft x-ray holographic tomography for biological specimen,” Proc. SPIE 5143, 215–223 (2003).
[CrossRef]

Kuehn, J.

Lai, W. Z.

S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179–1187 (1992).
[CrossRef]

Li, R.

H. Gao, J. Chen, H. Xie, R. Li, Z. Xu, S. Jiang, and Y. Zhang, “Soft x-ray holographic tomography for biological specimen,” Proc. SPIE 5143, 215–223 (2003).
[CrossRef]

Lin, Y. C.

Y. C. Lin, C. J. Cheng, and T. C. Poon, “Projection tomographic imaging by digital holographic microscopy,” in Proceedings of IEEE Conference on Information Photonics (IEEE, 2011), pp 1–2.

Liu, J.

Marian, A.

Monroy-Ramirez, F. A.

F. A. Monroy-Ramirez, A. E. Dolinko, and J. Garcia-Sucerquia, “Internal inspection of semi-transparent objects by digital holographic micro-tomography,” Optik 124, 3314–3318 (2013).
[CrossRef]

Montelongo, Y.

Y. Montelongo, H. Butt, T. Butler, T. D. Wilkinson, and G. A. J. Amaratunga, “Computer generated holograms for carbon nanotube arrays,” Nanoscale 5, 4217–4222 (2013).
[CrossRef]

Montfort, F.

Montgomery, G. P.

Pavillon, N.

I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. SPIE 7376, 737613 (2010).
[CrossRef]

F. Charrière, N. Pavillon, T. Colomb, and C. Depeursinge, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Opt. Express 14, 7005–7013 (2006).
[CrossRef]

Poon, T. C.

Y. C. Lin, C. J. Cheng, and T. C. Poon, “Projection tomographic imaging by digital holographic microscopy,” in Proceedings of IEEE Conference on Information Photonics (IEEE, 2011), pp 1–2.

Qu, W. J.

Reuss, D. L.

Singh, V. R.

Tieng, S. M.

S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179–1187 (1992).
[CrossRef]

Turbell, H.

H. Turbell, “Cone-beam reconstruction using filtered backprojection,” Ph.D. dissertation (Linköping University, 2001).

Wang, Y.

Wilkinson, T. D.

Y. Montelongo, H. Butt, T. Butler, T. D. Wilkinson, and G. A. J. Amaratunga, “Computer generated holograms for carbon nanotube arrays,” Nanoscale 5, 4217–4222 (2013).
[CrossRef]

Xie, H.

H. Gao, J. Chen, H. Xie, R. Li, Z. Xu, S. Jiang, and Y. Zhang, “Soft x-ray holographic tomography for biological specimen,” Proc. SPIE 5143, 215–223 (2003).
[CrossRef]

Xie, J.

Xu, Z.

H. Gao, J. Chen, H. Xie, R. Li, Z. Xu, S. Jiang, and Y. Zhang, “Soft x-ray holographic tomography for biological specimen,” Proc. SPIE 5143, 215–223 (2003).
[CrossRef]

Yu, Y. J.

Zhang, H.

Zhang, Y.

H. Gao, J. Chen, H. Xie, R. Li, Z. Xu, S. Jiang, and Y. Zhang, “Soft x-ray holographic tomography for biological specimen,” Proc. SPIE 5143, 215–223 (2003).
[CrossRef]

Appl. Opt.

Chin. Opt. Lett.

J. Opt. Soc. Am. A

Meas. Sci. Technol.

S. M. Tieng, W. Z. Lai, and T. Fujiwara, “Holographic temperature measurement on axisymmetric propane-air, fuel-lean flame,” Meas. Sci. Technol. 3, 1179–1187 (1992).
[CrossRef]

Nanoscale

Y. Montelongo, H. Butt, T. Butler, T. D. Wilkinson, and G. A. J. Amaratunga, “Computer generated holograms for carbon nanotube arrays,” Nanoscale 5, 4217–4222 (2013).
[CrossRef]

Opt. Express

Opt. Lett.

Optik

F. A. Monroy-Ramirez, A. E. Dolinko, and J. Garcia-Sucerquia, “Internal inspection of semi-transparent objects by digital holographic micro-tomography,” Optik 124, 3314–3318 (2013).
[CrossRef]

Proc. SPIE

I. Bergoënd, C. Arfire, N. Pavillon, and C. Depeursinge, “Diffraction tomography for biological cells imaging using digital holographic microscopy,” Proc. SPIE 7376, 737613 (2010).
[CrossRef]

H. Gao, J. Chen, H. Xie, R. Li, Z. Xu, S. Jiang, and Y. Zhang, “Soft x-ray holographic tomography for biological specimen,” Proc. SPIE 5143, 215–223 (2003).
[CrossRef]

Ultrasonics

A. Haakea and J. Duala, “Micro-manipulation of small particles by node position control of an ultrasonic standing wave,” Ultrasonics 40, 317–322 (2002).
[CrossRef]

Other

K. J. Gåsvik, Optical Metrology, 3rd ed. (Wiley, 2001).

M. S. Howe, Acoustics of Fluid-Structure Interactions (Cambridge University, 1991).

Y. C. Lin, C. J. Cheng, and T. C. Poon, “Projection tomographic imaging by digital holographic microscopy,” in Proceedings of IEEE Conference on Information Photonics (IEEE, 2011), pp 1–2.

H. Turbell, “Cone-beam reconstruction using filtered backprojection,” Ph.D. dissertation (Linköping University, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic sketch for Radon transform.

Fig. 2.
Fig. 2.

Experiment setup. A, aperture; BS, beam splitter; L, lens; M, mirror; NF, neutral-density filter; S, specimen.

Fig. 3.
Fig. 3.

Maps of (a) spatial spectrum of a hologram and (b) reconstructed phase change distribution.

Fig. 4.
Fig. 4.

Slices of 3D sound pressure distributions: (a) at xy plane (z=0), (b)–(d) at different planes perpendicular to the z axis, (e) at xz plane (y=0), and (f)–(h) at different planes perpendicular to the y axis.

Fig. 5.
Fig. 5.

Sound pressure distributions. (a) Along with y axis in Fig. 4(a) and vertical dashed lines marked in Figs. 4(a)4(d); (b) along with x axis in Fig. 4(e) and horizontal dashed lines marked in Figs. 4(f)4(h).

Fig. 6.
Fig. 6.

Theoretical simulation results of the sound pressure distribution: (a) at xy plane (z=0) and (b) at xz plane (y=0).

Fig. 7.
Fig. 7.

Measurement results of 3D sound pressure distributions with inclined emission end: (a) at xy plane (z=0), (b)–(d) at different planes perpendicular to the z axis, (e) at xz plane (y=0), and (f)–(h) at different planes perpendicular to the y axis.

Fig. 8.
Fig. 8.

3D configurations of USWF: (a) approximately symmetrical USWF, (b) twisted USWF with inclined emission end, and (c) reference direction.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I(x,y)=|O(x,y)+R(x,y)|2=[R(x,y)R*(x,y)+O(x,y)O*(x,y)]+O(x,y)R*(x,y)+R(x,y)O*(x,y)=I0+I1+I2,
U(ξ,η)=F1{F{R(x,y)I1(x,y)}×exp[j2πdλ1(λξ)2(λη)2]},
PP(t,θ)=f(x,y)δ(ycosθxsinθt)dxdy.
f(x,y)=02π(PP*gp)(θ,ycosθxsinθ)dθ,
gP(t)=12|ρ|ei2πρtdρ.
f(x,y)=20π(PP*gp)(θ,ycosθxsinθ)dθ.
Δφ(x,y)=2πλΔn(x,y,z)dz,
Δn(x,y,z)=n(x,y,z)n0.
Δφ(x,y,z)=0z2πλΔn(x,y,z)dz.
n(x,y,z)=λ2πz[Δφ(x,y,z)]+n0.
n(x,y,z)=λ4πz[Δφ(x,y,z)]+n0.
P=n1n01P0,

Metrics