Abstract

An optical fiber sensor based on long-period gratings (LPG) for selective measurements of flap- and edge-wise bending of a wind turbine blade is presented. Two consecutive LPGs separated by 40 mm interfere to improve resolution and reduce noise in a D-shaped fiber. The mode profile of the device was characterized experimentally to provide a model describing the mode couplings. The sensor was tested on a wind turbine blade.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Glavind, I. S. Olesen, B. F. Skipper, and M. Kristensen, “Fibre-optical grating sensors for wind turbine blades: a review,” Opt. Eng. 52, 030901 (2013).
    [CrossRef]
  2. L. Glavind, S. Buggy, I. Olesen, B. Skipper, J. Canning, K. Cook, and M. Kristensen, “Direct embedding of fiber-optical load sensors into wind turbine blades,” in Advanced Photonics, K. Ewing and M. Ferreira, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper SM3C.6.
  3. K. Krebber, W. Habel, T. Gutmann, and C. Schram, “Fibre Bragg grating sensors for monitoring of wind turbine blades,” Proc. SPIE 5855, 1036–1039 (2005).
  4. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fibre waveguides—Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
    [CrossRef]
  5. K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol. 17, 1167–1172 (2006).
    [CrossRef]
  6. D. Zhao, X. Chen, K. Zhou, L. Zhang, I. Bennion, W. N. MacPherson, J. S. Barton, and J. D. C. Jones, “Bend sensors with direction recognition based on long-period gratings written in D-shaped fibre,” Appl. Opt. 43, 5425–5428 (2004).
    [CrossRef]
  7. N. F. Ramsey, Molecular Beams (Oxford University, 1956).
  8. E. Dianov, S. Vasiliev, A. Kurkov, O. Medvedkov, and V. Protopopov, “In-fibre Mach–Zehnder interferometer based on a pair of long-period gratings,” in 22nd European Conference on Optical Communication (IEEE, 1996), pp. 65–68.
  9. L. Glavind, S. Gao, K. Cook, J. Canning, B. Skipper, Y. Luo, G. Peng, and M. Kristensen, “Enhanced resolution of long-period grating bend sensor,” Proc. SPIE 8924, 892437 (2013).
  10. L. Glavind, J. Canning, S. Gao, K. Cook, G. D. Peng, Y. Luo, B. F. Skipper, and M. Kristensen, “Long-period gratings in special geometry fibres for high resolution and selective sensors,” Opt. Eng. (to be published).
  11. N. Skivesen, A. Tetu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15, 3169–3176 (2007).
    [CrossRef]
  12. V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872–1876 (1997).
    [CrossRef]
  13. D. Marcuse, F. Ladouceur, and J. Love, “Vector modes of D-shaped fibres,” IEE Proc. Optoelectron. 139, 117–126 (1992).
  14. L. Glavind, S. Buggy, B. F. Skipper, J. Canning, S. Gao, K. Cook, Y. Luo, G. Peng, and M. Kristensen, “A long-period grating sensor system monitoring loads on a wind turbine blade,” submitted to OSA BGPP conference.

2013 (2)

L. Glavind, I. S. Olesen, B. F. Skipper, and M. Kristensen, “Fibre-optical grating sensors for wind turbine blades: a review,” Opt. Eng. 52, 030901 (2013).
[CrossRef]

L. Glavind, S. Gao, K. Cook, J. Canning, B. Skipper, Y. Luo, G. Peng, and M. Kristensen, “Enhanced resolution of long-period grating bend sensor,” Proc. SPIE 8924, 892437 (2013).

2007 (1)

2006 (1)

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol. 17, 1167–1172 (2006).
[CrossRef]

2005 (1)

K. Krebber, W. Habel, T. Gutmann, and C. Schram, “Fibre Bragg grating sensors for monitoring of wind turbine blades,” Proc. SPIE 5855, 1036–1039 (2005).

2004 (1)

1997 (1)

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872–1876 (1997).
[CrossRef]

1992 (1)

D. Marcuse, F. Ladouceur, and J. Love, “Vector modes of D-shaped fibres,” IEE Proc. Optoelectron. 139, 117–126 (1992).

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fibre waveguides—Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Apitz, J.

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol. 17, 1167–1172 (2006).
[CrossRef]

Barton, J. S.

Bennion, I.

Bhatia, V.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872–1876 (1997).
[CrossRef]

Borel, P. I.

Buggy, S.

L. Glavind, S. Buggy, I. Olesen, B. Skipper, J. Canning, K. Cook, and M. Kristensen, “Direct embedding of fiber-optical load sensors into wind turbine blades,” in Advanced Photonics, K. Ewing and M. Ferreira, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper SM3C.6.

L. Glavind, S. Buggy, B. F. Skipper, J. Canning, S. Gao, K. Cook, Y. Luo, G. Peng, and M. Kristensen, “A long-period grating sensor system monitoring loads on a wind turbine blade,” submitted to OSA BGPP conference.

Campbell, D. K.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872–1876 (1997).
[CrossRef]

Canning, J.

L. Glavind, S. Gao, K. Cook, J. Canning, B. Skipper, Y. Luo, G. Peng, and M. Kristensen, “Enhanced resolution of long-period grating bend sensor,” Proc. SPIE 8924, 892437 (2013).

L. Glavind, J. Canning, S. Gao, K. Cook, G. D. Peng, Y. Luo, B. F. Skipper, and M. Kristensen, “Long-period gratings in special geometry fibres for high resolution and selective sensors,” Opt. Eng. (to be published).

L. Glavind, S. Buggy, I. Olesen, B. Skipper, J. Canning, K. Cook, and M. Kristensen, “Direct embedding of fiber-optical load sensors into wind turbine blades,” in Advanced Photonics, K. Ewing and M. Ferreira, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper SM3C.6.

L. Glavind, S. Buggy, B. F. Skipper, J. Canning, S. Gao, K. Cook, Y. Luo, G. Peng, and M. Kristensen, “A long-period grating sensor system monitoring loads on a wind turbine blade,” submitted to OSA BGPP conference.

Chen, X.

Claus, R. O.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872–1876 (1997).
[CrossRef]

Cook, K.

L. Glavind, S. Gao, K. Cook, J. Canning, B. Skipper, Y. Luo, G. Peng, and M. Kristensen, “Enhanced resolution of long-period grating bend sensor,” Proc. SPIE 8924, 892437 (2013).

L. Glavind, J. Canning, S. Gao, K. Cook, G. D. Peng, Y. Luo, B. F. Skipper, and M. Kristensen, “Long-period gratings in special geometry fibres for high resolution and selective sensors,” Opt. Eng. (to be published).

L. Glavind, S. Buggy, I. Olesen, B. Skipper, J. Canning, K. Cook, and M. Kristensen, “Direct embedding of fiber-optical load sensors into wind turbine blades,” in Advanced Photonics, K. Ewing and M. Ferreira, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper SM3C.6.

L. Glavind, S. Buggy, B. F. Skipper, J. Canning, S. Gao, K. Cook, Y. Luo, G. Peng, and M. Kristensen, “A long-period grating sensor system monitoring loads on a wind turbine blade,” submitted to OSA BGPP conference.

D’Alberto, T. G.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872–1876 (1997).
[CrossRef]

Dianov, E.

E. Dianov, S. Vasiliev, A. Kurkov, O. Medvedkov, and V. Protopopov, “In-fibre Mach–Zehnder interferometer based on a pair of long-period gratings,” in 22nd European Conference on Optical Communication (IEEE, 1996), pp. 65–68.

Ecke, W.

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol. 17, 1167–1172 (2006).
[CrossRef]

Eyck, G. A. T.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872–1876 (1997).
[CrossRef]

Frandsen, L. H.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fibre waveguides—Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Gao, S.

L. Glavind, S. Gao, K. Cook, J. Canning, B. Skipper, Y. Luo, G. Peng, and M. Kristensen, “Enhanced resolution of long-period grating bend sensor,” Proc. SPIE 8924, 892437 (2013).

L. Glavind, J. Canning, S. Gao, K. Cook, G. D. Peng, Y. Luo, B. F. Skipper, and M. Kristensen, “Long-period gratings in special geometry fibres for high resolution and selective sensors,” Opt. Eng. (to be published).

L. Glavind, S. Buggy, B. F. Skipper, J. Canning, S. Gao, K. Cook, Y. Luo, G. Peng, and M. Kristensen, “A long-period grating sensor system monitoring loads on a wind turbine blade,” submitted to OSA BGPP conference.

Glavind, L.

L. Glavind, S. Gao, K. Cook, J. Canning, B. Skipper, Y. Luo, G. Peng, and M. Kristensen, “Enhanced resolution of long-period grating bend sensor,” Proc. SPIE 8924, 892437 (2013).

L. Glavind, I. S. Olesen, B. F. Skipper, and M. Kristensen, “Fibre-optical grating sensors for wind turbine blades: a review,” Opt. Eng. 52, 030901 (2013).
[CrossRef]

L. Glavind, S. Buggy, I. Olesen, B. Skipper, J. Canning, K. Cook, and M. Kristensen, “Direct embedding of fiber-optical load sensors into wind turbine blades,” in Advanced Photonics, K. Ewing and M. Ferreira, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper SM3C.6.

L. Glavind, J. Canning, S. Gao, K. Cook, G. D. Peng, Y. Luo, B. F. Skipper, and M. Kristensen, “Long-period gratings in special geometry fibres for high resolution and selective sensors,” Opt. Eng. (to be published).

L. Glavind, S. Buggy, B. F. Skipper, J. Canning, S. Gao, K. Cook, Y. Luo, G. Peng, and M. Kristensen, “A long-period grating sensor system monitoring loads on a wind turbine blade,” submitted to OSA BGPP conference.

Gutmann, T.

K. Krebber, W. Habel, T. Gutmann, and C. Schram, “Fibre Bragg grating sensors for monitoring of wind turbine blades,” Proc. SPIE 5855, 1036–1039 (2005).

Habel, W.

K. Krebber, W. Habel, T. Gutmann, and C. Schram, “Fibre Bragg grating sensors for monitoring of wind turbine blades,” Proc. SPIE 5855, 1036–1039 (2005).

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fibre waveguides—Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fibre waveguides—Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Jones, J. D. C.

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fibre waveguides—Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

Kjems, J.

Krebber, K.

K. Krebber, W. Habel, T. Gutmann, and C. Schram, “Fibre Bragg grating sensors for monitoring of wind turbine blades,” Proc. SPIE 5855, 1036–1039 (2005).

Kristensen, M.

L. Glavind, I. S. Olesen, B. F. Skipper, and M. Kristensen, “Fibre-optical grating sensors for wind turbine blades: a review,” Opt. Eng. 52, 030901 (2013).
[CrossRef]

L. Glavind, S. Gao, K. Cook, J. Canning, B. Skipper, Y. Luo, G. Peng, and M. Kristensen, “Enhanced resolution of long-period grating bend sensor,” Proc. SPIE 8924, 892437 (2013).

N. Skivesen, A. Tetu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15, 3169–3176 (2007).
[CrossRef]

L. Glavind, J. Canning, S. Gao, K. Cook, G. D. Peng, Y. Luo, B. F. Skipper, and M. Kristensen, “Long-period gratings in special geometry fibres for high resolution and selective sensors,” Opt. Eng. (to be published).

L. Glavind, S. Buggy, I. Olesen, B. Skipper, J. Canning, K. Cook, and M. Kristensen, “Direct embedding of fiber-optical load sensors into wind turbine blades,” in Advanced Photonics, K. Ewing and M. Ferreira, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper SM3C.6.

L. Glavind, S. Buggy, B. F. Skipper, J. Canning, S. Gao, K. Cook, Y. Luo, G. Peng, and M. Kristensen, “A long-period grating sensor system monitoring loads on a wind turbine blade,” submitted to OSA BGPP conference.

Kurkov, A.

E. Dianov, S. Vasiliev, A. Kurkov, O. Medvedkov, and V. Protopopov, “In-fibre Mach–Zehnder interferometer based on a pair of long-period gratings,” in 22nd European Conference on Optical Communication (IEEE, 1996), pp. 65–68.

Ladouceur, F.

D. Marcuse, F. Ladouceur, and J. Love, “Vector modes of D-shaped fibres,” IEE Proc. Optoelectron. 139, 117–126 (1992).

Lembke, E.

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol. 17, 1167–1172 (2006).
[CrossRef]

Lenschow, G.

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol. 17, 1167–1172 (2006).
[CrossRef]

Love, J.

D. Marcuse, F. Ladouceur, and J. Love, “Vector modes of D-shaped fibres,” IEE Proc. Optoelectron. 139, 117–126 (1992).

Luo, Y.

L. Glavind, S. Gao, K. Cook, J. Canning, B. Skipper, Y. Luo, G. Peng, and M. Kristensen, “Enhanced resolution of long-period grating bend sensor,” Proc. SPIE 8924, 892437 (2013).

L. Glavind, J. Canning, S. Gao, K. Cook, G. D. Peng, Y. Luo, B. F. Skipper, and M. Kristensen, “Long-period gratings in special geometry fibres for high resolution and selective sensors,” Opt. Eng. (to be published).

L. Glavind, S. Buggy, B. F. Skipper, J. Canning, S. Gao, K. Cook, Y. Luo, G. Peng, and M. Kristensen, “A long-period grating sensor system monitoring loads on a wind turbine blade,” submitted to OSA BGPP conference.

MacPherson, W. N.

Marcuse, D.

D. Marcuse, F. Ladouceur, and J. Love, “Vector modes of D-shaped fibres,” IEE Proc. Optoelectron. 139, 117–126 (1992).

Medvedkov, O.

E. Dianov, S. Vasiliev, A. Kurkov, O. Medvedkov, and V. Protopopov, “In-fibre Mach–Zehnder interferometer based on a pair of long-period gratings,” in 22nd European Conference on Optical Communication (IEEE, 1996), pp. 65–68.

Murphy, K. A.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872–1876 (1997).
[CrossRef]

Olesen, I.

L. Glavind, S. Buggy, I. Olesen, B. Skipper, J. Canning, K. Cook, and M. Kristensen, “Direct embedding of fiber-optical load sensors into wind turbine blades,” in Advanced Photonics, K. Ewing and M. Ferreira, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper SM3C.6.

Olesen, I. S.

L. Glavind, I. S. Olesen, B. F. Skipper, and M. Kristensen, “Fibre-optical grating sensors for wind turbine blades: a review,” Opt. Eng. 52, 030901 (2013).
[CrossRef]

Peng, G.

L. Glavind, S. Gao, K. Cook, J. Canning, B. Skipper, Y. Luo, G. Peng, and M. Kristensen, “Enhanced resolution of long-period grating bend sensor,” Proc. SPIE 8924, 892437 (2013).

L. Glavind, S. Buggy, B. F. Skipper, J. Canning, S. Gao, K. Cook, Y. Luo, G. Peng, and M. Kristensen, “A long-period grating sensor system monitoring loads on a wind turbine blade,” submitted to OSA BGPP conference.

Peng, G. D.

L. Glavind, J. Canning, S. Gao, K. Cook, G. D. Peng, Y. Luo, B. F. Skipper, and M. Kristensen, “Long-period gratings in special geometry fibres for high resolution and selective sensors,” Opt. Eng. (to be published).

Protopopov, V.

E. Dianov, S. Vasiliev, A. Kurkov, O. Medvedkov, and V. Protopopov, “In-fibre Mach–Zehnder interferometer based on a pair of long-period gratings,” in 22nd European Conference on Optical Communication (IEEE, 1996), pp. 65–68.

Ramsey, N. F.

N. F. Ramsey, Molecular Beams (Oxford University, 1956).

Schram, C.

K. Krebber, W. Habel, T. Gutmann, and C. Schram, “Fibre Bragg grating sensors for monitoring of wind turbine blades,” Proc. SPIE 5855, 1036–1039 (2005).

Schroeder, K.

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol. 17, 1167–1172 (2006).
[CrossRef]

Sherr, D.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872–1876 (1997).
[CrossRef]

Skipper, B.

L. Glavind, S. Gao, K. Cook, J. Canning, B. Skipper, Y. Luo, G. Peng, and M. Kristensen, “Enhanced resolution of long-period grating bend sensor,” Proc. SPIE 8924, 892437 (2013).

L. Glavind, S. Buggy, I. Olesen, B. Skipper, J. Canning, K. Cook, and M. Kristensen, “Direct embedding of fiber-optical load sensors into wind turbine blades,” in Advanced Photonics, K. Ewing and M. Ferreira, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper SM3C.6.

Skipper, B. F.

L. Glavind, I. S. Olesen, B. F. Skipper, and M. Kristensen, “Fibre-optical grating sensors for wind turbine blades: a review,” Opt. Eng. 52, 030901 (2013).
[CrossRef]

L. Glavind, J. Canning, S. Gao, K. Cook, G. D. Peng, Y. Luo, B. F. Skipper, and M. Kristensen, “Long-period gratings in special geometry fibres for high resolution and selective sensors,” Opt. Eng. (to be published).

L. Glavind, S. Buggy, B. F. Skipper, J. Canning, S. Gao, K. Cook, Y. Luo, G. Peng, and M. Kristensen, “A long-period grating sensor system monitoring loads on a wind turbine blade,” submitted to OSA BGPP conference.

Skivesen, N.

Tetu, A.

Vasiliev, S.

E. Dianov, S. Vasiliev, A. Kurkov, O. Medvedkov, and V. Protopopov, “In-fibre Mach–Zehnder interferometer based on a pair of long-period gratings,” in 22nd European Conference on Optical Communication (IEEE, 1996), pp. 65–68.

Zabaronick, N. A.

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872–1876 (1997).
[CrossRef]

Zhang, L.

Zhao, D.

Zhou, K.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fibre waveguides—Application to reflection filter fabrication,” Appl. Phys. Lett. 32, 647–649 (1978).
[CrossRef]

IEE Proc. Optoelectron. (1)

D. Marcuse, F. Ladouceur, and J. Love, “Vector modes of D-shaped fibres,” IEE Proc. Optoelectron. 139, 117–126 (1992).

Meas. Sci. Technol. (1)

K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol. 17, 1167–1172 (2006).
[CrossRef]

Opt. Eng. (2)

L. Glavind, I. S. Olesen, B. F. Skipper, and M. Kristensen, “Fibre-optical grating sensors for wind turbine blades: a review,” Opt. Eng. 52, 030901 (2013).
[CrossRef]

V. Bhatia, D. K. Campbell, D. Sherr, T. G. D’Alberto, N. A. Zabaronick, G. A. T. Eyck, K. A. Murphy, and R. O. Claus, “Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures,” Opt. Eng. 36, 1872–1876 (1997).
[CrossRef]

Opt. Express (1)

Proc. SPIE (2)

K. Krebber, W. Habel, T. Gutmann, and C. Schram, “Fibre Bragg grating sensors for monitoring of wind turbine blades,” Proc. SPIE 5855, 1036–1039 (2005).

L. Glavind, S. Gao, K. Cook, J. Canning, B. Skipper, Y. Luo, G. Peng, and M. Kristensen, “Enhanced resolution of long-period grating bend sensor,” Proc. SPIE 8924, 892437 (2013).

Other (5)

L. Glavind, J. Canning, S. Gao, K. Cook, G. D. Peng, Y. Luo, B. F. Skipper, and M. Kristensen, “Long-period gratings in special geometry fibres for high resolution and selective sensors,” Opt. Eng. (to be published).

N. F. Ramsey, Molecular Beams (Oxford University, 1956).

E. Dianov, S. Vasiliev, A. Kurkov, O. Medvedkov, and V. Protopopov, “In-fibre Mach–Zehnder interferometer based on a pair of long-period gratings,” in 22nd European Conference on Optical Communication (IEEE, 1996), pp. 65–68.

L. Glavind, S. Buggy, I. Olesen, B. Skipper, J. Canning, K. Cook, and M. Kristensen, “Direct embedding of fiber-optical load sensors into wind turbine blades,” in Advanced Photonics, K. Ewing and M. Ferreira, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper SM3C.6.

L. Glavind, S. Buggy, B. F. Skipper, J. Canning, S. Gao, K. Cook, Y. Luo, G. Peng, and M. Kristensen, “A long-period grating sensor system monitoring loads on a wind turbine blade,” submitted to OSA BGPP conference.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

Cross-section of an illuminated D-shaped fiber. The D-shaped fiber also has an inner cladding deposited and visibly seen around the core [10].

Fig. 2.
Fig. 2.

Index profile of preform for D-shaped fiber, before milling down to D-shape [10].

Fig. 3.
Fig. 3.

Normalized spectrum of MZ configuration in D-shaped fiber (1 nm resolution) [10].

Fig. 4.
Fig. 4.

Normalized spectrum of one LPG in the D-shaped fiber (1 nm resolution).

Fig. 5.
Fig. 5.

Normalized spectrum of two LPGs at 1510 and 1530 nm in D-shaped fiber (1 nm resolution) [10].

Fig. 6.
Fig. 6.

Core mode in D-shaped fiber at 1494 nm. The black line illustrates where the flat side of the fiber is. Distribution in pixels: 1 pixel 0.14μm, from [10].

Fig. 7.
Fig. 7.

Inner cladding mode in D-shaped fiber at 1509 nm. The black line illustrates where the flat side of the fiber is. Distribution in pixels: 1 pixel 0.14μm, from [10].

Fig. 8.
Fig. 8.

Normalized core mode intensity perpendicular to the flat side. Distribution in pixels: 1 pixel 0.14μm.

Fig. 9.
Fig. 9.

Second cladding mode in D-shaped fiber; the black line illustrates the flat side of the fiber. Distribution in pixels: 1 pixel 0.14μm.

Fig. 10.
Fig. 10.

Normalized broadband spectrum of a LPG in MZ configuration.

Fig. 11.
Fig. 11.

Illustration of sensor placement on blade, from [14].

Fig. 12.
Fig. 12.

Spectrum with interrogator and light source utilized for measurements on blade, from [14].

Fig. 13.
Fig. 13.

Forward edge: LPG center wavelength compared to load.

Fig. 14.
Fig. 14.

Forward edge: FBG strain compared to load.

Fig. 15.
Fig. 15.

Reverse edge: LPG center wavelength compared to load.

Fig. 16.
Fig. 16.

Reverse edge: FBG strain compared to load.

Fig. 17.
Fig. 17.

Reverse flap: LPG center wavelength compared to load.

Fig. 18.
Fig. 18.

Reverse flap: FBG strain compared to load.

Tables (2)

Tables Icon

Table 1. Parameterization of Core and First Cladding Mode

Tables Icon

Table 2. Parameterization of Second Cladding Mode

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

TM-likecladding=(nairncl)2TM-likeair,
Δneff=0.8·1.45271+(0.2η)·1.44815+η(0.1·1.45271+(0.914η)·1.44815+14η)Δneff=0.00319270.3361125·η.
λ(m)=[neffncl(m)]Λ.

Metrics