Abstract

We numerically investigate the radiation forces of multi-Gaussian Schell-model (MGSM) beams, in which the degree of coherence is modeled by the multi-Gaussian function, exerted on the Rayleigh dielectric sphere. By simulation of the forces calculation it is found that the steepness of the edge of the intensity profile (i.e., the summation index M) and the initial coherence width of the MGSM beams play important roles in the trapping range and stability. We can increase the trapping range at the focal plane by increasing the value of M or decreasing the initial coherence of the MGSM beams. It is also found that the trapping stability becomes lower due to the increase of the value of M or the decrease of coherence. Furthermore, the trapping stability under different conditions is explicitly analyzed. The results presented here are helpful for some possible applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sahin and O. Korotkova, “Light sources generating far fields with tunable flat profiles,” Opt. Lett. 37, 2970–2972 (2012).
    [CrossRef]
  2. F. Gori, “Flattened Gaussian beams,” Opt. Commun. 107, 335–341 (1994).
    [CrossRef]
  3. R. Borghi, “Uniform approximation of paraxial flat-topped beams,” J. Opt. Soc. Am. A 30, 1099–1106 (2013).
    [CrossRef]
  4. O. Korotkova, S. Sahin, and E. Shchepakina, “Multi-Gaussian Schell-model beams,” J. Opt. Soc. Am. A 29, 2159–2163 (2012).
    [CrossRef]
  5. Z. Mei, O. Korotkova, and E. Shchepakina, “Electromagnetic multi-Gaussian Schell-model beams,” J. Opt. 15, 025705 (2013).
    [CrossRef]
  6. Y. Zhang and D. Zhao, “Scattering of multi-Gaussian Schell-model beams on a random medium,” Opt. Express 21, 24781–24792 (2013).
    [CrossRef]
  7. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef]
  8. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [CrossRef]
  9. L. Wang, C. Zhao, L. Wang, X. Lu, and S. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32, 1393–1395 (2007).
    [CrossRef]
  10. Z. Liu and D. Zhao, “Optical trapping Rayleigh dielectric spheres with focused anomalous hollow beams,” Appl. Opt. 52, 1310–1316 (2013).
    [CrossRef]
  11. Y. Jiang, K. Huang, and X. Lu, “Radiation force of highly focused Lorentz-Gauss beams on a Rayleigh particle,” Opt. Express 19, 9708–9713 (2011).
    [CrossRef]
  12. C.-H. Chen, P.-T. Tai, and W.-F. Hsieh, “Bottle beam from a bare laser for single-beam trapping,” Appl. Opt. 43, 6001–6006 (2004).
    [CrossRef]
  13. Z. Liu and D. Zhao, “Radiation forces acting on a Rayleigh dielectric sphere produced by highly focused elegant Hermite-cosine-Gaussian beams,” Opt. Express 20, 2895–2904 (2012).
    [CrossRef]
  14. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
    [CrossRef]
  15. S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
    [CrossRef]
  16. Y. Zhang, B. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010).
    [CrossRef]
  17. J. Shu, Z. Chen, and J. Pu, “Radiation forces on a Rayleigh particle by highly focused partially coherent and radially polarized vortex beams,” J. Opt. Soc. Am. A 30, 916–922 (2013).
    [CrossRef]
  18. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 3645–3649 (2012).
    [CrossRef]
  19. Z. Zheng, B. Zhang, H. Chen, J. Ding, and H. Wang, “Optical trapping with focused Airy beams,” Appl. Opt. 50, 43–49 (2011).
    [CrossRef]
  20. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding micoparticles with morphing autofocusing Airy beams,” Opt. Lett. 36, 2883–2885 (2011).
    [CrossRef]
  21. Y. Yang, W. P. Zhang, Z. Y. Zhao, and J. G. Tian, “Optical forces on Mie particles in an Airy evanescent field,” Opt. Express 20, 25681–25692 (2012).
    [CrossRef]
  22. C. Zhao, Y. Cai, X. Lu, and H. T. Eyyuboglu, “Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle,” Opt. Express 17, 1753–1765 (2009).
    [CrossRef]
  23. J. M. Auñón and M. Nieto-Vesperinas, “Optical forces on small particles from partially coherent light,” J. Opt. Soc. Am. A 29, 1389–1398 (2012).
    [CrossRef]
  24. J. M. Auñón and M. Nieto-Vesperinas, “Partially coherent fluctuating sources that produce the same optical forces as a laser beam,” Opt. Lett. 38, 2869–2872 (2013).
    [CrossRef]
  25. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  26. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
    [CrossRef]
  27. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83, 4534–4537 (1999).
    [CrossRef]

2013 (6)

2012 (6)

2011 (3)

2010 (1)

Y. Zhang, B. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010).
[CrossRef]

2009 (1)

2007 (2)

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
[CrossRef]

L. Wang, C. Zhao, L. Wang, X. Lu, and S. Zhu, “Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere,” Opt. Lett. 32, 1393–1395 (2007).
[CrossRef]

2004 (2)

1999 (1)

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83, 4534–4537 (1999).
[CrossRef]

1996 (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

1994 (1)

F. Gori, “Flattened Gaussian beams,” Opt. Commun. 107, 335–341 (1994).
[CrossRef]

1986 (1)

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Aoki, N.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 3645–3649 (2012).
[CrossRef]

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

Ashkin, A.

Auñón, J. M.

Bjorkholm, J. E.

Borghi, R.

Cai, Y.

Chen, C.-H.

Chen, H.

Chen, Z.

Christodoulides, D. N.

Chu, S.

Ding, B.

Y. Zhang, B. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010).
[CrossRef]

Ding, J.

Dziedzic, J. M.

Efremidis, N. K.

Eyyuboglu, H. T.

Gori, F.

F. Gori, “Flattened Gaussian beams,” Opt. Commun. 107, 335–341 (1994).
[CrossRef]

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

Hsieh, W.-F.

Huang, K.

Jiang, Y.

Kawata, S.

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83, 4534–4537 (1999).
[CrossRef]

Korotkova, O.

Liu, Z.

Lu, X.

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Mei, Z.

Z. Mei, O. Korotkova, and E. Shchepakina, “Electromagnetic multi-Gaussian Schell-model beams,” J. Opt. 15, 025705 (2013).
[CrossRef]

Mills, M. S.

Miyamoto, K.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 3645–3649 (2012).
[CrossRef]

Morita, R.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 3645–3649 (2012).
[CrossRef]

Nieto-Vesperinas, M.

Okamoto, K.

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83, 4534–4537 (1999).
[CrossRef]

Omatsu, T.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 3645–3649 (2012).
[CrossRef]

Prakash, J.

Pu, J.

Sahin, S.

Shchepakina, E.

Z. Mei, O. Korotkova, and E. Shchepakina, “Electromagnetic multi-Gaussian Schell-model beams,” J. Opt. 15, 025705 (2013).
[CrossRef]

O. Korotkova, S. Sahin, and E. Shchepakina, “Multi-Gaussian Schell-model beams,” J. Opt. Soc. Am. A 29, 2159–2163 (2012).
[CrossRef]

Shu, J.

Suyama, T.

Y. Zhang, B. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010).
[CrossRef]

Tai, P.-T.

Tian, J. G.

Toyoda, K.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 3645–3649 (2012).
[CrossRef]

Wang, H.

Wang, L.

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Yan, S.

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
[CrossRef]

Yang, Y.

Yao, B.

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
[CrossRef]

Zhan, Q.

Zhang, B.

Zhang, P.

Zhang, W. P.

Zhang, Y.

Y. Zhang and D. Zhao, “Scattering of multi-Gaussian Schell-model beams on a random medium,” Opt. Express 21, 24781–24792 (2013).
[CrossRef]

Y. Zhang, B. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010).
[CrossRef]

Zhang, Z.

Zhao, C.

Zhao, D.

Zhao, Z. Y.

Zheng, Z.

Zhu, S.

Appl. Opt. (3)

J. Opt. (1)

Z. Mei, O. Korotkova, and E. Shchepakina, “Electromagnetic multi-Gaussian Schell-model beams,” J. Opt. 15, 025705 (2013).
[CrossRef]

J. Opt. Soc. Am. A (4)

Nano Lett. (1)

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 3645–3649 (2012).
[CrossRef]

Opt. Commun. (2)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

F. Gori, “Flattened Gaussian beams,” Opt. Commun. 107, 335–341 (1994).
[CrossRef]

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. A (2)

S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007).
[CrossRef]

Y. Zhang, B. Ding, and T. Suyama, “Trapping two types of particles using a double-ring-shaped radially polarized beam,” Phys. Rev. A 81, 023831 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett. 83, 4534–4537 (1999).
[CrossRef]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[CrossRef]

Other (1)

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of a MGSM beam through the focusing optical system.

Fig. 2.
Fig. 2.

(a) Intensity distribution for different values of M at the focal plane. (b) Two-dimensional intensity distribution for M=30.

Fig. 3.
Fig. 3.

Effect of index M on the radiation force of the MGSM beam at the focal plane: (a) Fgrad,xm; (b) Fgrad,zm; and (c) Fscam.

Fig. 4.
Fig. 4.

Dependence of the radiation force of the MGSM beam at the focal plane on the coherence width δ, M=30: (a) Fgrad,xm; (b) Fgrad,zm; and (c) Fscam.

Fig. 5.
Fig. 5.

Comparison of Fgrad,xm, Fgrad,zm, Fscam, and Fb (a) with different M, δ=2mm; (b) with different δ, M=30; and (c) with different particle radius a, M=30.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

W(0)(ρ10,ρ20)=I0exp[ρ102+ρ2024σ2]1C0m=1M(Mm)(1)m1mexp[|ρ20ρ10|22mδ2],
W(ρ1,ρ2,z)=I0C0m=1M(1)m1mM(Mm)1Δexp(ρ12+ρ224Δσ2)exp(|ρ2ρ1|22mΔδ2)exp[ik(ρ22ρ12)2R],
Iout(ρ,z)=W(ρ,ρ,z).
[ABCD]=[1z01][101/f1]=[1z/fz1/f1].
F⃗sca(ρ,z)=e⃗znmαIout/c,
Fgrad(ρ⃗,z)=2πnmβIout/c,
F⃗sca(ρ,z)=e⃗znmαP2πσ2cC0m=1M(1)m1m(Mm)1Δexp(ρ22Δσ2),
F⃗grad,x(ρ,z)=e⃗xnmβPσ2cC0m=1M(1)m1m(Mm)xΔ2σ2exp(ρ22Δσ2),
F⃗grad,z(ρ,z)=e⃗znmβPσ2cC0m=1M(1)m1m(Mm)1Δ2[2AC+2B4σ4k2(1+4σ2mδ2)](1ρ22σ2)exp(ρ22Δσ2).
ξ=z0=f1+1C0m=1M(1)m1m(Mm)g02f2,
|Fgrad,xm(±g0fσ1+g02f2,ξ)|=nmβPσ2cC0m=1M(Mm)(1)m1m2(1+g02f2)3/2(g0f)3σ1e,
|Fgrad,zm(0,ξ(1±3g0f3))|=nmβPσ2cC0m=1M(Mm)(1)m1m33(1+g02f2)28g03f4,
|Fscam(0,ξ(1±3g0f3))|=nmαP2πσ2cC0m=1M(Mm)(1)m1m3(1+g02f2)4g02f2.
|FB|=(12πκakBT)1/2,

Metrics