K. Ishizuka, “Phase retrieval from image intensities: why does exit wave restoration using IWFR work so well?” Microscopy 62, S109–S118 (2013).

[CrossRef]

J. Li, C. Yuan, P. Tankam, and P. Picart, “The calculation research of classical diffraction formulas in convolution form,” Opt. Commun. 284, 3202–3206 (2011).

[CrossRef]

A. Migukin, V. Katkovnik, and J. Astola, “Wave field reconstruction from multiple plane intensity-only data: augmented Lagrangian algorithm,” J. Opt. Soc. Am. A 28, 993–1002 (2011).

[CrossRef]

L. L. Huang, L. Xiao, and Z. H. Wei, “Efficient and effective total variation image super-resolution: a preconditioned operator splitting approach,” Math. Probl. Eng. 2011, 1–20 (2011).

[CrossRef]

A. Borkowski, Z. Zalevsky, E. Marom, and B. Javidi, “Enhanced geometrical superresolved imaging with moving binary random mask,” J. Opt. Soc. Am. A 28, 566–575 (2011).

[CrossRef]

O. Fixler and Z. Zalevsky, “Geometrically superresolved lensless imaging using a spatial light modulator,” Appl. Opt. 50, 5662–5673 (2011).

[CrossRef]

Y. Rivenson and A. Stern, “Conditions for practicing compressive Fresnel holography,” Opt. Lett. 36, 3365–3367 (2011).

[CrossRef]

V. Katkovnik, A. Migukin, and J. Astola, “Backward discrete wavefield propagation modeling as an inverse problem: toward perfect reconstruction of wavefield distributions,” Appl. Opt. 48, 3407–3423 (2009).

[CrossRef]

P. Chatterjee, S. Mukherjee, S. Chaudhuri, and G. Seetharaman, “Application of Papoulis–Gerchberg method in image super-resolution and inpainting,” Comp. J. 52, 80–89 (2009).

A. Borkowski, Z. Zalevsky, and B. Javidi, “Geometrical superresolved imaging using nonperiodic spatial masking,” J. Opt. Soc. Am. A 26, 589–601 (2009).

[CrossRef]

H. Xiaojun, L. Shengyi, and W. Yulie, “Resolution-enhanced subpixel phase retrieval method,” Appl. Opt. 47, 6079–6087 (2008).

[CrossRef]

V. Katkovnik, J. Astola, and K. Egiazarian, “Discrete diffraction transform for propagation, reconstruction, and design of wavefield distributions,” Appl. Opt. 47, 3481–3493 (2008).

[CrossRef]

J. Li and C. Li, “Algorithm study of Collins formula and inverse Collins Formula,” Appl. Opt. 47, A97–A102 (2008).

[CrossRef]

J. Li, Z. Peng, and Y. Fu, “Diffraction transfer function and its calculation of classic diffraction formula,” Opt. Commun. 280, 243–248 (2007).

[CrossRef]

W. K. Ching, M. K. Ng, K. N. Sze, and A. C. Yau, “Super‐resolution image reconstruction using multisensors,” Numerical Linear Algebra with Applications 12, 271–281 (2005).

L. J. Allen, W. McBride, N. L. O’Leary, and M. P. Oxley, “Exit wave reconstruction at atomic resolution,” Ultramicroscopy 100, 91–104 (2004).

[CrossRef]

J. Li, Z. Fan, and Y. Fu, “FFT calculation for Fresnel diffraction and energy conservation criterion of sampling quality,” Proc. SPIE 4915, 180 (2002).

[CrossRef]

S. B. Tucker, J. Ojeda-Castañeda, and W. T. Cathey, “Matrix description of near-field diffraction and the fractional Fourier transform,” J. Opt. Soc. Am. A 16, 316–322 (1999).

[CrossRef]

M. K. Ng, R. H. Chan, and W. C. Tang, “A fast algorithm for deblurring models with Neumann boundary conditions,” SIAM J. Sci. Comput. 21, 851–866 (1999).

[CrossRef]

I. Aizenberg and J. Astola, “Discrete generalized Fresnel functions and transforms in an arbitrary discrete basis,” IEEE Trans. Signal Process. 54, 4261–4270 (2006).

[CrossRef]

L. J. Allen, W. McBride, N. L. O’Leary, and M. P. Oxley, “Exit wave reconstruction at atomic resolution,” Ultramicroscopy 100, 91–104 (2004).

[CrossRef]

A. Migukin, V. Katkovnik, and J. Astola, “Wave field reconstruction from multiple plane intensity-only data: augmented Lagrangian algorithm,” J. Opt. Soc. Am. A 28, 993–1002 (2011).

[CrossRef]

V. Katkovnik, A. Migukin, and J. Astola, “Backward discrete wavefield propagation modeling as an inverse problem: toward perfect reconstruction of wavefield distributions,” Appl. Opt. 48, 3407–3423 (2009).

[CrossRef]

V. Katkovnik, J. Astola, and K. Egiazarian, “Discrete diffraction transform for propagation, reconstruction, and design of wavefield distributions,” Appl. Opt. 47, 3481–3493 (2008).

[CrossRef]

I. Aizenberg and J. Astola, “Discrete generalized Fresnel functions and transforms in an arbitrary discrete basis,” IEEE Trans. Signal Process. 54, 4261–4270 (2006).

[CrossRef]

A. Borkowski, Z. Zalevsky, E. Marom, and B. Javidi, “Enhanced geometrical superresolved imaging with moving binary random mask,” J. Opt. Soc. Am. A 28, 566–575 (2011).

[CrossRef]

A. Borkowski, Z. Zalevsky, and B. Javidi, “Geometrical superresolved imaging using nonperiodic spatial masking,” J. Opt. Soc. Am. A 26, 589–601 (2009).

[CrossRef]

N. K. Bose, S. Lertrattanapanich, and J. Koo, “Advances in superresolution using L-curve,” in IEEE International Symposium on Circuits and Systems (IEEE, 2001), pp. 433–436.

M. K. Ng, R. H. Chan, and W. C. Tang, “A fast algorithm for deblurring models with Neumann boundary conditions,” SIAM J. Sci. Comput. 21, 851–866 (1999).

[CrossRef]

P. Chatterjee, S. Mukherjee, S. Chaudhuri, and G. Seetharaman, “Application of Papoulis–Gerchberg method in image super-resolution and inpainting,” Comp. J. 52, 80–89 (2009).

P. Chatterjee, S. Mukherjee, S. Chaudhuri, and G. Seetharaman, “Application of Papoulis–Gerchberg method in image super-resolution and inpainting,” Comp. J. 52, 80–89 (2009).

W. K. Ching, M. K. Ng, K. N. Sze, and A. C. Yau, “Super‐resolution image reconstruction using multisensors,” Numerical Linear Algebra with Applications 12, 271–281 (2005).

J. Li, Z. Fan, and Y. Fu, “FFT calculation for Fresnel diffraction and energy conservation criterion of sampling quality,” Proc. SPIE 4915, 180 (2002).

[CrossRef]

J. Li, Z. Peng, and Y. Fu, “Diffraction transfer function and its calculation of classic diffraction formula,” Opt. Commun. 280, 243–248 (2007).

[CrossRef]

J. Li, Z. Fan, and Y. Fu, “FFT calculation for Fresnel diffraction and energy conservation criterion of sampling quality,” Proc. SPIE 4915, 180 (2002).

[CrossRef]

L. L. Huang, L. Xiao, and Z. H. Wei, “Efficient and effective total variation image super-resolution: a preconditioned operator splitting approach,” Math. Probl. Eng. 2011, 1–20 (2011).

[CrossRef]

K. Ishizuka, “Phase retrieval from image intensities: why does exit wave restoration using IWFR work so well?” Microscopy 62, S109–S118 (2013).

[CrossRef]

P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating minimization,” in Advances in Neural Information Processing Systems (2013), pp. 2796–2804.

A. Borkowski, Z. Zalevsky, E. Marom, and B. Javidi, “Enhanced geometrical superresolved imaging with moving binary random mask,” J. Opt. Soc. Am. A 28, 566–575 (2011).

[CrossRef]

A. Borkowski, Z. Zalevsky, and B. Javidi, “Geometrical superresolved imaging using nonperiodic spatial masking,” J. Opt. Soc. Am. A 26, 589–601 (2009).

[CrossRef]

A. Migukin, V. Katkovnik, and J. Astola, “Wave field reconstruction from multiple plane intensity-only data: augmented Lagrangian algorithm,” J. Opt. Soc. Am. A 28, 993–1002 (2011).

[CrossRef]

V. Katkovnik, A. Migukin, and J. Astola, “Backward discrete wavefield propagation modeling as an inverse problem: toward perfect reconstruction of wavefield distributions,” Appl. Opt. 48, 3407–3423 (2009).

[CrossRef]

V. Katkovnik, J. Astola, and K. Egiazarian, “Discrete diffraction transform for propagation, reconstruction, and design of wavefield distributions,” Appl. Opt. 47, 3481–3493 (2008).

[CrossRef]

N. K. Bose, S. Lertrattanapanich, and J. Koo, “Advances in superresolution using L-curve,” in IEEE International Symposium on Circuits and Systems (IEEE, 2001), pp. 433–436.

N. K. Bose, S. Lertrattanapanich, and J. Koo, “Advances in superresolution using L-curve,” in IEEE International Symposium on Circuits and Systems (IEEE, 2001), pp. 433–436.

J. Li, C. Yuan, P. Tankam, and P. Picart, “The calculation research of classical diffraction formulas in convolution form,” Opt. Commun. 284, 3202–3206 (2011).

[CrossRef]

J. Li and C. Li, “Algorithm study of Collins formula and inverse Collins Formula,” Appl. Opt. 47, A97–A102 (2008).

[CrossRef]

J. Li, Z. Peng, and Y. Fu, “Diffraction transfer function and its calculation of classic diffraction formula,” Opt. Commun. 280, 243–248 (2007).

[CrossRef]

J. Li, Z. Fan, and Y. Fu, “FFT calculation for Fresnel diffraction and energy conservation criterion of sampling quality,” Proc. SPIE 4915, 180 (2002).

[CrossRef]

L. J. Allen, W. McBride, N. L. O’Leary, and M. P. Oxley, “Exit wave reconstruction at atomic resolution,” Ultramicroscopy 100, 91–104 (2004).

[CrossRef]

A. Migukin, V. Katkovnik, and J. Astola, “Wave field reconstruction from multiple plane intensity-only data: augmented Lagrangian algorithm,” J. Opt. Soc. Am. A 28, 993–1002 (2011).

[CrossRef]

V. Katkovnik, A. Migukin, and J. Astola, “Backward discrete wavefield propagation modeling as an inverse problem: toward perfect reconstruction of wavefield distributions,” Appl. Opt. 48, 3407–3423 (2009).

[CrossRef]

P. Chatterjee, S. Mukherjee, S. Chaudhuri, and G. Seetharaman, “Application of Papoulis–Gerchberg method in image super-resolution and inpainting,” Comp. J. 52, 80–89 (2009).

P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating minimization,” in Advances in Neural Information Processing Systems (2013), pp. 2796–2804.

W. K. Ching, M. K. Ng, K. N. Sze, and A. C. Yau, “Super‐resolution image reconstruction using multisensors,” Numerical Linear Algebra with Applications 12, 271–281 (2005).

M. K. Ng, R. H. Chan, and W. C. Tang, “A fast algorithm for deblurring models with Neumann boundary conditions,” SIAM J. Sci. Comput. 21, 851–866 (1999).

[CrossRef]

L. J. Allen, W. McBride, N. L. O’Leary, and M. P. Oxley, “Exit wave reconstruction at atomic resolution,” Ultramicroscopy 100, 91–104 (2004).

[CrossRef]

L. J. Allen, W. McBride, N. L. O’Leary, and M. P. Oxley, “Exit wave reconstruction at atomic resolution,” Ultramicroscopy 100, 91–104 (2004).

[CrossRef]

J. Li, Z. Peng, and Y. Fu, “Diffraction transfer function and its calculation of classic diffraction formula,” Opt. Commun. 280, 243–248 (2007).

[CrossRef]

J. Li, C. Yuan, P. Tankam, and P. Picart, “The calculation research of classical diffraction formulas in convolution form,” Opt. Commun. 284, 3202–3206 (2011).

[CrossRef]

P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating minimization,” in Advances in Neural Information Processing Systems (2013), pp. 2796–2804.

P. Chatterjee, S. Mukherjee, S. Chaudhuri, and G. Seetharaman, “Application of Papoulis–Gerchberg method in image super-resolution and inpainting,” Comp. J. 52, 80–89 (2009).

W. K. Ching, M. K. Ng, K. N. Sze, and A. C. Yau, “Super‐resolution image reconstruction using multisensors,” Numerical Linear Algebra with Applications 12, 271–281 (2005).

M. K. Ng, R. H. Chan, and W. C. Tang, “A fast algorithm for deblurring models with Neumann boundary conditions,” SIAM J. Sci. Comput. 21, 851–866 (1999).

[CrossRef]

J. Li, C. Yuan, P. Tankam, and P. Picart, “The calculation research of classical diffraction formulas in convolution form,” Opt. Commun. 284, 3202–3206 (2011).

[CrossRef]

L. L. Huang, L. Xiao, and Z. H. Wei, “Efficient and effective total variation image super-resolution: a preconditioned operator splitting approach,” Math. Probl. Eng. 2011, 1–20 (2011).

[CrossRef]

C. Xiao, J. Yu, and Y. Xue, “A high-efficiency super-resolution reconstruction algorithm from image/video sequences,” in Third International IEEE Conference on Signal-Image Technologies and Internet-Based System (IEEE, 2007), pp. 573–580.

L. L. Huang, L. Xiao, and Z. H. Wei, “Efficient and effective total variation image super-resolution: a preconditioned operator splitting approach,” Math. Probl. Eng. 2011, 1–20 (2011).

[CrossRef]

C. Xiao, J. Yu, and Y. Xue, “A high-efficiency super-resolution reconstruction algorithm from image/video sequences,” in Third International IEEE Conference on Signal-Image Technologies and Internet-Based System (IEEE, 2007), pp. 573–580.

L. P. Yaroslavsky, Digital Holography and Digital Image Processing (Kluwer Academic, 2004).

W. K. Ching, M. K. Ng, K. N. Sze, and A. C. Yau, “Super‐resolution image reconstruction using multisensors,” Numerical Linear Algebra with Applications 12, 271–281 (2005).

C. Xiao, J. Yu, and Y. Xue, “A high-efficiency super-resolution reconstruction algorithm from image/video sequences,” in Third International IEEE Conference on Signal-Image Technologies and Internet-Based System (IEEE, 2007), pp. 573–580.

J. Li, C. Yuan, P. Tankam, and P. Picart, “The calculation research of classical diffraction formulas in convolution form,” Opt. Commun. 284, 3202–3206 (2011).

[CrossRef]

O. Fixler and Z. Zalevsky, “Geometrically superresolved lensless imaging using a spatial light modulator,” Appl. Opt. 50, 5662–5673 (2011).

[CrossRef]

A. Borkowski, Z. Zalevsky, E. Marom, and B. Javidi, “Enhanced geometrical superresolved imaging with moving binary random mask,” J. Opt. Soc. Am. A 28, 566–575 (2011).

[CrossRef]

A. Borkowski, Z. Zalevsky, and B. Javidi, “Geometrical superresolved imaging using nonperiodic spatial masking,” J. Opt. Soc. Am. A 26, 589–601 (2009).

[CrossRef]

H. Xiaojun, L. Shengyi, and W. Yulie, “Resolution-enhanced subpixel phase retrieval method,” Appl. Opt. 47, 6079–6087 (2008).

[CrossRef]

V. Katkovnik, A. Migukin, and J. Astola, “Backward discrete wavefield propagation modeling as an inverse problem: toward perfect reconstruction of wavefield distributions,” Appl. Opt. 48, 3407–3423 (2009).

[CrossRef]

V. Katkovnik, J. Astola, and K. Egiazarian, “Discrete diffraction transform for propagation, reconstruction, and design of wavefield distributions,” Appl. Opt. 47, 3481–3493 (2008).

[CrossRef]

O. Fixler and Z. Zalevsky, “Geometrically superresolved lensless imaging using a spatial light modulator,” Appl. Opt. 50, 5662–5673 (2011).

[CrossRef]

J. Li and C. Li, “Algorithm study of Collins formula and inverse Collins Formula,” Appl. Opt. 47, A97–A102 (2008).

[CrossRef]

P. Almoro, G. Pedrini, and W. Osten, “Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field,” Appl. Opt. 45, 8596–8605, (2006).

[CrossRef]

P. Chatterjee, S. Mukherjee, S. Chaudhuri, and G. Seetharaman, “Application of Papoulis–Gerchberg method in image super-resolution and inpainting,” Comp. J. 52, 80–89 (2009).

I. Aizenberg and J. Astola, “Discrete generalized Fresnel functions and transforms in an arbitrary discrete basis,” IEEE Trans. Signal Process. 54, 4261–4270 (2006).

[CrossRef]

S. B. Tucker, J. Ojeda-Castañeda, and W. T. Cathey, “Matrix description of near-field diffraction and the fractional Fourier transform,” J. Opt. Soc. Am. A 16, 316–322 (1999).

[CrossRef]

A. Borkowski, Z. Zalevsky, and B. Javidi, “Geometrical superresolved imaging using nonperiodic spatial masking,” J. Opt. Soc. Am. A 26, 589–601 (2009).

[CrossRef]

A. Borkowski, Z. Zalevsky, E. Marom, and B. Javidi, “Enhanced geometrical superresolved imaging with moving binary random mask,” J. Opt. Soc. Am. A 28, 566–575 (2011).

[CrossRef]

A. Migukin, V. Katkovnik, and J. Astola, “Wave field reconstruction from multiple plane intensity-only data: augmented Lagrangian algorithm,” J. Opt. Soc. Am. A 28, 993–1002 (2011).

[CrossRef]

L. L. Huang, L. Xiao, and Z. H. Wei, “Efficient and effective total variation image super-resolution: a preconditioned operator splitting approach,” Math. Probl. Eng. 2011, 1–20 (2011).

[CrossRef]

K. Ishizuka, “Phase retrieval from image intensities: why does exit wave restoration using IWFR work so well?” Microscopy 62, S109–S118 (2013).

[CrossRef]

W. K. Ching, M. K. Ng, K. N. Sze, and A. C. Yau, “Super‐resolution image reconstruction using multisensors,” Numerical Linear Algebra with Applications 12, 271–281 (2005).

J. Li, Z. Peng, and Y. Fu, “Diffraction transfer function and its calculation of classic diffraction formula,” Opt. Commun. 280, 243–248 (2007).

[CrossRef]

J. Li, C. Yuan, P. Tankam, and P. Picart, “The calculation research of classical diffraction formulas in convolution form,” Opt. Commun. 284, 3202–3206 (2011).

[CrossRef]

J. Li, Z. Fan, and Y. Fu, “FFT calculation for Fresnel diffraction and energy conservation criterion of sampling quality,” Proc. SPIE 4915, 180 (2002).

[CrossRef]

M. K. Ng, R. H. Chan, and W. C. Tang, “A fast algorithm for deblurring models with Neumann boundary conditions,” SIAM J. Sci. Comput. 21, 851–866 (1999).

[CrossRef]

L. J. Allen, W. McBride, N. L. O’Leary, and M. P. Oxley, “Exit wave reconstruction at atomic resolution,” Ultramicroscopy 100, 91–104 (2004).

[CrossRef]

P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating minimization,” in Advances in Neural Information Processing Systems (2013), pp. 2796–2804.

C. Xiao, J. Yu, and Y. Xue, “A high-efficiency super-resolution reconstruction algorithm from image/video sequences,” in Third International IEEE Conference on Signal-Image Technologies and Internet-Based System (IEEE, 2007), pp. 573–580.

N. K. Bose, S. Lertrattanapanich, and J. Koo, “Advances in superresolution using L-curve,” in IEEE International Symposium on Circuits and Systems (IEEE, 2001), pp. 433–436.

L. P. Yaroslavsky, Digital Holography and Digital Image Processing (Kluwer Academic, 2004).