Abstract

This work proposes a modularized framework for designing the structure of photonic crystal waveguides (PCWs) and reducing human involvement during the design process. The proposed framework consists of three main modules: parameters module, constraints module, and optimizer module. The first module is responsible for defining the structural parameters of a given PCW. The second module defines various limitations in order to achieve desirable optimum designs. The third module is the optimizer, in which a numerical optimization method is employed to perform optimization. As case studies, two new structures called Ellipse PCW (EPCW) and Hypoellipse PCW (HPCW) with different shape of holes in each row are proposed and optimized by the framework. The calculation results show that the proposed framework is able to successfully optimize the structures of the new EPCW and HPCW. In addition, the results demonstrate the applicability of the proposed framework for optimizing different PCWs. The results of the comparative study show that the optimized EPCW and HPCW provide 18% and 9% significant improvements in normalized delay-bandwidth product (NDBP), respectively, compared to the ring-shape-hole PCW, which has the highest NDBP in the literature. Finally, the simulations of pulse propagation confirm the manufacturing feasibility of both optimized structures.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
    [CrossRef]
  2. Y. Okawachi, M. Foster, J. Sharping, A. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14, 2317–2322 (2006).
    [CrossRef]
  3. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
    [CrossRef]
  4. A. Hosseini, D. Kwong, H. Subbaraman, and R. T. Chen, “Low dispersion slow light in silicon-on-insulator photonic crystal waveguide,” Proc. SPIE 7609, 76091A (2010).
  5. J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
    [CrossRef]
  6. L. H. L. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
    [CrossRef]
  7. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [CrossRef]
  8. F.-C. Leng, W.-Y. Liang, B. Liu, T.-B. Wang, and H.-Z. Wang, “Wideband slow light and dispersion control in oblique lattice photonic crystal waveguides,” Opt. Express 18, 5707–5712 (2010).
    [CrossRef]
  9. E. Cassan, H. Kurt, X. Le roux, D. Marris-Morini, and L. Vivien, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
    [CrossRef]
  10. M. Pu, L. Yang, and L. Fradsen, “Topology-optimized slow-light couplers for ring-shaped photonic crystal waveguide,” Opt. Fiber Technol. 1, 10–12 (2010).
  11. A. Säynätjoki, M. Mulot, K. Vynck, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Properties, applications and fabrication of photonic crystals with ring-shaped holes in silicon-on-insulator,” Photon. Nanostr. Fundam. Appl. 6, 42–46 (2008).
  12. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007).
    [CrossRef]
  13. A. Säynätjoki, K. Vynck, M. Mulot, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Efficient light coupling into a photonic crystal waveguide with flatband slow mode,” Photon. Nanostr. Fundam. Appl. 6, 127–133 (2008).
  14. J. Wu, Y. Li, C. Peng, and Z. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
    [CrossRef]
  15. J. Wu, Y. Li, C. Peng, and Z. Wang, “Numerical demonstration of slow light tuning in slotted photonic crystal waveguide using microfluidic infiltration,” Opt. Commun. 284, 2149–2152 (2011).
    [CrossRef]
  16. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Slotted photonic crystal waveguides and cavities for slow light and sensing applications,” in 2008 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 228–230.
  17. B. Liu, T. Wang, J. Tang, X. Li, C. Dong, and Y. He, “Wideband slow light with low dispersion in asymmetric slotted photonic crystal waveguides,” Appl. Opt. 52, 8394–8401 (2013).
    [CrossRef]
  18. C. Caer, X. Le Roux, V. K. Do, D. Marris-Morini, N. Izard, L. Vivien, D. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
    [CrossRef]
  19. S. M. Mirjalili, S. Mirjalili, A. Lewis, and K. Abedi, “A tri-objective particle swarm optimizer for designing line defect photonic crystal waveguides,” Photon. Nanostruct. 12, 152–163 (2013).
    [CrossRef]
  20. S. M. Mirjalili, K. Abedi, and S. Mirjalili, “Light property and optical buffer performance enhancement using particle swarm optimization in oblique ring-shape-hole photonic crystal waveguide,” in Photonics Global Conference (PGC) (2012), pp. 1–4.
  21. S. M. Mirjalili, K. Abedi, and S. Mirjalili, “Optical buffer performance enhancement using particle swarm optimization in ring-shape-hole photonic crystal waveguide,” Optik-Int. J. Light Electron Opt. 124, 5989–5993 (2013).
  22. S. M. Mirjalili, S. Mirjalili, and A. Lewis, “A novel multi-objective optimization framework for designing photonic crystal waveguides,” IEEE Photon. Technol. Lett. 26, 146–149 (2013).
    [CrossRef]
  23. Y. Zhai, H. Tian, and Y. Ji, “Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide,” J. Lightwave Technol. 29, 3083–3090 (2011).
    [CrossRef]
  24. D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
    [CrossRef]
  25. C. Bao, J. Hou, H. Wu, and X. Zhou, “Low dispersion slow light in slot waveguide grating,” IEEE Photon. Technol. Lett. 23, 1700–1702 (2011).
    [CrossRef]
  26. J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
    [CrossRef]
  27. H. Kurt, K. Üstün, and L. Ayas, “Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides,” Opt. Express 18, 26965–26977 (2010).
    [CrossRef]
  28. H. Tian, X. Zhang, D. Yang, and Y. Ji, “Research on the dispersion compensation of slot photonic crystal waveguide,” Photon. Technol. Lett. 23, 1222–1224 (2011).
  29. I. Boussaïd, J. Lepagnot, and P. Siarry, “A survey on optimization metaheuristics,” Inf. Sci. 237, 82–117 (2013).
    [CrossRef]
  30. D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learning,” Mach. Learn. 3, 95–99 (1988).
    [CrossRef]
  31. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Nerual Netwroks (IEEE, 1995), pp. 1942–1948.
  32. S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf optimizer,” Adv. Eng. Softw. 69, 46–61 (2014).
    [CrossRef]
  33. M. Dorigo and G. Di Caro, “Ant colony optimization: a new meta-heuristic,” in Proceedings of the 1999 Congress on Evolutionary Computation (Cat. No. 99TH8406) (1999), Vol. 2.
  34. A. Gogna and A. Tayal, “Metaheuristics: review and application,” J. Exp. Theor. Artif. Intell. 25, 503–526 (2013).
    [CrossRef]
  35. S. M. Mirjalili and S. Mirjalili, “Oval-shaped-hole photonic crystal waveguide Design by MoMIR framework,” Photon. Technol. Lett. (In press).
  36. M. Janfaza and M. Mansouri-Birjandi, “Wideband slow light in photonic crystal slab waveguide based on geometry adjustment and optofluidic infiltration,” Appl. Opt. 52, 8184–8189 (2013).
    [CrossRef]
  37. Y. Xu, L. Xiang, E. Cassan, D. Gao, and X. Zhang, “Slow light in an alternative row of ellipse-hole photonic crystal waveguide,” Appl. Opt. 52, 2–7 (2013).
  38. J. Tang, T. Wang, X. Li, and B. Wang, “Wideband and low dispersion slow light in lattice-shifted photonic crystal waveguides,” J. Lightwave Technol. 31, 3188–3194 (2013).
    [CrossRef]

2014 (1)

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf optimizer,” Adv. Eng. Softw. 69, 46–61 (2014).
[CrossRef]

2013 (9)

A. Gogna and A. Tayal, “Metaheuristics: review and application,” J. Exp. Theor. Artif. Intell. 25, 503–526 (2013).
[CrossRef]

Y. Xu, L. Xiang, E. Cassan, D. Gao, and X. Zhang, “Slow light in an alternative row of ellipse-hole photonic crystal waveguide,” Appl. Opt. 52, 2–7 (2013).

J. Tang, T. Wang, X. Li, and B. Wang, “Wideband and low dispersion slow light in lattice-shifted photonic crystal waveguides,” J. Lightwave Technol. 31, 3188–3194 (2013).
[CrossRef]

M. Janfaza and M. Mansouri-Birjandi, “Wideband slow light in photonic crystal slab waveguide based on geometry adjustment and optofluidic infiltration,” Appl. Opt. 52, 8184–8189 (2013).
[CrossRef]

B. Liu, T. Wang, J. Tang, X. Li, C. Dong, and Y. He, “Wideband slow light with low dispersion in asymmetric slotted photonic crystal waveguides,” Appl. Opt. 52, 8394–8401 (2013).
[CrossRef]

S. M. Mirjalili, S. Mirjalili, A. Lewis, and K. Abedi, “A tri-objective particle swarm optimizer for designing line defect photonic crystal waveguides,” Photon. Nanostruct. 12, 152–163 (2013).
[CrossRef]

S. M. Mirjalili, K. Abedi, and S. Mirjalili, “Optical buffer performance enhancement using particle swarm optimization in ring-shape-hole photonic crystal waveguide,” Optik-Int. J. Light Electron Opt. 124, 5989–5993 (2013).

S. M. Mirjalili, S. Mirjalili, and A. Lewis, “A novel multi-objective optimization framework for designing photonic crystal waveguides,” IEEE Photon. Technol. Lett. 26, 146–149 (2013).
[CrossRef]

I. Boussaïd, J. Lepagnot, and P. Siarry, “A survey on optimization metaheuristics,” Inf. Sci. 237, 82–117 (2013).
[CrossRef]

2011 (6)

H. Tian, X. Zhang, D. Yang, and Y. Ji, “Research on the dispersion compensation of slot photonic crystal waveguide,” Photon. Technol. Lett. 23, 1222–1224 (2011).

D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

C. Bao, J. Hou, H. Wu, and X. Zhou, “Low dispersion slow light in slot waveguide grating,” IEEE Photon. Technol. Lett. 23, 1700–1702 (2011).
[CrossRef]

J. Wu, Y. Li, C. Peng, and Z. Wang, “Numerical demonstration of slow light tuning in slotted photonic crystal waveguide using microfluidic infiltration,” Opt. Commun. 284, 2149–2152 (2011).
[CrossRef]

C. Caer, X. Le Roux, V. K. Do, D. Marris-Morini, N. Izard, L. Vivien, D. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[CrossRef]

Y. Zhai, H. Tian, and Y. Ji, “Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide,” J. Lightwave Technol. 29, 3083–3090 (2011).
[CrossRef]

2010 (6)

F.-C. Leng, W.-Y. Liang, B. Liu, T.-B. Wang, and H.-Z. Wang, “Wideband slow light and dispersion control in oblique lattice photonic crystal waveguides,” Opt. Express 18, 5707–5712 (2010).
[CrossRef]

H. Kurt, K. Üstün, and L. Ayas, “Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides,” Opt. Express 18, 26965–26977 (2010).
[CrossRef]

A. Hosseini, D. Kwong, H. Subbaraman, and R. T. Chen, “Low dispersion slow light in silicon-on-insulator photonic crystal waveguide,” Proc. SPIE 7609, 76091A (2010).

E. Cassan, H. Kurt, X. Le roux, D. Marris-Morini, and L. Vivien, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

M. Pu, L. Yang, and L. Fradsen, “Topology-optimized slow-light couplers for ring-shaped photonic crystal waveguide,” Opt. Fiber Technol. 1, 10–12 (2010).

J. Wu, Y. Li, C. Peng, and Z. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

2009 (1)

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

2008 (5)

A. Säynätjoki, M. Mulot, K. Vynck, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Properties, applications and fabrication of photonic crystals with ring-shaped holes in silicon-on-insulator,” Photon. Nanostr. Fundam. Appl. 6, 42–46 (2008).

A. Säynätjoki, K. Vynck, M. Mulot, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Efficient light coupling into a photonic crystal waveguide with flatband slow mode,” Photon. Nanostr. Fundam. Appl. 6, 127–133 (2008).

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[CrossRef]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

2007 (1)

2006 (2)

2005 (1)

1988 (1)

D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learning,” Mach. Learn. 3, 95–99 (1988).
[CrossRef]

Abedi, K.

S. M. Mirjalili, S. Mirjalili, A. Lewis, and K. Abedi, “A tri-objective particle swarm optimizer for designing line defect photonic crystal waveguides,” Photon. Nanostruct. 12, 152–163 (2013).
[CrossRef]

S. M. Mirjalili, K. Abedi, and S. Mirjalili, “Optical buffer performance enhancement using particle swarm optimization in ring-shape-hole photonic crystal waveguide,” Optik-Int. J. Light Electron Opt. 124, 5989–5993 (2013).

S. M. Mirjalili, K. Abedi, and S. Mirjalili, “Light property and optical buffer performance enhancement using particle swarm optimization in oblique ring-shape-hole photonic crystal waveguide,” in Photonics Global Conference (PGC) (2012), pp. 1–4.

Ahopelto, J.

A. Säynätjoki, M. Mulot, K. Vynck, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Properties, applications and fabrication of photonic crystals with ring-shaped holes in silicon-on-insulator,” Photon. Nanostr. Fundam. Appl. 6, 42–46 (2008).

A. Säynätjoki, K. Vynck, M. Mulot, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Efficient light coupling into a photonic crystal waveguide with flatband slow mode,” Photon. Nanostr. Fundam. Appl. 6, 127–133 (2008).

A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007).
[CrossRef]

Ayas, L.

Baba, T.

Bao, C.

C. Bao, J. Hou, H. Wu, and X. Zhou, “Low dispersion slow light in slot waveguide grating,” IEEE Photon. Technol. Lett. 23, 1700–1702 (2011).
[CrossRef]

Borel, P. I.

Boussaïd, I.

I. Boussaïd, J. Lepagnot, and P. Siarry, “A survey on optimization metaheuristics,” Inf. Sci. 237, 82–117 (2013).
[CrossRef]

Caer, C.

C. Caer, X. Le Roux, V. K. Do, D. Marris-Morini, N. Izard, L. Vivien, D. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[CrossRef]

Cassagne, D.

A. Säynätjoki, M. Mulot, K. Vynck, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Properties, applications and fabrication of photonic crystals with ring-shaped holes in silicon-on-insulator,” Photon. Nanostr. Fundam. Appl. 6, 42–46 (2008).

A. Säynätjoki, K. Vynck, M. Mulot, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Efficient light coupling into a photonic crystal waveguide with flatband slow mode,” Photon. Nanostr. Fundam. Appl. 6, 127–133 (2008).

Cassan, E.

Y. Xu, L. Xiang, E. Cassan, D. Gao, and X. Zhang, “Slow light in an alternative row of ellipse-hole photonic crystal waveguide,” Appl. Opt. 52, 2–7 (2013).

C. Caer, X. Le Roux, V. K. Do, D. Marris-Morini, N. Izard, L. Vivien, D. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[CrossRef]

E. Cassan, H. Kurt, X. Le roux, D. Marris-Morini, and L. Vivien, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

Chen, R. T.

A. Hosseini, D. Kwong, H. Subbaraman, and R. T. Chen, “Low dispersion slow light in silicon-on-insulator photonic crystal waveguide,” Proc. SPIE 7609, 76091A (2010).

Chen, S.

D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Di Caro, G.

M. Dorigo and G. Di Caro, “Ant colony optimization: a new meta-heuristic,” in Proceedings of the 1999 Congress on Evolutionary Computation (Cat. No. 99TH8406) (1999), Vol. 2.

Di Falco, A.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Slotted photonic crystal waveguides and cavities for slow light and sensing applications,” in 2008 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 228–230.

Do, V. K.

C. Caer, X. Le Roux, V. K. Do, D. Marris-Morini, N. Izard, L. Vivien, D. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[CrossRef]

Dong, C.

Dorigo, M.

M. Dorigo and G. Di Caro, “Ant colony optimization: a new meta-heuristic,” in Proceedings of the 1999 Congress on Evolutionary Computation (Cat. No. 99TH8406) (1999), Vol. 2.

Eberhart, R.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Nerual Netwroks (IEEE, 1995), pp. 1942–1948.

Fage-Pedersen, J.

Foster, M.

Fradsen, L.

M. Pu, L. Yang, and L. Fradsen, “Topology-optimized slow-light couplers for ring-shaped photonic crystal waveguide,” Opt. Fiber Technol. 1, 10–12 (2010).

Frandsen, L. H. L.

Gaeta, A.

Gao, D.

Y. Xu, L. Xiang, E. Cassan, D. Gao, and X. Zhang, “Slow light in an alternative row of ellipse-hole photonic crystal waveguide,” Appl. Opt. 52, 2–7 (2013).

C. Caer, X. Le Roux, V. K. Do, D. Marris-Morini, N. Izard, L. Vivien, D. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[CrossRef]

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

Gogna, A.

A. Gogna and A. Tayal, “Metaheuristics: review and application,” J. Exp. Theor. Artif. Intell. 25, 503–526 (2013).
[CrossRef]

Goldberg, D. E.

D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learning,” Mach. Learn. 3, 95–99 (1988).
[CrossRef]

Gomez-Iglesias, A.

Han, J.

D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Hao, R.

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

He, Y.

Holland, J. H.

D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learning,” Mach. Learn. 3, 95–99 (1988).
[CrossRef]

Hosseini, A.

A. Hosseini, D. Kwong, H. Subbaraman, and R. T. Chen, “Low dispersion slow light in silicon-on-insulator photonic crystal waveguide,” Proc. SPIE 7609, 76091A (2010).

Hou, J.

C. Bao, J. Hou, H. Wu, and X. Zhou, “Low dispersion slow light in slot waveguide grating,” IEEE Photon. Technol. Lett. 23, 1700–1702 (2011).
[CrossRef]

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

Hou, S.

D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Izard, N.

C. Caer, X. Le Roux, V. K. Do, D. Marris-Morini, N. Izard, L. Vivien, D. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[CrossRef]

Janfaza, M.

Ji, Y.

Y. Zhai, H. Tian, and Y. Ji, “Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide,” J. Lightwave Technol. 29, 3083–3090 (2011).
[CrossRef]

H. Tian, X. Zhang, D. Yang, and Y. Ji, “Research on the dispersion compensation of slot photonic crystal waveguide,” Photon. Technol. Lett. 23, 1222–1224 (2011).

Jiang, C.

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[CrossRef]

Kennedy, J.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Nerual Netwroks (IEEE, 1995), pp. 1942–1948.

Krauss, T. F.

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Slotted photonic crystal waveguides and cavities for slow light and sensing applications,” in 2008 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 228–230.

Kurt, H.

H. Kurt, K. Üstün, and L. Ayas, “Study of different spectral regions and delay bandwidth relation in slow light photonic crystal waveguides,” Opt. Express 18, 26965–26977 (2010).
[CrossRef]

E. Cassan, H. Kurt, X. Le roux, D. Marris-Morini, and L. Vivien, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

Kwong, D.

A. Hosseini, D. Kwong, H. Subbaraman, and R. T. Chen, “Low dispersion slow light in silicon-on-insulator photonic crystal waveguide,” Proc. SPIE 7609, 76091A (2010).

Lavrinenko, A. V.

Le Roux, X.

C. Caer, X. Le Roux, V. K. Do, D. Marris-Morini, N. Izard, L. Vivien, D. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[CrossRef]

E. Cassan, H. Kurt, X. Le roux, D. Marris-Morini, and L. Vivien, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

Lei, J.

D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Leng, F.-C.

Lepagnot, J.

I. Boussaïd, J. Lepagnot, and P. Siarry, “A survey on optimization metaheuristics,” Inf. Sci. 237, 82–117 (2013).
[CrossRef]

Lewis, A.

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf optimizer,” Adv. Eng. Softw. 69, 46–61 (2014).
[CrossRef]

S. M. Mirjalili, S. Mirjalili, and A. Lewis, “A novel multi-objective optimization framework for designing photonic crystal waveguides,” IEEE Photon. Technol. Lett. 26, 146–149 (2013).
[CrossRef]

S. M. Mirjalili, S. Mirjalili, A. Lewis, and K. Abedi, “A tri-objective particle swarm optimizer for designing line defect photonic crystal waveguides,” Photon. Nanostruct. 12, 152–163 (2013).
[CrossRef]

Li, J.

Li, X.

Li, Y.

J. Wu, Y. Li, C. Peng, and Z. Wang, “Numerical demonstration of slow light tuning in slotted photonic crystal waveguide using microfluidic infiltration,” Opt. Commun. 284, 2149–2152 (2011).
[CrossRef]

J. Wu, Y. Li, C. Peng, and Z. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

Liang, W.-Y.

Lipsanen, H.

A. Säynätjoki, K. Vynck, M. Mulot, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Efficient light coupling into a photonic crystal waveguide with flatband slow mode,” Photon. Nanostr. Fundam. Appl. 6, 127–133 (2008).

A. Säynätjoki, M. Mulot, K. Vynck, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Properties, applications and fabrication of photonic crystals with ring-shaped holes in silicon-on-insulator,” Photon. Nanostr. Fundam. Appl. 6, 42–46 (2008).

A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007).
[CrossRef]

Lipson, M.

Liu, B.

Ma, J.

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[CrossRef]

Mansouri-Birjandi, M.

Marris-Morini, D.

C. Caer, X. Le Roux, V. K. Do, D. Marris-Morini, N. Izard, L. Vivien, D. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[CrossRef]

E. Cassan, H. Kurt, X. Le roux, D. Marris-Morini, and L. Vivien, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

Mirjalili, S.

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf optimizer,” Adv. Eng. Softw. 69, 46–61 (2014).
[CrossRef]

S. M. Mirjalili, S. Mirjalili, and A. Lewis, “A novel multi-objective optimization framework for designing photonic crystal waveguides,” IEEE Photon. Technol. Lett. 26, 146–149 (2013).
[CrossRef]

S. M. Mirjalili, K. Abedi, and S. Mirjalili, “Optical buffer performance enhancement using particle swarm optimization in ring-shape-hole photonic crystal waveguide,” Optik-Int. J. Light Electron Opt. 124, 5989–5993 (2013).

S. M. Mirjalili, S. Mirjalili, A. Lewis, and K. Abedi, “A tri-objective particle swarm optimizer for designing line defect photonic crystal waveguides,” Photon. Nanostruct. 12, 152–163 (2013).
[CrossRef]

S. M. Mirjalili, K. Abedi, and S. Mirjalili, “Light property and optical buffer performance enhancement using particle swarm optimization in oblique ring-shape-hole photonic crystal waveguide,” in Photonics Global Conference (PGC) (2012), pp. 1–4.

S. M. Mirjalili and S. Mirjalili, “Oval-shaped-hole photonic crystal waveguide Design by MoMIR framework,” Photon. Technol. Lett. (In press).

Mirjalili, S. M.

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf optimizer,” Adv. Eng. Softw. 69, 46–61 (2014).
[CrossRef]

S. M. Mirjalili, S. Mirjalili, and A. Lewis, “A novel multi-objective optimization framework for designing photonic crystal waveguides,” IEEE Photon. Technol. Lett. 26, 146–149 (2013).
[CrossRef]

S. M. Mirjalili, S. Mirjalili, A. Lewis, and K. Abedi, “A tri-objective particle swarm optimizer for designing line defect photonic crystal waveguides,” Photon. Nanostruct. 12, 152–163 (2013).
[CrossRef]

S. M. Mirjalili, K. Abedi, and S. Mirjalili, “Optical buffer performance enhancement using particle swarm optimization in ring-shape-hole photonic crystal waveguide,” Optik-Int. J. Light Electron Opt. 124, 5989–5993 (2013).

S. M. Mirjalili, K. Abedi, and S. Mirjalili, “Light property and optical buffer performance enhancement using particle swarm optimization in oblique ring-shape-hole photonic crystal waveguide,” in Photonics Global Conference (PGC) (2012), pp. 1–4.

S. M. Mirjalili and S. Mirjalili, “Oval-shaped-hole photonic crystal waveguide Design by MoMIR framework,” Photon. Technol. Lett. (In press).

Mori, D.

Mulot, M.

A. Säynätjoki, K. Vynck, M. Mulot, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Efficient light coupling into a photonic crystal waveguide with flatband slow mode,” Photon. Nanostr. Fundam. Appl. 6, 127–133 (2008).

A. Säynätjoki, M. Mulot, K. Vynck, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Properties, applications and fabrication of photonic crystals with ring-shaped holes in silicon-on-insulator,” Photon. Nanostr. Fundam. Appl. 6, 42–46 (2008).

A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007).
[CrossRef]

O’Faolain, L.

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Slotted photonic crystal waveguides and cavities for slow light and sensing applications,” in 2008 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 228–230.

Okawachi, Y.

Peng, C.

J. Wu, Y. Li, C. Peng, and Z. Wang, “Numerical demonstration of slow light tuning in slotted photonic crystal waveguide using microfluidic infiltration,” Opt. Commun. 284, 2149–2152 (2011).
[CrossRef]

J. Wu, Y. Li, C. Peng, and Z. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

Pu, M.

M. Pu, L. Yang, and L. Fradsen, “Topology-optimized slow-light couplers for ring-shaped photonic crystal waveguide,” Opt. Fiber Technol. 1, 10–12 (2010).

Säynätjoki, A.

A. Säynätjoki, K. Vynck, M. Mulot, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Efficient light coupling into a photonic crystal waveguide with flatband slow mode,” Photon. Nanostr. Fundam. Appl. 6, 127–133 (2008).

A. Säynätjoki, M. Mulot, K. Vynck, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Properties, applications and fabrication of photonic crystals with ring-shaped holes in silicon-on-insulator,” Photon. Nanostr. Fundam. Appl. 6, 42–46 (2008).

A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007).
[CrossRef]

Sharping, J.

Siarry, P.

I. Boussaïd, J. Lepagnot, and P. Siarry, “A survey on optimization metaheuristics,” Inf. Sci. 237, 82–117 (2013).
[CrossRef]

Subbaraman, H.

A. Hosseini, D. Kwong, H. Subbaraman, and R. T. Chen, “Low dispersion slow light in silicon-on-insulator photonic crystal waveguide,” Proc. SPIE 7609, 76091A (2010).

Tang, J.

Tayal, A.

A. Gogna and A. Tayal, “Metaheuristics: review and application,” J. Exp. Theor. Artif. Intell. 25, 503–526 (2013).
[CrossRef]

Tian, H.

Y. Zhai, H. Tian, and Y. Ji, “Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide,” J. Lightwave Technol. 29, 3083–3090 (2011).
[CrossRef]

H. Tian, X. Zhang, D. Yang, and Y. Ji, “Research on the dispersion compensation of slot photonic crystal waveguide,” Photon. Technol. Lett. 23, 1222–1224 (2011).

Üstün, K.

Vivien, L.

C. Caer, X. Le Roux, V. K. Do, D. Marris-Morini, N. Izard, L. Vivien, D. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[CrossRef]

E. Cassan, H. Kurt, X. Le roux, D. Marris-Morini, and L. Vivien, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

Vynck, K.

A. Säynätjoki, M. Mulot, K. Vynck, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Properties, applications and fabrication of photonic crystals with ring-shaped holes in silicon-on-insulator,” Photon. Nanostr. Fundam. Appl. 6, 42–46 (2008).

A. Säynätjoki, K. Vynck, M. Mulot, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Efficient light coupling into a photonic crystal waveguide with flatband slow mode,” Photon. Nanostr. Fundam. Appl. 6, 127–133 (2008).

Wang, B.

Wang, D.

D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Wang, H.-Z.

Wang, T.

Wang, T.-B.

Wang, Z.

J. Wu, Y. Li, C. Peng, and Z. Wang, “Numerical demonstration of slow light tuning in slotted photonic crystal waveguide using microfluidic infiltration,” Opt. Commun. 284, 2149–2152 (2011).
[CrossRef]

J. Wu, Y. Li, C. Peng, and Z. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

White, T. P.

Wu, H.

C. Bao, J. Hou, H. Wu, and X. Zhou, “Low dispersion slow light in slot waveguide grating,” IEEE Photon. Technol. Lett. 23, 1700–1702 (2011).
[CrossRef]

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

Wu, J.

J. Wu, Y. Li, C. Peng, and Z. Wang, “Numerical demonstration of slow light tuning in slotted photonic crystal waveguide using microfluidic infiltration,” Opt. Commun. 284, 2149–2152 (2011).
[CrossRef]

J. Wu, Y. Li, C. Peng, and Z. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

Xiang, L.

Y. Xu, L. Xiang, E. Cassan, D. Gao, and X. Zhang, “Slow light in an alternative row of ellipse-hole photonic crystal waveguide,” Appl. Opt. 52, 2–7 (2013).

Xu, Q.

Xu, Y.

Y. Xu, L. Xiang, E. Cassan, D. Gao, and X. Zhang, “Slow light in an alternative row of ellipse-hole photonic crystal waveguide,” Appl. Opt. 52, 2–7 (2013).

Yang, D.

H. Tian, X. Zhang, D. Yang, and Y. Ji, “Research on the dispersion compensation of slot photonic crystal waveguide,” Photon. Technol. Lett. 23, 1222–1224 (2011).

Yang, L.

M. Pu, L. Yang, and L. Fradsen, “Topology-optimized slow-light couplers for ring-shaped photonic crystal waveguide,” Opt. Fiber Technol. 1, 10–12 (2010).

Yuan, L.

D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Zhai, Y.

Zhang, J.

D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Zhang, X.

Y. Xu, L. Xiang, E. Cassan, D. Gao, and X. Zhang, “Slow light in an alternative row of ellipse-hole photonic crystal waveguide,” Appl. Opt. 52, 2–7 (2013).

H. Tian, X. Zhang, D. Yang, and Y. Ji, “Research on the dispersion compensation of slot photonic crystal waveguide,” Photon. Technol. Lett. 23, 1222–1224 (2011).

Zhou, X.

C. Bao, J. Hou, H. Wu, and X. Zhou, “Low dispersion slow light in slot waveguide grating,” IEEE Photon. Technol. Lett. 23, 1700–1702 (2011).
[CrossRef]

Zhou, Z.

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

Adv. Eng. Softw. (1)

S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf optimizer,” Adv. Eng. Softw. 69, 46–61 (2014).
[CrossRef]

Appl. Opt. (3)

IEEE Photon. Technol. Lett. (6)

C. Bao, J. Hou, H. Wu, and X. Zhou, “Low dispersion slow light in slot waveguide grating,” IEEE Photon. Technol. Lett. 23, 1700–1702 (2011).
[CrossRef]

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

S. M. Mirjalili, S. Mirjalili, and A. Lewis, “A novel multi-objective optimization framework for designing photonic crystal waveguides,” IEEE Photon. Technol. Lett. 26, 146–149 (2013).
[CrossRef]

J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008).
[CrossRef]

E. Cassan, H. Kurt, X. Le roux, D. Marris-Morini, and L. Vivien, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010).
[CrossRef]

C. Caer, X. Le Roux, V. K. Do, D. Marris-Morini, N. Izard, L. Vivien, D. Gao, and E. Cassan, “Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot,” IEEE Photon. Technol. Lett. 23, 1298–1300 (2011).
[CrossRef]

Inf. Sci. (1)

I. Boussaïd, J. Lepagnot, and P. Siarry, “A survey on optimization metaheuristics,” Inf. Sci. 237, 82–117 (2013).
[CrossRef]

J. Exp. Theor. Artif. Intell. (1)

A. Gogna and A. Tayal, “Metaheuristics: review and application,” J. Exp. Theor. Artif. Intell. 25, 503–526 (2013).
[CrossRef]

J. Lightwave Technol. (2)

Mach. Learn. (1)

D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learning,” Mach. Learn. 3, 95–99 (1988).
[CrossRef]

Nat. Photonics (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008).
[CrossRef]

Opt. Commun. (3)

J. Wu, Y. Li, C. Peng, and Z. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

J. Wu, Y. Li, C. Peng, and Z. Wang, “Numerical demonstration of slow light tuning in slotted photonic crystal waveguide using microfluidic infiltration,” Opt. Commun. 284, 2149–2152 (2011).
[CrossRef]

D. Wang, J. Zhang, L. Yuan, J. Lei, S. Chen, J. Han, and S. Hou, “Slow light engineering in polyatomic photonic crystal waveguides based on square lattice,” Opt. Commun. 284, 5829–5832 (2011).
[CrossRef]

Opt. Express (7)

Opt. Fiber Technol. (1)

M. Pu, L. Yang, and L. Fradsen, “Topology-optimized slow-light couplers for ring-shaped photonic crystal waveguide,” Opt. Fiber Technol. 1, 10–12 (2010).

Optik-Int. J. Light Electron Opt. (1)

S. M. Mirjalili, K. Abedi, and S. Mirjalili, “Optical buffer performance enhancement using particle swarm optimization in ring-shape-hole photonic crystal waveguide,” Optik-Int. J. Light Electron Opt. 124, 5989–5993 (2013).

Photon. Nanostr. Fundam. Appl. (2)

A. Säynätjoki, M. Mulot, K. Vynck, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Properties, applications and fabrication of photonic crystals with ring-shaped holes in silicon-on-insulator,” Photon. Nanostr. Fundam. Appl. 6, 42–46 (2008).

A. Säynätjoki, K. Vynck, M. Mulot, D. Cassagne, J. Ahopelto, and H. Lipsanen, “Efficient light coupling into a photonic crystal waveguide with flatband slow mode,” Photon. Nanostr. Fundam. Appl. 6, 127–133 (2008).

Photon. Nanostruct. (1)

S. M. Mirjalili, S. Mirjalili, A. Lewis, and K. Abedi, “A tri-objective particle swarm optimizer for designing line defect photonic crystal waveguides,” Photon. Nanostruct. 12, 152–163 (2013).
[CrossRef]

Photon. Technol. Lett. (1)

H. Tian, X. Zhang, D. Yang, and Y. Ji, “Research on the dispersion compensation of slot photonic crystal waveguide,” Photon. Technol. Lett. 23, 1222–1224 (2011).

Proc. SPIE (1)

A. Hosseini, D. Kwong, H. Subbaraman, and R. T. Chen, “Low dispersion slow light in silicon-on-insulator photonic crystal waveguide,” Proc. SPIE 7609, 76091A (2010).

Other (5)

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Nerual Netwroks (IEEE, 1995), pp. 1942–1948.

M. Dorigo and G. Di Caro, “Ant colony optimization: a new meta-heuristic,” in Proceedings of the 1999 Congress on Evolutionary Computation (Cat. No. 99TH8406) (1999), Vol. 2.

S. M. Mirjalili, K. Abedi, and S. Mirjalili, “Light property and optical buffer performance enhancement using particle swarm optimization in oblique ring-shape-hole photonic crystal waveguide,” in Photonics Global Conference (PGC) (2012), pp. 1–4.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Slotted photonic crystal waveguides and cavities for slow light and sensing applications,” in 2008 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 228–230.

S. M. Mirjalili and S. Mirjalili, “Oval-shaped-hole photonic crystal waveguide Design by MoMIR framework,” Photon. Technol. Lett. (In press).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

LPCW with super cell.

Fig. 2.
Fig. 2.

LPCW’s photonic band structure related to the supercell, which is shown in Fig. 1.

Fig. 3.
Fig. 3.

Bandwidth region includes 10% fluctuation along ng.

Fig. 4.
Fig. 4.

Proposed SoMIR framework.

Fig. 5.
Fig. 5.

(a) EPCW and HPCW with super cell, (b) Ra and Rb are the semimajor and semiminor axis of ellipse and hypoellipse.

Fig. 6.
Fig. 6.

Group index (ng) curve of optimized EPCW and HPCW structures.

Fig. 7.
Fig. 7.

Supercell of optimized EPCW and HPCW structures correspondingto ng curves of Fig. 6.

Fig. 8.
Fig. 8.

NDBP of current PCW structures.

Fig. 9.
Fig. 9.

Detected waveforms from monitors along five lattice constants in the simulation of EPCW.

Fig. 10.
Fig. 10.

Detected waveforms from monitors along five lattice constants in the simulation of HPCW.

Fig. 11.
Fig. 11.

Delay time of the envelope maximum of all waveforms versus its field monitor position.

Tables (5)

Tables Icon

Table 1. P Module for PCWs

Tables Icon

Table 2. C Module for PCWs

Tables Icon

Table 3. Structural Parameters and Slow Light Properties of the Optimized PCWs

Tables Icon

Table 4. Current PCW Structures

Tables Icon

Table 5. FDTD Calculation Results of Optimized PCWs

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

DBP=Δt·Δf,
NDBP=n¯g·Δωω0,
ng=Cvg=Cdkdω,
n¯g=ωLωHng(ω)dωΔω.
β2=d2kdω2=dngdω1C,
P=[Ra1,Ra2,Ra3,Ra4,Ra5,Rb1,Rb2,Rb3,Rb4,Rb5].
C=[C1,C2,C3],
C1:0Ra1,,Ra5,Rb1,,Rb50.5a,
C2:max(|β2(ω)|)<106(a2πC2),
C3:ωH<min(ωup band),
ωL>max(ωdown band),
kn<knHωGuided mode>ωH,
kn>knLωGuided mode<ωL,
where:ωH=ω(knH)=ω(0.9ng0),
ωL=ω(knL)=ω(1.1ng0),
kn=ka2π,
Δω=ωHωL,
a=ω0·1550(nm).
Maximizef(x⃗)=NDBP=n¯gΔωω0.
v¯g=ΔxΔT=Cn¯gyieldsn¯g=CΔTΔx,

Metrics