Abstract

We have conducted an experimental investigation on highly efficient femtosecond laser micromachining of silicon through N-type doping. We found that the material removal amount has a close relationship with the doping concentration rather than with the doping types. The amount of material removal was enhanced gradually as doping densities increased. When the doping density reached higher than 1018cm3, the ablation threshold was considerably reduced, up to 15%–20%. The results of the experiment indicate that the high density of initial free electrons by doping is the fundamental reason for efficiency improvement, and bandgap shrinkage also plays an important role. The electrons are excited more easily from the valance band to the conduction band and acquire higher initial kinetic energy, which then promotes the material ablation process.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
    [CrossRef]
  2. K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94, 041123 (2009).
    [CrossRef]
  3. J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113 (2006).
    [CrossRef]
  4. A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses,” Opt. Lett. 30, 964–966 (2005).
    [CrossRef]
  5. B. P. Cumming, A. Jesacher, M. J. Booth, T. Wilson, and M. Gu, “Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate,” Opt. Express 19, 9419–9425 (2011).
    [CrossRef]
  6. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025 (1996).
    [CrossRef]
  7. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
    [CrossRef]
  8. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [CrossRef]
  9. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices- micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
    [CrossRef]
  10. L. Jiang and H. L. Tsai, “Prediction of crater shape in femtosecond laser ablation of dielectrics,” J. Phys. D Appl. Phys. 37, 1492–1496 (2004).
    [CrossRef]
  11. W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. M. Samani, L. Jiang, T. Baldacchini, and Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1, e6 (2012).
    [CrossRef]
  12. D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, “Efficiency of silicon micromachining by femtosecond laser pulses in ambient air,” J. Appl. Phys. 99, 083101 (2006).
    [CrossRef]
  13. J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
    [CrossRef]
  14. R. L. Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, and K. König, “Sub-100  nm nanostructuring of silicon by ultrashort laser pulses,” Opt. Express 13, 6651–6656 (2005).
    [CrossRef]
  15. T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
    [CrossRef]
  16. A. Y. Vorobyev and C. L. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257, 7291–7294 (2011).
    [CrossRef]
  17. V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, “Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation,” Nanotechnology 17, 3234–3238 (2006).
    [CrossRef]
  18. C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering,” Opt. Express 17, 21581–21589 (2009).
    [CrossRef]
  19. C. H. Lin, Z. H. Rao, L. Jiang, W. J. Tsai, P. H. Wu, C. W. Chien, S. J. Chen, and H. L. Tsai, “Investigations of femtosecond-nanosecond dual beam laser ablation of dielectrics,” Opt. Lett. 35, 2490–2492 (2010).
    [CrossRef]
  20. H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci. 197, 839–844 (2002).
    [CrossRef]
  21. T. H. R. Crawford and H. K. Haugen, “Sub-wavelength surface structures on silicon irradiated by femtosecond laser pulses at 1300 and 2100  nm wavelengths,” Appl. Surf. Sci. 253, 4970–4977 (2007).
    [CrossRef]
  22. T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800nm pulses,” Appl. Phys. A 80, 1717–1724 (2005).
    [CrossRef]
  23. M. Grundmann, The Physics of Semiconductors (Springer-Verlag, 2006).
  24. J. M. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. Lett. 7, 196–198 (1982).
    [CrossRef]
  25. J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74, 19–25 (2002).
    [CrossRef]
  26. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
    [CrossRef]
  27. J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
    [CrossRef]
  28. K.-F. Berggren and B. E. Sernelius, “Band-gap narrowing in heavily doped many-valley semiconductors,” Phys. Rev. B 24, 1971–1986 (1981).
    [CrossRef]
  29. H. S. Bennett and C. L. Wilson, “Statistical comparisons of data on band-gap narrowing in heavily doped silicon: electrical and optical measurements,” J. Appl. Phys. 55, 3582–3587 (1984).
    [CrossRef]
  30. J. Wagner and J. A. Del Alamo, “Band-gap narrowing in heavily doped silicon: a comparison of optical and electrical data,” J. Appl. Phys. 63, 425–429 (1988).
    [CrossRef]
  31. S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
    [CrossRef]
  32. P. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, “Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtoseond pulses,” Mater. Res. Soc. Symp. Proc. 397, 45 (1996).
    [CrossRef]
  33. Y. P. Yuan, L. Jiang, X. Li, C. Wang, and Y. F. Lu, “Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains,” J. Appl. Phys. 112, 103103 (2012).
    [CrossRef]

2012

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. M. Samani, L. Jiang, T. Baldacchini, and Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1, e6 (2012).
[CrossRef]

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
[CrossRef]

Y. P. Yuan, L. Jiang, X. Li, C. Wang, and Y. F. Lu, “Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains,” J. Appl. Phys. 112, 103103 (2012).
[CrossRef]

2011

2010

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
[CrossRef]

C. H. Lin, Z. H. Rao, L. Jiang, W. J. Tsai, P. H. Wu, C. W. Chien, S. J. Chen, and H. L. Tsai, “Investigations of femtosecond-nanosecond dual beam laser ablation of dielectrics,” Opt. Lett. 35, 2490–2492 (2010).
[CrossRef]

2009

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering,” Opt. Express 17, 21581–21589 (2009).
[CrossRef]

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94, 041123 (2009).
[CrossRef]

2008

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

2007

T. H. R. Crawford and H. K. Haugen, “Sub-wavelength surface structures on silicon irradiated by femtosecond laser pulses at 1300 and 2100  nm wavelengths,” Appl. Surf. Sci. 253, 4970–4977 (2007).
[CrossRef]

2006

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113 (2006).
[CrossRef]

D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, “Efficiency of silicon micromachining by femtosecond laser pulses in ambient air,” J. Appl. Phys. 99, 083101 (2006).
[CrossRef]

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, “Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation,” Nanotechnology 17, 3234–3238 (2006).
[CrossRef]

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

2005

2004

J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
[CrossRef]

L. Jiang and H. L. Tsai, “Prediction of crater shape in femtosecond laser ablation of dielectrics,” J. Phys. D Appl. Phys. 37, 1492–1496 (2004).
[CrossRef]

2002

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74, 19–25 (2002).
[CrossRef]

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci. 197, 839–844 (2002).
[CrossRef]

2001

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices- micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
[CrossRef]

1998

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

1996

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

P. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, “Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtoseond pulses,” Mater. Res. Soc. Symp. Proc. 397, 45 (1996).
[CrossRef]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025 (1996).
[CrossRef]

1988

J. Wagner and J. A. Del Alamo, “Band-gap narrowing in heavily doped silicon: a comparison of optical and electrical data,” J. Appl. Phys. 63, 425–429 (1988).
[CrossRef]

1984

H. S. Bennett and C. L. Wilson, “Statistical comparisons of data on band-gap narrowing in heavily doped silicon: electrical and optical measurements,” J. Appl. Phys. 55, 3582–3587 (1984).
[CrossRef]

1982

1981

K.-F. Berggren and B. E. Sernelius, “Band-gap narrowing in heavily doped many-valley semiconductors,” Phys. Rev. B 24, 1971–1986 (1981).
[CrossRef]

Anhut, T.

Athanassiou, A.

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, “Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation,” Nanotechnology 17, 3234–3238 (2006).
[CrossRef]

Baldacchini, T.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. M. Samani, L. Jiang, T. Baldacchini, and Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1, e6 (2012).
[CrossRef]

Baudach, S.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74, 19–25 (2002).
[CrossRef]

Bennett, H. S.

H. S. Bennett and C. L. Wilson, “Statistical comparisons of data on band-gap narrowing in heavily doped silicon: electrical and optical measurements,” J. Appl. Phys. 55, 3582–3587 (1984).
[CrossRef]

Berggren, K.-F.

K.-F. Berggren and B. E. Sernelius, “Band-gap narrowing in heavily doped many-valley semiconductors,” Phys. Rev. B 24, 1971–1986 (1981).
[CrossRef]

Bonse, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
[CrossRef]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
[CrossRef]

J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
[CrossRef]

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci. 197, 839–844 (2002).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74, 19–25 (2002).
[CrossRef]

Booth, M. J.

Borowiec, A.

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800nm pulses,” Appl. Phys. A 80, 1717–1724 (2005).
[CrossRef]

Brzezinka, K.-W.

J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
[CrossRef]

Burghoff, J.

Callan, J. P.

Chai, Y. H.

Chen, S. J.

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

Chien, C. W.

Choi, T. Y.

D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, “Efficiency of silicon micromachining by femtosecond laser pulses in ambient air,” J. Appl. Phys. 99, 083101 (2006).
[CrossRef]

Cingolani, R.

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, “Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation,” Nanotechnology 17, 3234–3238 (2006).
[CrossRef]

Clark, J.

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94, 041123 (2009).
[CrossRef]

Crawford, T. H. R.

T. H. R. Crawford and H. K. Haugen, “Sub-wavelength surface structures on silicon irradiated by femtosecond laser pulses at 1300 and 2100  nm wavelengths,” Appl. Surf. Sci. 253, 4970–4977 (2007).
[CrossRef]

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800nm pulses,” Appl. Phys. A 80, 1717–1724 (2005).
[CrossRef]

Cumming, B. P.

Del Alamo, J. A.

J. Wagner and J. A. Del Alamo, “Band-gap narrowing in heavily doped silicon: a comparison of optical and electrical data,” J. Appl. Phys. 63, 425–429 (1988).
[CrossRef]

Deliwala, S.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

Du, D.

P. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, “Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtoseond pulses,” Mater. Res. Soc. Symp. Proc. 397, 45 (1996).
[CrossRef]

Finlay, R. J.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025 (1996).
[CrossRef]

Fotakis, C.

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, “Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation,” Nanotechnology 17, 3234–3238 (2006).
[CrossRef]

Gao, Y.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. M. Samani, L. Jiang, T. Baldacchini, and Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1, e6 (2012).
[CrossRef]

Garcia, M. E.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci. 197, 839–844 (2002).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

Glezer, E. N.

Grigoropoulos, C. P.

D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, “Efficiency of silicon micromachining by femtosecond laser pulses in ambient air,” J. Appl. Phys. 99, 083101 (2006).
[CrossRef]

Grundmann, M.

M. Grundmann, The Physics of Semiconductors (Springer-Verlag, 2006).

Gu, M.

Guo, C. L.

A. Y. Vorobyev and C. L. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257, 7291–7294 (2011).
[CrossRef]

Harzic, R. L.

Haugen, H. K.

T. H. R. Crawford and H. K. Haugen, “Sub-wavelength surface structures on silicon irradiated by femtosecond laser pulses at 1300 and 2100  nm wavelengths,” Appl. Surf. Sci. 253, 4970–4977 (2007).
[CrossRef]

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800nm pulses,” Appl. Phys. A 80, 1717–1724 (2005).
[CrossRef]

He, X. N.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. M. Samani, L. Jiang, T. Baldacchini, and Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1, e6 (2012).
[CrossRef]

Her, T. H.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

Her, T.-H.

Herman, P. R.

Höhm, S.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
[CrossRef]

Huang, L.

Hwang, D. J.

D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, “Efficiency of silicon micromachining by femtosecond laser pulses in ambient air,” J. Appl. Phys. 99, 083101 (2006).
[CrossRef]

Jesacher, A.

Jeschke, H. O.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci. 197, 839–844 (2002).
[CrossRef]

Jiang, L.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. M. Samani, L. Jiang, T. Baldacchini, and Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1, e6 (2012).
[CrossRef]

Y. P. Yuan, L. Jiang, X. Li, C. Wang, and Y. F. Lu, “Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains,” J. Appl. Phys. 112, 103103 (2012).
[CrossRef]

C. H. Lin, Z. H. Rao, L. Jiang, W. J. Tsai, P. H. Wu, C. W. Chien, S. J. Chen, and H. L. Tsai, “Investigations of femtosecond-nanosecond dual beam laser ablation of dielectrics,” Opt. Lett. 35, 2490–2492 (2010).
[CrossRef]

C. H. Lin, L. Jiang, Y. H. Chai, H. Xiao, S. J. Chen, and H. L. Tsai, “One-step fabrication of nanostructures by femtosecond laser for surface-enhanced Raman scattering,” Opt. Express 17, 21581–21589 (2009).
[CrossRef]

L. Jiang and H. L. Tsai, “Prediction of crater shape in femtosecond laser ablation of dielectrics,” J. Phys. D Appl. Phys. 37, 1492–1496 (2004).
[CrossRef]

Kautek, W.

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74, 19–25 (2002).
[CrossRef]

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci. 197, 839–844 (2002).
[CrossRef]

Kawata, S.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices- micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
[CrossRef]

König, K.

Krüger, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
[CrossRef]

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
[CrossRef]

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci. 197, 839–844 (2002).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74, 19–25 (2002).
[CrossRef]

Lanzani, G.

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94, 041123 (2009).
[CrossRef]

Lenzner, M.

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci. 197, 839–844 (2002).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74, 19–25 (2002).
[CrossRef]

Li, X.

Y. P. Yuan, L. Jiang, X. Li, C. Wang, and Y. F. Lu, “Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains,” J. Appl. Phys. 112, 103103 (2012).
[CrossRef]

Lin, C. H.

Liu, J. M.

Liu, X.

P. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, “Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtoseond pulses,” Mater. Res. Soc. Symp. Proc. 397, 45 (1996).
[CrossRef]

Lu, Y. F.

Y. P. Yuan, L. Jiang, X. Li, C. Wang, and Y. F. Lu, “Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains,” J. Appl. Phys. 112, 103103 (2012).
[CrossRef]

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. M. Samani, L. Jiang, T. Baldacchini, and Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1, e6 (2012).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023–2025 (1996).
[CrossRef]

McDonald, J. P.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113 (2006).
[CrossRef]

Meixner, A. J.

J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
[CrossRef]

Milosavljevic, M.

Mistry, V. R.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113 (2006).
[CrossRef]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

Nejadmalayeri, A. H.

Nolte, S.

A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses,” Opt. Lett. 30, 964–966 (2005).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

Osellame, R.

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94, 041123 (2009).
[CrossRef]

Persano, L.

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, “Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation,” Nanotechnology 17, 3234–3238 (2006).
[CrossRef]

Pisignano, D.

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, “Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation,” Nanotechnology 17, 3234–3238 (2006).
[CrossRef]

Pronko, P. P.

P. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, “Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtoseond pulses,” Mater. Res. Soc. Symp. Proc. 397, 45 (1996).
[CrossRef]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Qian, F.

P. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, “Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtoseond pulses,” Mater. Res. Soc. Symp. Proc. 397, 45 (1996).
[CrossRef]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Ramponi, R.

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94, 041123 (2009).
[CrossRef]

Rao, Z. H.

Ray, K. E.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113 (2006).
[CrossRef]

Riemann, I.

Rosenfeld, A.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
[CrossRef]

Samani, M. M.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. M. Samani, L. Jiang, T. Baldacchini, and Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1, e6 (2012).
[CrossRef]

Sauer, D.

Schuck, H.

Sernelius, B. E.

K.-F. Berggren and B. E. Sernelius, “Band-gap narrowing in heavily doped many-valley semiconductors,” Phys. Rev. B 24, 1971–1986 (1981).
[CrossRef]

Singh, R. K.

P. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, “Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtoseond pulses,” Mater. Res. Soc. Symp. Proc. 397, 45 (1996).
[CrossRef]

Stratakis, E.

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, “Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation,” Nanotechnology 17, 3234–3238 (2006).
[CrossRef]

Sun, H. B.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices- micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
[CrossRef]

Sundaram, S. K.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[CrossRef]

Takada, K.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices- micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
[CrossRef]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices- micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
[CrossRef]

Tsai, H. L.

Tsai, W. J.

Tünnermann, A.

A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses,” Opt. Lett. 30, 964–966 (2005).
[CrossRef]

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

Tzanetakis, P.

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, “Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation,” Nanotechnology 17, 3234–3238 (2006).
[CrossRef]

VanRompay, P. A.

P. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, “Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtoseond pulses,” Mater. Res. Soc. Symp. Proc. 397, 45 (1996).
[CrossRef]

Virgili, T.

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94, 041123 (2009).
[CrossRef]

Vishnubhatla, K. C.

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94, 041123 (2009).
[CrossRef]

von Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

Vorobyev, A. Y.

A. Y. Vorobyev and C. L. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257, 7291–7294 (2011).
[CrossRef]

Wagner, J.

J. Wagner and J. A. Del Alamo, “Band-gap narrowing in heavily doped silicon: a comparison of optical and electrical data,” J. Appl. Phys. 63, 425–429 (1988).
[CrossRef]

Wang, C.

Y. P. Yuan, L. Jiang, X. Li, C. Wang, and Y. F. Lu, “Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains,” J. Appl. Phys. 112, 103103 (2012).
[CrossRef]

Will, M.

Wilson, C. L.

H. S. Bennett and C. L. Wilson, “Statistical comparisons of data on band-gap narrowing in heavily doped silicon: electrical and optical measurements,” J. Appl. Phys. 55, 3582–3587 (1984).
[CrossRef]

Wilson, T.

Wu, C.

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

Wu, P. H.

Xiao, H.

Xiong, W.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. M. Samani, L. Jiang, T. Baldacchini, and Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1, e6 (2012).
[CrossRef]

Yalisove, S. M.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113 (2006).
[CrossRef]

Yang, C. H.

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Yuan, Y. P.

Y. P. Yuan, L. Jiang, X. Li, C. Wang, and Y. F. Lu, “Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains,” J. Appl. Phys. 112, 103103 (2012).
[CrossRef]

Zhou, Y. S.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. M. Samani, L. Jiang, T. Baldacchini, and Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1, e6 (2012).
[CrossRef]

Zorba, V.

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, “Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation,” Nanotechnology 17, 3234–3238 (2006).
[CrossRef]

Appl. Phys. A

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109–115 (1996).
[CrossRef]

T. H. R. Crawford, A. Borowiec, and H. K. Haugen, “Femtosecond laser micromachining of grooves in silicon with 800nm pulses,” Appl. Phys. A 80, 1717–1724 (2005).
[CrossRef]

J. Bonse, S. Baudach, J. Krüger, W. Kautek, and M. Lenzner, “Femtosecond laser ablation of silicon-modification thresholds and morphology,” Appl. Phys. A 74, 19–25 (2002).
[CrossRef]

Appl. Phys. Lett.

K. C. Vishnubhatla, J. Clark, G. Lanzani, R. Ramponi, R. Osellame, and T. Virgili, “Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels,” Appl. Phys. Lett. 94, 041123 (2009).
[CrossRef]

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113 (2006).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[CrossRef]

Appl. Surf. Sci.

A. Y. Vorobyev and C. L. Guo, “Direct creation of black silicon using femtosecond laser pulses,” Appl. Surf. Sci. 257, 7291–7294 (2011).
[CrossRef]

J. Bonse, K.-W. Brzezinka, and A. J. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
[CrossRef]

H. O. Jeschke, M. E. Garcia, M. Lenzner, J. Bonse, J. Krüger, and W. Kautek, “Laser ablation thresholds of silicon for different pulse durations: theory and experiment,” Appl. Surf. Sci. 197, 839–844 (2002).
[CrossRef]

T. H. R. Crawford and H. K. Haugen, “Sub-wavelength surface structures on silicon irradiated by femtosecond laser pulses at 1300 and 2100  nm wavelengths,” Appl. Surf. Sci. 253, 4970–4977 (2007).
[CrossRef]

J. Appl. Phys.

J. Bonse and J. Krüger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010).
[CrossRef]

H. S. Bennett and C. L. Wilson, “Statistical comparisons of data on band-gap narrowing in heavily doped silicon: electrical and optical measurements,” J. Appl. Phys. 55, 3582–3587 (1984).
[CrossRef]

J. Wagner and J. A. Del Alamo, “Band-gap narrowing in heavily doped silicon: a comparison of optical and electrical data,” J. Appl. Phys. 63, 425–429 (1988).
[CrossRef]

Y. P. Yuan, L. Jiang, X. Li, C. Wang, and Y. F. Lu, “Adjustment of ablation shapes and subwavelength ripples based on electron dynamics control by designing femtosecond laser pulse trains,” J. Appl. Phys. 112, 103103 (2012).
[CrossRef]

D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, “Efficiency of silicon micromachining by femtosecond laser pulses in ambient air,” J. Appl. Phys. 99, 083101 (2006).
[CrossRef]

J. Laser Appl.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
[CrossRef]

J. Phys. D Appl. Phys.

L. Jiang and H. L. Tsai, “Prediction of crater shape in femtosecond laser ablation of dielectrics,” J. Phys. D Appl. Phys. 37, 1492–1496 (2004).
[CrossRef]

Light Sci. Appl.

W. Xiong, Y. S. Zhou, X. N. He, Y. Gao, M. M. Samani, L. Jiang, T. Baldacchini, and Y. F. Lu, “Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation,” Light Sci. Appl. 1, e6 (2012).
[CrossRef]

Mater. Res. Soc. Symp. Proc.

P. P. Pronko, P. A. VanRompay, R. K. Singh, F. Qian, D. Du, and X. Liu, “Laser induced avalanche ionization and electron-lattice heating of silicon with intense near IR femtoseond pulses,” Mater. Res. Soc. Symp. Proc. 397, 45 (1996).
[CrossRef]

Nanotechnology

V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, and C. Fotakis, “Making silicon hydrophobic: wettability control by two-lengthscale simultaneous patterning with femtosecond laser irradiation,” Nanotechnology 17, 3234–3238 (2006).
[CrossRef]

Nat. Mater.

S. K. Sundaram and E. Mazur, “Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses,” Nat. Mater. 1, 217–224 (2002).
[CrossRef]

Nat. Photonics

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

Nature

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices- micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).
[CrossRef]

D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

K.-F. Berggren and B. E. Sernelius, “Band-gap narrowing in heavily doped many-valley semiconductors,” Phys. Rev. B 24, 1971–1986 (1981).
[CrossRef]

Other

M. Grundmann, The Physics of Semiconductors (Springer-Verlag, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

OM images of Si, Si:Sb (R=0.480.66Ωcm), Si:P (R=0.11.0Ωcm), and Si:P (R=0.010.05Ωcm) ablated by various pulse numbers and fluences. The location of the dotted white line indicates where the site ablation began.

Fig. 2.
Fig. 2.

Ablation threshold change with pulse numbers for different types of silicon.

Fig. 3.
Fig. 3.

SEM images of undoped Si and Si:P (R=0.010.05Ωcm) ablated by various pulse fluences. For each target, 50 pulses were used.

Fig. 4.
Fig. 4.

SEM images of undoped Si and Si:P (R=0.010.05Ωcm) ablated by pulse numbers of 10, 100, 200, 500, and 1000. Each pulse had a fluence of approximately 0.24J/cm2.

Fig. 5.
Fig. 5.

SEM images of undoped Si and Si:P (R=0.010.05Ωcm) translated at different fade rates for a per pulse fluence of 0.24J/cm2.

Tables (1)

Tables Icon

Table 1. Resistivity, Carrier Concentration, Bandgap, and Bandgap Narrowing of the Four Samples at 300 K

Metrics