Abstract

We have utilized a single pulsed broadband supercontinuum laser source to photoacoustically sense total hemoglobin concentration (HbT) and oxygen saturation of hemoglobin (SO2) in bloods in vitro. Unlike existing expensive and bulky laser systems typically used for functional photoacoustic imaging (PAI), our laser system is relatively cost-effective and compact. Instead of using two single wavelengths, two wavelength bands were applied to distinguish the concentrations of two different chromophores in the mixture. In addition, we have successfully extracted the total dye concentration and the ratio of the red dye concentration to the total dye concentration in mixed red and blue dye solutions in phantoms. The results indicate that PAI with a cheap and compact fiber based laser source can potentially provide HbT and SO2 in live animals in vivo.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Vanzetta and A. Grinvald, “Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging,” Science 286, 1555–1558 (1999).
    [CrossRef]
  2. C. Menon and D. L. Fraker, “Tumor oxygenation status as a prognostic marker,” Cancer Lett. 221, 225–235 (2005).
    [CrossRef]
  3. M. Nordsmark, S. M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, D. J. Terriis, and J. Overgaard, “Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study,” Radiother. Oncol. 77, 18–24 (2005).
    [CrossRef]
  4. F. B. LaVan and T. K. Hunt, “Oxygen and wound healing,” Clin. Plastic Surg. 17, 463–472 (1990).
  5. C. P. Favazza, L. A. Cornelius, and L. H. V. Wang, “In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin,” J. Biomed. Opt. 16, 026004 (2011).
  6. C. Kim, C. Favazza, and L. H. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110, 2756–2782 (2010).
    [CrossRef]
  7. C. Kim, K. H. Song, F. Gao, and L. H. V. Wang, “Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats-volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging,” Radiology 255, 442–450 (2010).
    [CrossRef]
  8. X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. H. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003).
    [CrossRef]
  9. C. Kim, R. G. Qin, J. S. Xu, L. V. Wang, and R. Xu, “Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging,” J. Biomed. Opt. 15, 010510 (2010).
  10. C. H. Li and L. H. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59–R97 (2009).
    [CrossRef]
  11. M. Pramanik, G. Ku, C. H. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
    [CrossRef]
  12. M. Pramanik, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent,” J. Biomed. Opt. 14, 034018 (2009).
  13. L. A. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett. 36, 1236–1238 (2011).
    [CrossRef]
  14. X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).
  15. J. Xia, A. Danielli, Y. Liu, L. D. Wang, K. Maslov, and L. V. Wang, “Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals,” Opt. Lett. 38, 2800–2803 (2013).
    [CrossRef]
  16. J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16, 076003 (2011).
    [CrossRef]
  17. A. Danielli, C. P. Favazza, K. Maslov, and L. H. V. Wang, “Single-wavelength functional photoacoustic microscopy in biological tissue,” Opt. Lett. 36, 769–771 (2011).
    [CrossRef]
  18. Y. N. Billeh, M. Y. Liu, and T. Buma, “Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source,” Opt. Express 18, 18519–18524 (2010).
    [CrossRef]
  19. C. Lee, S. Han, S. Kim, M. Jeon, M. Y. Jeon, C. Kim, and J. Kim, “Combined photoacoustic and optical coherence tomography using a single near-infrared supercontinuum laser source,” Appl. Opt. 52, 1824–1828 (2013).
    [CrossRef]
  20. A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Picosecond absorption relaxation measured with nanosecond laser photoacoustics,” Appl. Phys. Lett. 97, 163701 (2010).
    [CrossRef]
  21. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. S. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299–309 (2004).
    [CrossRef]
  22. A. B. W. G. Zijlstra and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Hemoglobin, Determination and Application (VSP, 2000).
  23. P. Scheid and M. Meyer, “Mixing technique for study of oxygen-hemoglobin equilibrium: a critical evaluation,” J. Appl. Physiol. 45, 818–822 (1978).
  24. H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90, 053901 (2007).
  25. S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett. 35, 1–3 (2010).
    [CrossRef]
  26. S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36, 1134–1136 (2011).
    [CrossRef]
  27. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34, 1771–1773 (2009).
    [CrossRef]
  28. L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13, 054028 (2008).

2013 (2)

2011 (5)

2010 (6)

C. Kim, C. Favazza, and L. H. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110, 2756–2782 (2010).
[CrossRef]

C. Kim, K. H. Song, F. Gao, and L. H. V. Wang, “Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats-volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging,” Radiology 255, 442–450 (2010).
[CrossRef]

C. Kim, R. G. Qin, J. S. Xu, L. V. Wang, and R. Xu, “Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging,” J. Biomed. Opt. 15, 010510 (2010).

Y. N. Billeh, M. Y. Liu, and T. Buma, “Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source,” Opt. Express 18, 18519–18524 (2010).
[CrossRef]

S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett. 35, 1–3 (2010).
[CrossRef]

A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Picosecond absorption relaxation measured with nanosecond laser photoacoustics,” Appl. Phys. Lett. 97, 163701 (2010).
[CrossRef]

2009 (3)

Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34, 1771–1773 (2009).
[CrossRef]

M. Pramanik, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent,” J. Biomed. Opt. 14, 034018 (2009).

C. H. Li and L. H. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59–R97 (2009).
[CrossRef]

2008 (2)

M. Pramanik, G. Ku, C. H. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
[CrossRef]

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13, 054028 (2008).

2007 (1)

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90, 053901 (2007).

2006 (1)

X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).

2005 (2)

C. Menon and D. L. Fraker, “Tumor oxygenation status as a prognostic marker,” Cancer Lett. 221, 225–235 (2005).
[CrossRef]

M. Nordsmark, S. M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, D. J. Terriis, and J. Overgaard, “Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study,” Radiother. Oncol. 77, 18–24 (2005).
[CrossRef]

2004 (1)

2003 (1)

1999 (1)

I. Vanzetta and A. Grinvald, “Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging,” Science 286, 1555–1558 (1999).
[CrossRef]

1990 (1)

F. B. LaVan and T. K. Hunt, “Oxygen and wound healing,” Clin. Plastic Surg. 17, 463–472 (1990).

1978 (1)

P. Scheid and M. Meyer, “Mixing technique for study of oxygen-hemoglobin equilibrium: a critical evaluation,” J. Appl. Physiol. 45, 818–822 (1978).

Adam, M.

M. Nordsmark, S. M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, D. J. Terriis, and J. Overgaard, “Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study,” Radiother. Oncol. 77, 18–24 (2005).
[CrossRef]

Becker, A.

M. Nordsmark, S. M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, D. J. Terriis, and J. Overgaard, “Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study,” Radiother. Oncol. 77, 18–24 (2005).
[CrossRef]

Bentzen, S. M.

M. Nordsmark, S. M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, D. J. Terriis, and J. Overgaard, “Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study,” Radiother. Oncol. 77, 18–24 (2005).
[CrossRef]

Biancalana, F.

Billeh, Y. N.

Birks, T. A.

Bitton, R.

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13, 054028 (2008).

Brizel, D.

M. Nordsmark, S. M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, D. J. Terriis, and J. Overgaard, “Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study,” Radiother. Oncol. 77, 18–24 (2005).
[CrossRef]

Buma, T.

Cornelius, L. A.

C. P. Favazza, L. A. Cornelius, and L. H. V. Wang, “In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin,” J. Biomed. Opt. 16, 026004 (2011).

Danielli, A.

Dunst, J.

M. Nordsmark, S. M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, D. J. Terriis, and J. Overgaard, “Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study,” Radiother. Oncol. 77, 18–24 (2005).
[CrossRef]

Favazza, C.

C. Kim, C. Favazza, and L. H. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110, 2756–2782 (2010).
[CrossRef]

Favazza, C. P.

C. P. Favazza, L. A. Cornelius, and L. H. V. Wang, “In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin,” J. Biomed. Opt. 16, 026004 (2011).

A. Danielli, C. P. Favazza, K. Maslov, and L. H. V. Wang, “Single-wavelength functional photoacoustic microscopy in biological tissue,” Opt. Lett. 36, 769–771 (2011).
[CrossRef]

A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Picosecond absorption relaxation measured with nanosecond laser photoacoustics,” Appl. Phys. Lett. 97, 163701 (2010).
[CrossRef]

Fraker, D. L.

C. Menon and D. L. Fraker, “Tumor oxygenation status as a prognostic marker,” Cancer Lett. 221, 225–235 (2005).
[CrossRef]

Gao, F.

C. Kim, K. H. Song, F. Gao, and L. H. V. Wang, “Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats-volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging,” Radiology 255, 442–450 (2010).
[CrossRef]

Green, D.

M. Pramanik, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent,” J. Biomed. Opt. 14, 034018 (2009).

Grinvald, A.

I. Vanzetta and A. Grinvald, “Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging,” Science 286, 1555–1558 (1999).
[CrossRef]

Han, S.

Hu, S.

Hunt, T. K.

F. B. LaVan and T. K. Hunt, “Oxygen and wound healing,” Clin. Plastic Surg. 17, 463–472 (1990).

Jeon, M.

Jeon, M. Y.

Jiao, S.

Joly, N.

Kim, C.

C. Lee, S. Han, S. Kim, M. Jeon, M. Y. Jeon, C. Kim, and J. Kim, “Combined photoacoustic and optical coherence tomography using a single near-infrared supercontinuum laser source,” Appl. Opt. 52, 1824–1828 (2013).
[CrossRef]

C. Kim, K. H. Song, F. Gao, and L. H. V. Wang, “Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats-volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging,” Radiology 255, 442–450 (2010).
[CrossRef]

C. Kim, C. Favazza, and L. H. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110, 2756–2782 (2010).
[CrossRef]

C. Kim, R. G. Qin, J. S. Xu, L. V. Wang, and R. Xu, “Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging,” J. Biomed. Opt. 15, 010510 (2010).

Kim, J.

Kim, S.

Knight, J. C.

Ku, G.

M. Pramanik, G. Ku, C. H. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
[CrossRef]

X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. H. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003).
[CrossRef]

Ku, G. N.

X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).

Lartigau, E.

M. Nordsmark, S. M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, D. J. Terriis, and J. Overgaard, “Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study,” Radiother. Oncol. 77, 18–24 (2005).
[CrossRef]

LaVan, F. B.

F. B. LaVan and T. K. Hunt, “Oxygen and wound healing,” Clin. Plastic Surg. 17, 463–472 (1990).

Lee, C.

Li, C. H.

C. H. Li and L. H. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59–R97 (2009).
[CrossRef]

M. Pramanik, G. Ku, C. H. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
[CrossRef]

Liu, M. Y.

Liu, Y.

Maslov, K.

J. Xia, A. Danielli, Y. Liu, L. D. Wang, K. Maslov, and L. V. Wang, “Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals,” Opt. Lett. 38, 2800–2803 (2013).
[CrossRef]

A. Danielli, C. P. Favazza, K. Maslov, and L. H. V. Wang, “Single-wavelength functional photoacoustic microscopy in biological tissue,” Opt. Lett. 36, 769–771 (2011).
[CrossRef]

L. A. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett. 36, 1236–1238 (2011).
[CrossRef]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36, 1134–1136 (2011).
[CrossRef]

A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Picosecond absorption relaxation measured with nanosecond laser photoacoustics,” Appl. Phys. Lett. 97, 163701 (2010).
[CrossRef]

S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett. 35, 1–3 (2010).
[CrossRef]

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13, 054028 (2008).

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90, 053901 (2007).

Maslov, K. I.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16, 076003 (2011).
[CrossRef]

Menon, C.

C. Menon and D. L. Fraker, “Tumor oxygenation status as a prognostic marker,” Cancer Lett. 221, 225–235 (2005).
[CrossRef]

Meyer, M.

P. Scheid and M. Meyer, “Mixing technique for study of oxygen-hemoglobin equilibrium: a critical evaluation,” J. Appl. Physiol. 45, 818–822 (1978).

Molls, M.

M. Nordsmark, S. M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, D. J. Terriis, and J. Overgaard, “Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study,” Radiother. Oncol. 77, 18–24 (2005).
[CrossRef]

Nordsmark, M.

M. Nordsmark, S. M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, D. J. Terriis, and J. Overgaard, “Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study,” Radiother. Oncol. 77, 18–24 (2005).
[CrossRef]

Overgaard, J.

M. Nordsmark, S. M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, D. J. Terriis, and J. Overgaard, “Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study,” Radiother. Oncol. 77, 18–24 (2005).
[CrossRef]

Pang, Y. J.

Pramanik, M.

M. Pramanik, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent,” J. Biomed. Opt. 14, 034018 (2009).

M. Pramanik, G. Ku, C. H. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
[CrossRef]

Puliafito, C. A.

Qin, R. G.

C. Kim, R. G. Qin, J. S. Xu, L. V. Wang, and R. Xu, “Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging,” J. Biomed. Opt. 15, 010510 (2010).

Rao, B.

Rudat, V.

M. Nordsmark, S. M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, D. J. Terriis, and J. Overgaard, “Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study,” Radiother. Oncol. 77, 18–24 (2005).
[CrossRef]

Russell, P. S. J.

Scheid, P.

P. Scheid and M. Meyer, “Mixing technique for study of oxygen-hemoglobin equilibrium: a critical evaluation,” J. Appl. Physiol. 45, 818–822 (1978).

Shung, K. K.

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13, 054028 (2008).

Sitharaman, B.

M. Pramanik, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent,” J. Biomed. Opt. 14, 034018 (2009).

Sivaramakrishnan, M.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90, 053901 (2007).

Song, K. H.

C. Kim, K. H. Song, F. Gao, and L. H. V. Wang, “Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats-volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging,” Radiology 255, 442–450 (2010).
[CrossRef]

Song, L.

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13, 054028 (2008).

Song, L. A.

Stadler, P.

M. Nordsmark, S. M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, D. J. Terriis, and J. Overgaard, “Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study,” Radiother. Oncol. 77, 18–24 (2005).
[CrossRef]

Stoica, G.

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90, 053901 (2007).

X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. H. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003).
[CrossRef]

Swierczewska, M.

M. Pramanik, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent,” J. Biomed. Opt. 14, 034018 (2009).

Terriis, D. J.

M. Nordsmark, S. M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, D. J. Terriis, and J. Overgaard, “Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study,” Radiother. Oncol. 77, 18–24 (2005).
[CrossRef]

van Assendelft, O. W.

A. B. W. G. Zijlstra and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Hemoglobin, Determination and Application (VSP, 2000).

Vanzetta, I.

I. Vanzetta and A. Grinvald, “Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging,” Science 286, 1555–1558 (1999).
[CrossRef]

Wadsworth, W. J.

Wang, L. D.

Wang, L. H. V.

A. Danielli, C. P. Favazza, K. Maslov, and L. H. V. Wang, “Single-wavelength functional photoacoustic microscopy in biological tissue,” Opt. Lett. 36, 769–771 (2011).
[CrossRef]

C. P. Favazza, L. A. Cornelius, and L. H. V. Wang, “In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin,” J. Biomed. Opt. 16, 026004 (2011).

C. Kim, C. Favazza, and L. H. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110, 2756–2782 (2010).
[CrossRef]

C. Kim, K. H. Song, F. Gao, and L. H. V. Wang, “Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats-volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging,” Radiology 255, 442–450 (2010).
[CrossRef]

C. H. Li and L. H. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59–R97 (2009).
[CrossRef]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90, 053901 (2007).

X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).

X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. H. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003).
[CrossRef]

Wang, L. V.

J. Xia, A. Danielli, Y. Liu, L. D. Wang, K. Maslov, and L. V. Wang, “Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals,” Opt. Lett. 38, 2800–2803 (2013).
[CrossRef]

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16, 076003 (2011).
[CrossRef]

L. A. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett. 36, 1236–1238 (2011).
[CrossRef]

S. Hu, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed,” Opt. Lett. 36, 1134–1136 (2011).
[CrossRef]

A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Picosecond absorption relaxation measured with nanosecond laser photoacoustics,” Appl. Phys. Lett. 97, 163701 (2010).
[CrossRef]

S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett. 35, 1–3 (2010).
[CrossRef]

C. Kim, R. G. Qin, J. S. Xu, L. V. Wang, and R. Xu, “Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging,” J. Biomed. Opt. 15, 010510 (2010).

M. Pramanik, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent,” J. Biomed. Opt. 14, 034018 (2009).

M. Pramanik, G. Ku, C. H. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
[CrossRef]

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13, 054028 (2008).

Wang, X. D.

X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).

X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. H. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 1739–1741 (2003).
[CrossRef]

Xia, J.

Xia, Y.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16, 076003 (2011).
[CrossRef]

Xie, X. Y.

X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).

Xie, Z.

Xu, J. S.

C. Kim, R. G. Qin, J. S. Xu, L. V. Wang, and R. Xu, “Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging,” J. Biomed. Opt. 15, 010510 (2010).

Xu, R.

C. Kim, R. G. Qin, J. S. Xu, L. V. Wang, and R. Xu, “Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging,” J. Biomed. Opt. 15, 010510 (2010).

Yao, J.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16, 076003 (2011).
[CrossRef]

Zhang, H. F.

Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34, 1771–1773 (2009).
[CrossRef]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90, 053901 (2007).

Zhang, Y.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16, 076003 (2011).
[CrossRef]

Zijlstra, A. B. W. G.

A. B. W. G. Zijlstra and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Hemoglobin, Determination and Application (VSP, 2000).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Picosecond absorption relaxation measured with nanosecond laser photoacoustics,” Appl. Phys. Lett. 97, 163701 (2010).
[CrossRef]

H. F. Zhang, K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, “Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy,” Appl. Phys. Lett. 90, 053901 (2007).

Cancer Lett. (1)

C. Menon and D. L. Fraker, “Tumor oxygenation status as a prognostic marker,” Cancer Lett. 221, 225–235 (2005).
[CrossRef]

Chem. Rev. (1)

C. Kim, C. Favazza, and L. H. V. Wang, “In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths,” Chem. Rev. 110, 2756–2782 (2010).
[CrossRef]

Clin. Plastic Surg. (1)

F. B. LaVan and T. K. Hunt, “Oxygen and wound healing,” Clin. Plastic Surg. 17, 463–472 (1990).

J. Appl. Physiol. (1)

P. Scheid and M. Meyer, “Mixing technique for study of oxygen-hemoglobin equilibrium: a critical evaluation,” J. Appl. Physiol. 45, 818–822 (1978).

J. Biomed. Opt. (6)

L. Song, K. Maslov, R. Bitton, K. K. Shung, and L. V. Wang, “Fast 3D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array,” J. Biomed. Opt. 13, 054028 (2008).

C. P. Favazza, L. A. Cornelius, and L. H. V. Wang, “In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin,” J. Biomed. Opt. 16, 026004 (2011).

C. Kim, R. G. Qin, J. S. Xu, L. V. Wang, and R. Xu, “Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging,” J. Biomed. Opt. 15, 010510 (2010).

M. Pramanik, M. Swierczewska, D. Green, B. Sitharaman, and L. V. Wang, “Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent,” J. Biomed. Opt. 14, 034018 (2009).

X. D. Wang, X. Y. Xie, G. N. Ku, and L. H. V. Wang, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt. 11, 024015 (2006).

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt. 16, 076003 (2011).
[CrossRef]

Med. Phys. (1)

M. Pramanik, G. Ku, C. H. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (7)

Phys. Med. Biol. (1)

C. H. Li and L. H. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54, R59–R97 (2009).
[CrossRef]

Radiology (1)

C. Kim, K. H. Song, F. Gao, and L. H. V. Wang, “Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats-volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging,” Radiology 255, 442–450 (2010).
[CrossRef]

Radiother. Oncol. (1)

M. Nordsmark, S. M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, D. J. Terriis, and J. Overgaard, “Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study,” Radiother. Oncol. 77, 18–24 (2005).
[CrossRef]

Science (1)

I. Vanzetta and A. Grinvald, “Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging,” Science 286, 1555–1558 (1999).
[CrossRef]

Other (1)

A. B. W. G. Zijlstra and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Hemoglobin, Determination and Application (VSP, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental diagram of a photoacoustic sensing system using a pulsed broadband supercontinuum laser source. (b) Filtered two wavelength bands from the supercontinuum spectrum. AL, aspherical lens; OL, objective lens; PCF, photonic-crystal fiber; CM, collimator; EP, equilateral prism; CL, cylindrical lens; MS, mechanical slit; M, mirror; LS, linear stage; TU, tygon tube; TX, transducer; TB filter, tunable bandpass filter; and SC laser, supercontinuum laser.

Fig. 2.
Fig. 2.

Validation of the linear relationship between PA signals and dye concentrations at two wavelength bands. Normalized PA signals measured at two wavelength bands by varying the red (a) and blue (b) inks’ concentrations.

Fig. 3.
Fig. 3.

(a) Normalized PA signals of the ink mixture measured at both wavelength bands by changing the ratio between the red ink concentration [CR] and the total dye concentration [CR]+[CB]. (b) Measured relative [CR] and [CB] by altering [CR]/([CR]+[CB]). (c) Comparison between the measured [CTotal] and preset [CR]/([CR]+[CB]). (d) Comparison between the measured and preset [CR]/([CR]+[CB]). SR=[CR]/([CR]+[CB]).

Fig. 4.
Fig. 4.

(a) Normalized PA signals of the in vitro bovine blood mixture measured at both wavelength bands by changing the ratio between the oxygenated blood concentration [Oxy-B] and the total blood concentration [Oxy-B]+[Deoxy-B]. (b) Measured relative [Oxy-B] and [Deoxy-B] by altering [Oxy-B]/([Oxy-B]+[Deoxy-B]). (c) Comparison between the measured HbT and preset SO2, [Oxy-B]/([Oxy-B]+[Deoxy-B]). (d) Comparison between the measured and preset SO2.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[CR]=1ln10·εB(λb2)μa(λb1)εB(λb1)μa(λb2)εB(λb2)εR(λb1)εB(λb1)εR(λb2),
[CB]=1ln10·εR(λb1)μa(λb2)εR(λb2)μa(λb1)εB(λb2)εR(λb1)εB(λb1)εR(λb2),
[CTotal]=[CR]+[CB],
[SR]=[CR][CR]+[CB].

Metrics