Abstract

The design method of an infrared/millimeter wave mirror array type of beam combiner was investigated. The beam combiner was composed of a support plate, air gap, and mirror array. It had two advantages: one was that the size of the beam combiner could be extended by splicing more mirrors; the other was that the millimeter wave passband could be tuned by adjusting the thickness of the air gap. The millimeter wave and infrared structure was designed by using transmission line theory and optimized by a simplex Nelder–Mead method. In order to analyze the influence of deformation on performance, the mechanical characteristics of the mirrors and support plate were analyzed by the finite element method. The relationship between the millimeter wave transmission characteristics and the air gap was also analyzed by transmission line theory. The scattered field caused by pillars was computed by the multilevel fast multipole method. In addition, the effect of edge diffraction on the near field uniformity was analyzed by the aperture field integration method. In order to validate the mirror array splicing principle and the infrared imaging performance, a prototype of the mirror array was fabricated and tested. Finally, the infrared images reflected by the mirror array were obtained and analyzed. The simulation and experiment results validated the feasibility of the mirror array beam combiner.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Andressen, “Common aperture dual mode semi-active laser/millimeter wave sensor,” US patent5,973,649A (26October1999).
  2. S. Mobley, “U.S. Army Missile Command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2223, 100–111 (1994).
  3. Y. Tian, L. J. Lv, L. W. Jiang, X. Wang, Y. H. Li, H. M. Yu, X. C. Feng, Q. Li, L. Zhang, and Z. Li, “Infrared/microwave (IR/MW) micromirror array beam combiner design and analysis,” Appl. Opt. 52, 5411–5419 (2013).
    [CrossRef]
  4. Y. Tian, R. Xu, R. Shi, X. Wang, Q. Li, L. Zhang, and Z. Li, “IR/MW multilayered dielectric plate beam combiner design, optimization and evaluation,” Appl. Opt. 52, 288–297 (2013).
    [CrossRef]
  5. Y. P. Zhang, S. X. Wang, and Y. H. Xu, “Dual-mode MMW/IR simulation of beam combiner,” Optik 121, 1003–1008 (2010).
    [CrossRef]
  6. J. P. Gareri, G. H. Ballard, J. W. Morris, D. Bunfield, and D. Saylor, “Application of scene projection technologies at the AMRDECSSDDHWIL facilities,” Proc. SPIE 8356, 83560L (2012).
  7. S. A. Gearhart, T. J. Harris, C. J. Kardian, D. T. Prendergast, and D. T. Winters, “A hardware-in-the-loop test facility for dual-mode infrared and radar guidance systems,” Proc. SPIE 2469, 170–180 (1995).
  8. T. E. O’Bannon and S. A. Gearhart, “Dual-mode infrared and radar hardware-in-the-loop test assets at the Johns Hopkins University Applied Physics Laboratory,” Proc. SPIE 2741, 332–346 (1996).
  9. S. Mobley, V. Vanderford, J. Cooper, and B. Thomas, “U.S. Army Missile Command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2469, 15–19 (1995).
  10. S. Mobley, J. Cole, J. Cooper, and J. Jarem, “U.S. Army Missile Command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2741, 316–331 (1996).
  11. S. B. Mobley and J. Gareri, “Hardware-in-the-loop simulation (HWIL) facility for development, test, and evaluation of multi-spectral missile systems—update,” Proc. SPIE 4027, 11–21 (2000).
  12. S. Mobley and J. Cole, “Dichroic beam combiner to support hardware-in-the-loop testing of dual-mode common aperture seekers,” Proc. SPIE 3368, 32–41 (1998).
  13. L. Sadovnik, A. Manasson, V. Manasson, and V. Yepishin, “Infrared/millimeter wave beam combiner utilizing holographic optical element,” Proc. SPIE 3464, 155–163 (1998).
  14. S. M. Sherman and D. K. Barton, Monopulse Principles and Techniques (Artech House, 2011).
  15. G. C. Holst, “Imaging system fundamentals,” Opt. Eng. 50, 052601 (2011).
    [CrossRef]
  16. A. Rashidian, D. M. Klymyshyn, M. T. Aligodarz, M. Boerner, and J. Mohr, “Microwave performance of photoresist–alumina microcomposites for batch fabrication of thick polymer-based dielectric structures,” J. Micromech. Microeng. 22, 105002 (2012).
    [CrossRef]
  17. I. Gromov, J. Forrer, and A. Schweigerb, “Probehead operating at 35  GHz for continuous wave and pulse electron paramagnetic resonance applications,” Rev. Sci. Instrum. 77, 064704 (2006).
    [CrossRef]
  18. X. Q. Sheng and W. Song, Essentials of Computational Electromagnetics (Wiley, 2012).
  19. S. M. Rao, D. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE. Trans. Antennas Propag. 30, 409–418 (1982).
  20. D. H. Schaubert, D. R. Wilton, and A. W. Glisson, “A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies,” IEEE Trans. Antennas Propag. 32, 77–851 (1984).
  21. C. C. Lu, “A fast algorithm based on volume integral equation for analysis of arbitrarily shaped dielectric radomes,” IEEE Trans. Antennas Propag. 51, 606–612 (2003).
  22. J. P. McKay and R. S. Yahya, “Compact range reflector analysis using the plane wave spectrum approach with an adjustable sampling rate,” IEEE Trans. Antennas Propag. 39, 746–753 (1991).
  23. S. Quan, “Time domain analysis of the near-field radiation of shaped electrically large apertures,” IEEE Trans. Antennas Propag. 58, 300–306 (2010).

2013 (2)

2012 (2)

J. P. Gareri, G. H. Ballard, J. W. Morris, D. Bunfield, and D. Saylor, “Application of scene projection technologies at the AMRDECSSDDHWIL facilities,” Proc. SPIE 8356, 83560L (2012).

A. Rashidian, D. M. Klymyshyn, M. T. Aligodarz, M. Boerner, and J. Mohr, “Microwave performance of photoresist–alumina microcomposites for batch fabrication of thick polymer-based dielectric structures,” J. Micromech. Microeng. 22, 105002 (2012).
[CrossRef]

2011 (1)

G. C. Holst, “Imaging system fundamentals,” Opt. Eng. 50, 052601 (2011).
[CrossRef]

2010 (2)

Y. P. Zhang, S. X. Wang, and Y. H. Xu, “Dual-mode MMW/IR simulation of beam combiner,” Optik 121, 1003–1008 (2010).
[CrossRef]

S. Quan, “Time domain analysis of the near-field radiation of shaped electrically large apertures,” IEEE Trans. Antennas Propag. 58, 300–306 (2010).

2006 (1)

I. Gromov, J. Forrer, and A. Schweigerb, “Probehead operating at 35  GHz for continuous wave and pulse electron paramagnetic resonance applications,” Rev. Sci. Instrum. 77, 064704 (2006).
[CrossRef]

2003 (1)

C. C. Lu, “A fast algorithm based on volume integral equation for analysis of arbitrarily shaped dielectric radomes,” IEEE Trans. Antennas Propag. 51, 606–612 (2003).

2000 (1)

S. B. Mobley and J. Gareri, “Hardware-in-the-loop simulation (HWIL) facility for development, test, and evaluation of multi-spectral missile systems—update,” Proc. SPIE 4027, 11–21 (2000).

1998 (2)

S. Mobley and J. Cole, “Dichroic beam combiner to support hardware-in-the-loop testing of dual-mode common aperture seekers,” Proc. SPIE 3368, 32–41 (1998).

L. Sadovnik, A. Manasson, V. Manasson, and V. Yepishin, “Infrared/millimeter wave beam combiner utilizing holographic optical element,” Proc. SPIE 3464, 155–163 (1998).

1996 (2)

T. E. O’Bannon and S. A. Gearhart, “Dual-mode infrared and radar hardware-in-the-loop test assets at the Johns Hopkins University Applied Physics Laboratory,” Proc. SPIE 2741, 332–346 (1996).

S. Mobley, J. Cole, J. Cooper, and J. Jarem, “U.S. Army Missile Command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2741, 316–331 (1996).

1995 (2)

S. Mobley, V. Vanderford, J. Cooper, and B. Thomas, “U.S. Army Missile Command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2469, 15–19 (1995).

S. A. Gearhart, T. J. Harris, C. J. Kardian, D. T. Prendergast, and D. T. Winters, “A hardware-in-the-loop test facility for dual-mode infrared and radar guidance systems,” Proc. SPIE 2469, 170–180 (1995).

1994 (1)

S. Mobley, “U.S. Army Missile Command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2223, 100–111 (1994).

1991 (1)

J. P. McKay and R. S. Yahya, “Compact range reflector analysis using the plane wave spectrum approach with an adjustable sampling rate,” IEEE Trans. Antennas Propag. 39, 746–753 (1991).

1984 (1)

D. H. Schaubert, D. R. Wilton, and A. W. Glisson, “A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies,” IEEE Trans. Antennas Propag. 32, 77–851 (1984).

1982 (1)

S. M. Rao, D. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE. Trans. Antennas Propag. 30, 409–418 (1982).

Aligodarz, M. T.

A. Rashidian, D. M. Klymyshyn, M. T. Aligodarz, M. Boerner, and J. Mohr, “Microwave performance of photoresist–alumina microcomposites for batch fabrication of thick polymer-based dielectric structures,” J. Micromech. Microeng. 22, 105002 (2012).
[CrossRef]

Andressen, C. C.

C. C. Andressen, “Common aperture dual mode semi-active laser/millimeter wave sensor,” US patent5,973,649A (26October1999).

Ballard, G. H.

J. P. Gareri, G. H. Ballard, J. W. Morris, D. Bunfield, and D. Saylor, “Application of scene projection technologies at the AMRDECSSDDHWIL facilities,” Proc. SPIE 8356, 83560L (2012).

Barton, D. K.

S. M. Sherman and D. K. Barton, Monopulse Principles and Techniques (Artech House, 2011).

Boerner, M.

A. Rashidian, D. M. Klymyshyn, M. T. Aligodarz, M. Boerner, and J. Mohr, “Microwave performance of photoresist–alumina microcomposites for batch fabrication of thick polymer-based dielectric structures,” J. Micromech. Microeng. 22, 105002 (2012).
[CrossRef]

Bunfield, D.

J. P. Gareri, G. H. Ballard, J. W. Morris, D. Bunfield, and D. Saylor, “Application of scene projection technologies at the AMRDECSSDDHWIL facilities,” Proc. SPIE 8356, 83560L (2012).

Cole, J.

S. Mobley and J. Cole, “Dichroic beam combiner to support hardware-in-the-loop testing of dual-mode common aperture seekers,” Proc. SPIE 3368, 32–41 (1998).

S. Mobley, J. Cole, J. Cooper, and J. Jarem, “U.S. Army Missile Command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2741, 316–331 (1996).

Cooper, J.

S. Mobley, J. Cole, J. Cooper, and J. Jarem, “U.S. Army Missile Command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2741, 316–331 (1996).

S. Mobley, V. Vanderford, J. Cooper, and B. Thomas, “U.S. Army Missile Command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2469, 15–19 (1995).

Feng, X. C.

Forrer, J.

I. Gromov, J. Forrer, and A. Schweigerb, “Probehead operating at 35  GHz for continuous wave and pulse electron paramagnetic resonance applications,” Rev. Sci. Instrum. 77, 064704 (2006).
[CrossRef]

Gareri, J.

S. B. Mobley and J. Gareri, “Hardware-in-the-loop simulation (HWIL) facility for development, test, and evaluation of multi-spectral missile systems—update,” Proc. SPIE 4027, 11–21 (2000).

Gareri, J. P.

J. P. Gareri, G. H. Ballard, J. W. Morris, D. Bunfield, and D. Saylor, “Application of scene projection technologies at the AMRDECSSDDHWIL facilities,” Proc. SPIE 8356, 83560L (2012).

Gearhart, S. A.

T. E. O’Bannon and S. A. Gearhart, “Dual-mode infrared and radar hardware-in-the-loop test assets at the Johns Hopkins University Applied Physics Laboratory,” Proc. SPIE 2741, 332–346 (1996).

S. A. Gearhart, T. J. Harris, C. J. Kardian, D. T. Prendergast, and D. T. Winters, “A hardware-in-the-loop test facility for dual-mode infrared and radar guidance systems,” Proc. SPIE 2469, 170–180 (1995).

Glisson, A. W.

D. H. Schaubert, D. R. Wilton, and A. W. Glisson, “A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies,” IEEE Trans. Antennas Propag. 32, 77–851 (1984).

S. M. Rao, D. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE. Trans. Antennas Propag. 30, 409–418 (1982).

Gromov, I.

I. Gromov, J. Forrer, and A. Schweigerb, “Probehead operating at 35  GHz for continuous wave and pulse electron paramagnetic resonance applications,” Rev. Sci. Instrum. 77, 064704 (2006).
[CrossRef]

Harris, T. J.

S. A. Gearhart, T. J. Harris, C. J. Kardian, D. T. Prendergast, and D. T. Winters, “A hardware-in-the-loop test facility for dual-mode infrared and radar guidance systems,” Proc. SPIE 2469, 170–180 (1995).

Holst, G. C.

G. C. Holst, “Imaging system fundamentals,” Opt. Eng. 50, 052601 (2011).
[CrossRef]

Jarem, J.

S. Mobley, J. Cole, J. Cooper, and J. Jarem, “U.S. Army Missile Command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2741, 316–331 (1996).

Jiang, L. W.

Kardian, C. J.

S. A. Gearhart, T. J. Harris, C. J. Kardian, D. T. Prendergast, and D. T. Winters, “A hardware-in-the-loop test facility for dual-mode infrared and radar guidance systems,” Proc. SPIE 2469, 170–180 (1995).

Klymyshyn, D. M.

A. Rashidian, D. M. Klymyshyn, M. T. Aligodarz, M. Boerner, and J. Mohr, “Microwave performance of photoresist–alumina microcomposites for batch fabrication of thick polymer-based dielectric structures,” J. Micromech. Microeng. 22, 105002 (2012).
[CrossRef]

Li, Q.

Li, Y. H.

Li, Z.

Lu, C. C.

C. C. Lu, “A fast algorithm based on volume integral equation for analysis of arbitrarily shaped dielectric radomes,” IEEE Trans. Antennas Propag. 51, 606–612 (2003).

Lv, L. J.

Manasson, A.

L. Sadovnik, A. Manasson, V. Manasson, and V. Yepishin, “Infrared/millimeter wave beam combiner utilizing holographic optical element,” Proc. SPIE 3464, 155–163 (1998).

Manasson, V.

L. Sadovnik, A. Manasson, V. Manasson, and V. Yepishin, “Infrared/millimeter wave beam combiner utilizing holographic optical element,” Proc. SPIE 3464, 155–163 (1998).

McKay, J. P.

J. P. McKay and R. S. Yahya, “Compact range reflector analysis using the plane wave spectrum approach with an adjustable sampling rate,” IEEE Trans. Antennas Propag. 39, 746–753 (1991).

Mobley, S.

S. Mobley and J. Cole, “Dichroic beam combiner to support hardware-in-the-loop testing of dual-mode common aperture seekers,” Proc. SPIE 3368, 32–41 (1998).

S. Mobley, J. Cole, J. Cooper, and J. Jarem, “U.S. Army Missile Command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2741, 316–331 (1996).

S. Mobley, V. Vanderford, J. Cooper, and B. Thomas, “U.S. Army Missile Command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2469, 15–19 (1995).

S. Mobley, “U.S. Army Missile Command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2223, 100–111 (1994).

Mobley, S. B.

S. B. Mobley and J. Gareri, “Hardware-in-the-loop simulation (HWIL) facility for development, test, and evaluation of multi-spectral missile systems—update,” Proc. SPIE 4027, 11–21 (2000).

Mohr, J.

A. Rashidian, D. M. Klymyshyn, M. T. Aligodarz, M. Boerner, and J. Mohr, “Microwave performance of photoresist–alumina microcomposites for batch fabrication of thick polymer-based dielectric structures,” J. Micromech. Microeng. 22, 105002 (2012).
[CrossRef]

Morris, J. W.

J. P. Gareri, G. H. Ballard, J. W. Morris, D. Bunfield, and D. Saylor, “Application of scene projection technologies at the AMRDECSSDDHWIL facilities,” Proc. SPIE 8356, 83560L (2012).

O’Bannon, T. E.

T. E. O’Bannon and S. A. Gearhart, “Dual-mode infrared and radar hardware-in-the-loop test assets at the Johns Hopkins University Applied Physics Laboratory,” Proc. SPIE 2741, 332–346 (1996).

Prendergast, D. T.

S. A. Gearhart, T. J. Harris, C. J. Kardian, D. T. Prendergast, and D. T. Winters, “A hardware-in-the-loop test facility for dual-mode infrared and radar guidance systems,” Proc. SPIE 2469, 170–180 (1995).

Quan, S.

S. Quan, “Time domain analysis of the near-field radiation of shaped electrically large apertures,” IEEE Trans. Antennas Propag. 58, 300–306 (2010).

Rao, S. M.

S. M. Rao, D. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE. Trans. Antennas Propag. 30, 409–418 (1982).

Rashidian, A.

A. Rashidian, D. M. Klymyshyn, M. T. Aligodarz, M. Boerner, and J. Mohr, “Microwave performance of photoresist–alumina microcomposites for batch fabrication of thick polymer-based dielectric structures,” J. Micromech. Microeng. 22, 105002 (2012).
[CrossRef]

Sadovnik, L.

L. Sadovnik, A. Manasson, V. Manasson, and V. Yepishin, “Infrared/millimeter wave beam combiner utilizing holographic optical element,” Proc. SPIE 3464, 155–163 (1998).

Saylor, D.

J. P. Gareri, G. H. Ballard, J. W. Morris, D. Bunfield, and D. Saylor, “Application of scene projection technologies at the AMRDECSSDDHWIL facilities,” Proc. SPIE 8356, 83560L (2012).

Schaubert, D. H.

D. H. Schaubert, D. R. Wilton, and A. W. Glisson, “A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies,” IEEE Trans. Antennas Propag. 32, 77–851 (1984).

Schweigerb, A.

I. Gromov, J. Forrer, and A. Schweigerb, “Probehead operating at 35  GHz for continuous wave and pulse electron paramagnetic resonance applications,” Rev. Sci. Instrum. 77, 064704 (2006).
[CrossRef]

Sheng, X. Q.

X. Q. Sheng and W. Song, Essentials of Computational Electromagnetics (Wiley, 2012).

Sherman, S. M.

S. M. Sherman and D. K. Barton, Monopulse Principles and Techniques (Artech House, 2011).

Shi, R.

Song, W.

X. Q. Sheng and W. Song, Essentials of Computational Electromagnetics (Wiley, 2012).

Thomas, B.

S. Mobley, V. Vanderford, J. Cooper, and B. Thomas, “U.S. Army Missile Command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2469, 15–19 (1995).

Tian, Y.

Vanderford, V.

S. Mobley, V. Vanderford, J. Cooper, and B. Thomas, “U.S. Army Missile Command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2469, 15–19 (1995).

Wang, S. X.

Y. P. Zhang, S. X. Wang, and Y. H. Xu, “Dual-mode MMW/IR simulation of beam combiner,” Optik 121, 1003–1008 (2010).
[CrossRef]

Wang, X.

Wilton, D.

S. M. Rao, D. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE. Trans. Antennas Propag. 30, 409–418 (1982).

Wilton, D. R.

D. H. Schaubert, D. R. Wilton, and A. W. Glisson, “A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies,” IEEE Trans. Antennas Propag. 32, 77–851 (1984).

Winters, D. T.

S. A. Gearhart, T. J. Harris, C. J. Kardian, D. T. Prendergast, and D. T. Winters, “A hardware-in-the-loop test facility for dual-mode infrared and radar guidance systems,” Proc. SPIE 2469, 170–180 (1995).

Xu, R.

Xu, Y. H.

Y. P. Zhang, S. X. Wang, and Y. H. Xu, “Dual-mode MMW/IR simulation of beam combiner,” Optik 121, 1003–1008 (2010).
[CrossRef]

Yahya, R. S.

J. P. McKay and R. S. Yahya, “Compact range reflector analysis using the plane wave spectrum approach with an adjustable sampling rate,” IEEE Trans. Antennas Propag. 39, 746–753 (1991).

Yepishin, V.

L. Sadovnik, A. Manasson, V. Manasson, and V. Yepishin, “Infrared/millimeter wave beam combiner utilizing holographic optical element,” Proc. SPIE 3464, 155–163 (1998).

Yu, H. M.

Zhang, L.

Zhang, Y. P.

Y. P. Zhang, S. X. Wang, and Y. H. Xu, “Dual-mode MMW/IR simulation of beam combiner,” Optik 121, 1003–1008 (2010).
[CrossRef]

Appl. Opt. (2)

IEEE Trans. Antennas Propag. (4)

D. H. Schaubert, D. R. Wilton, and A. W. Glisson, “A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies,” IEEE Trans. Antennas Propag. 32, 77–851 (1984).

C. C. Lu, “A fast algorithm based on volume integral equation for analysis of arbitrarily shaped dielectric radomes,” IEEE Trans. Antennas Propag. 51, 606–612 (2003).

J. P. McKay and R. S. Yahya, “Compact range reflector analysis using the plane wave spectrum approach with an adjustable sampling rate,” IEEE Trans. Antennas Propag. 39, 746–753 (1991).

S. Quan, “Time domain analysis of the near-field radiation of shaped electrically large apertures,” IEEE Trans. Antennas Propag. 58, 300–306 (2010).

IEEE. Trans. Antennas Propag. (1)

S. M. Rao, D. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE. Trans. Antennas Propag. 30, 409–418 (1982).

J. Micromech. Microeng. (1)

A. Rashidian, D. M. Klymyshyn, M. T. Aligodarz, M. Boerner, and J. Mohr, “Microwave performance of photoresist–alumina microcomposites for batch fabrication of thick polymer-based dielectric structures,” J. Micromech. Microeng. 22, 105002 (2012).
[CrossRef]

Opt. Eng. (1)

G. C. Holst, “Imaging system fundamentals,” Opt. Eng. 50, 052601 (2011).
[CrossRef]

Optik (1)

Y. P. Zhang, S. X. Wang, and Y. H. Xu, “Dual-mode MMW/IR simulation of beam combiner,” Optik 121, 1003–1008 (2010).
[CrossRef]

Proc. SPIE (9)

J. P. Gareri, G. H. Ballard, J. W. Morris, D. Bunfield, and D. Saylor, “Application of scene projection technologies at the AMRDECSSDDHWIL facilities,” Proc. SPIE 8356, 83560L (2012).

S. A. Gearhart, T. J. Harris, C. J. Kardian, D. T. Prendergast, and D. T. Winters, “A hardware-in-the-loop test facility for dual-mode infrared and radar guidance systems,” Proc. SPIE 2469, 170–180 (1995).

T. E. O’Bannon and S. A. Gearhart, “Dual-mode infrared and radar hardware-in-the-loop test assets at the Johns Hopkins University Applied Physics Laboratory,” Proc. SPIE 2741, 332–346 (1996).

S. Mobley, V. Vanderford, J. Cooper, and B. Thomas, “U.S. Army Missile Command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2469, 15–19 (1995).

S. Mobley, J. Cole, J. Cooper, and J. Jarem, “U.S. Army Missile Command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2741, 316–331 (1996).

S. B. Mobley and J. Gareri, “Hardware-in-the-loop simulation (HWIL) facility for development, test, and evaluation of multi-spectral missile systems—update,” Proc. SPIE 4027, 11–21 (2000).

S. Mobley and J. Cole, “Dichroic beam combiner to support hardware-in-the-loop testing of dual-mode common aperture seekers,” Proc. SPIE 3368, 32–41 (1998).

L. Sadovnik, A. Manasson, V. Manasson, and V. Yepishin, “Infrared/millimeter wave beam combiner utilizing holographic optical element,” Proc. SPIE 3464, 155–163 (1998).

S. Mobley, “U.S. Army Missile Command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2223, 100–111 (1994).

Rev. Sci. Instrum. (1)

I. Gromov, J. Forrer, and A. Schweigerb, “Probehead operating at 35  GHz for continuous wave and pulse electron paramagnetic resonance applications,” Rev. Sci. Instrum. 77, 064704 (2006).
[CrossRef]

Other (3)

X. Q. Sheng and W. Song, Essentials of Computational Electromagnetics (Wiley, 2012).

C. C. Andressen, “Common aperture dual mode semi-active laser/millimeter wave sensor,” US patent5,973,649A (26October1999).

S. M. Sherman and D. K. Barton, Monopulse Principles and Techniques (Artech House, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic diagram of dual-mode IR/MWW HWIL system.

Fig. 2.
Fig. 2.

Principle of mirror array beam combiner.

Fig. 3.
Fig. 3.

Structure of mirror array beam combiner.

Fig. 4.
Fig. 4.

Simulation results of mirror deformation.

Fig. 5.
Fig. 5.

Simulation results of support plate deformation.

Fig. 6.
Fig. 6.

(a) MMW transmittance and (b) IPD of beam combiner versus incident angle and frequency.

Fig. 7.
Fig. 7.

(a) MMW transmittance and (b) IPD of beam combiner versus thickness of air gap at 34 (solid), 35 (dashed), and 36 GHz (solid).

Fig. 8.
Fig. 8.

Amplitude of scattered electrical field by pillars versus (a) x and (b) y axes with incident angles of 40° (solid), 45° (dashed), and 50° (dotted).

Fig. 9.
Fig. 9.

Amplitude and relative phase of E versus x and y axes with incident angles of 40° (solid), 45° (dashed), and 50° (dotted). (a) Amplitude along x; (b) relative phase along x; (c) amplitude along y; (d) relative phase along y.

Fig. 10.
Fig. 10.

IR reflectance versus wavelength.

Fig. 11.
Fig. 11.

IR reflectance versus incident angle.

Fig. 12.
Fig. 12.

Principle of IR imaging experiment.

Fig. 13.
Fig. 13.

IR images (a) before and (b) after splicing.

Tables (4)

Tables Icon

Table 1. Main Requirements

Tables Icon

Table 2. MMW Structure of Beam Combiner

Tables Icon

Table 3. IR Structure of Beam Combiner

Tables Icon

Table 4. Epv, Erms, φpv, and φrms with Different Incident Angles and along x or y Axes

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

φd=360°ϕMMWsin(θi)λMMW.
dθi=λMMWdφd360°ϕMMWcosθi.
2Δdlf<dpixel2.
E(x,y,z)=14πΩ[R×(z×EA)]×(1+jk0R)ejk0RR3dxdy,
Epv=max(E)min(E).
φpv=max(φ)min(φ),
Erms=[w/2w/2(EE¯)2dx]/w,
φrms=[w/2w/2(φφ¯)2dx]/w

Metrics