Abstract

The reconstruction of subwavelength defects from measured images of high-NA-projection systems is demonstrated. A structure consisting of a few small unknown defects in an otherwise known mask layout is studied. The footprint of the defect, which is the measured or simulated difference between images of masks with and without defects, is used to reconstruct the position, shape, and transmission of defects. The requirement is that the few unknown defects are sparsely located in the known mask layout. The technique relies on the cost function and an appropriate optimizer. The dependency of the reconstruction results on defect sizes and types of defects is presented. Moreover, the sensitivity of the technique to noise is investigated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future, optical microlithography,” Proc. SPIE 5377, 1–20 (2004).
    [CrossRef]
  2. T. Yasui, I. Higashikawa, P. Kuschnerus, W. Degel, K. Boehm, A. Zibold, Y. Kobiyama, J. Urbach, C. M. Schilz, and S. T. Semmler, “Actinic aerial image measurement for qualification of defect on 157  nm photomask,” Proc. SPIE 5446, 743–750 (2004).
    [CrossRef]
  3. J. H. Park, P. D. H. Chung, C. U. Jeon, and H. K. Cho, “Mask pattern recovery by Level Set Technique based Inverse Inspection Technology (IIT) and its application on defect auto disposition,” Proc. SPIE 7488, 748809 (2009).
    [CrossRef]
  4. Y. Shechteman, Y. C. Eldar, A. Szameit, and M. Segev, “Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing,” Opt. Express 19, 14807–14822 (2011).
    [CrossRef]
  5. R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
    [CrossRef]
  6. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).
  7. F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9, 1249–1254 (2009).
    [CrossRef]
  8. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
    [CrossRef]
  9. Y. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University, 2011).
  10. M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Signal Process. 1, 586–597 (2007).
    [CrossRef]
  11. S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse subwavelength images,” Opt. Express 17, 23920–23946 (2009).
    [CrossRef]
  12. A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
    [CrossRef]
  13. D. Xu, S. Li, X. Wang, T. Fühner, and A. Erdmann, “Defect parameters retrieval based on optical projection images,” Proc. SPIE 8789, 87890J (2013).
    [CrossRef]
  14. T. Fühner, T. Schnattinger, G. Ardelean, and A. Erdmann, “Dr. LiTHO-a development and research lithography simulator,” Proc. SPIE 6520, 65203F (2007).
    [CrossRef]
  15. www.drlitho.com .
  16. P. Evanschitzky, A. Erdmann, and T. Fühner, “Extended Abbe approach for fast and accurate lithography imaging simulations,” Proc. SPIE 7470, 747007 (2009).
    [CrossRef]
  17. Y. Granik, “Fast pixel-based mask optimization for inverse lithography,” J. Microlithogr., Microfabr., Microsyst. 5, 043002 (2006).
    [CrossRef]
  18. A. Erdmann, T. Fühner, T. Schnattinger, and B. Tollkühn, “Towards automatic mask and source optimization for optical lithography,” Proc. SPIE 5377, 646–657 (2004).
    [CrossRef]
  19. C. A. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (Wiley, 2007).
  20. T. Fühner, A. Erdmann, and S. Seifert, “Direct optimization approach for lithographic process conditions,” J. Microlithogr., Microfabr., Microsyst. 6, 031006 (2007).
    [CrossRef]

2013 (1)

D. Xu, S. Li, X. Wang, T. Fühner, and A. Erdmann, “Defect parameters retrieval based on optical projection images,” Proc. SPIE 8789, 87890J (2013).
[CrossRef]

2012 (1)

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
[CrossRef]

2011 (1)

2009 (4)

S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse subwavelength images,” Opt. Express 17, 23920–23946 (2009).
[CrossRef]

P. Evanschitzky, A. Erdmann, and T. Fühner, “Extended Abbe approach for fast and accurate lithography imaging simulations,” Proc. SPIE 7470, 747007 (2009).
[CrossRef]

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9, 1249–1254 (2009).
[CrossRef]

J. H. Park, P. D. H. Chung, C. U. Jeon, and H. K. Cho, “Mask pattern recovery by Level Set Technique based Inverse Inspection Technology (IIT) and its application on defect auto disposition,” Proc. SPIE 7488, 748809 (2009).
[CrossRef]

2007 (3)

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Signal Process. 1, 586–597 (2007).
[CrossRef]

T. Fühner, T. Schnattinger, G. Ardelean, and A. Erdmann, “Dr. LiTHO-a development and research lithography simulator,” Proc. SPIE 6520, 65203F (2007).
[CrossRef]

T. Fühner, A. Erdmann, and S. Seifert, “Direct optimization approach for lithographic process conditions,” J. Microlithogr., Microfabr., Microsyst. 6, 031006 (2007).
[CrossRef]

2006 (2)

Y. Granik, “Fast pixel-based mask optimization for inverse lithography,” J. Microlithogr., Microfabr., Microsyst. 5, 043002 (2006).
[CrossRef]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[CrossRef]

2004 (3)

F. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future, optical microlithography,” Proc. SPIE 5377, 1–20 (2004).
[CrossRef]

T. Yasui, I. Higashikawa, P. Kuschnerus, W. Degel, K. Boehm, A. Zibold, Y. Kobiyama, J. Urbach, C. M. Schilz, and S. T. Semmler, “Actinic aerial image measurement for qualification of defect on 157  nm photomask,” Proc. SPIE 5446, 743–750 (2004).
[CrossRef]

A. Erdmann, T. Fühner, T. Schnattinger, and B. Tollkühn, “Towards automatic mask and source optimization for optical lithography,” Proc. SPIE 5377, 646–657 (2004).
[CrossRef]

1999 (1)

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[CrossRef]

Ardelean, G.

T. Fühner, T. Schnattinger, G. Ardelean, and A. Erdmann, “Dr. LiTHO-a development and research lithography simulator,” Proc. SPIE 6520, 65203F (2007).
[CrossRef]

Boehm, K.

T. Yasui, I. Higashikawa, P. Kuschnerus, W. Degel, K. Boehm, A. Zibold, Y. Kobiyama, J. Urbach, C. M. Schilz, and S. T. Semmler, “Actinic aerial image measurement for qualification of defect on 157  nm photomask,” Proc. SPIE 5446, 743–750 (2004).
[CrossRef]

Bullkich, E.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
[CrossRef]

Cho, H. K.

J. H. Park, P. D. H. Chung, C. U. Jeon, and H. K. Cho, “Mask pattern recovery by Level Set Technique based Inverse Inspection Technology (IIT) and its application on defect auto disposition,” Proc. SPIE 7488, 748809 (2009).
[CrossRef]

Chung, P. D. H.

J. H. Park, P. D. H. Chung, C. U. Jeon, and H. K. Cho, “Mask pattern recovery by Level Set Technique based Inverse Inspection Technology (IIT) and its application on defect auto disposition,” Proc. SPIE 7488, 748809 (2009).
[CrossRef]

Cohen, O.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
[CrossRef]

Cohen-Hyams, T.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
[CrossRef]

Cremer, C.

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[CrossRef]

Dana, H.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
[CrossRef]

Degel, W.

T. Yasui, I. Higashikawa, P. Kuschnerus, W. Degel, K. Boehm, A. Zibold, Y. Kobiyama, J. Urbach, C. M. Schilz, and S. T. Semmler, “Actinic aerial image measurement for qualification of defect on 157  nm photomask,” Proc. SPIE 5446, 743–750 (2004).
[CrossRef]

Donoho, D. L.

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[CrossRef]

Eldar, Y.

Y. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University, 2011).

Eldar, Y. C.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
[CrossRef]

Y. Shechteman, Y. C. Eldar, A. Szameit, and M. Segev, “Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing,” Opt. Express 19, 14807–14822 (2011).
[CrossRef]

S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse subwavelength images,” Opt. Express 17, 23920–23946 (2009).
[CrossRef]

Erdmann, A.

D. Xu, S. Li, X. Wang, T. Fühner, and A. Erdmann, “Defect parameters retrieval based on optical projection images,” Proc. SPIE 8789, 87890J (2013).
[CrossRef]

P. Evanschitzky, A. Erdmann, and T. Fühner, “Extended Abbe approach for fast and accurate lithography imaging simulations,” Proc. SPIE 7470, 747007 (2009).
[CrossRef]

T. Fühner, A. Erdmann, and S. Seifert, “Direct optimization approach for lithographic process conditions,” J. Microlithogr., Microfabr., Microsyst. 6, 031006 (2007).
[CrossRef]

T. Fühner, T. Schnattinger, G. Ardelean, and A. Erdmann, “Dr. LiTHO-a development and research lithography simulator,” Proc. SPIE 6520, 65203F (2007).
[CrossRef]

A. Erdmann, T. Fühner, T. Schnattinger, and B. Tollkühn, “Towards automatic mask and source optimization for optical lithography,” Proc. SPIE 5377, 646–657 (2004).
[CrossRef]

Evanschitzky, P.

P. Evanschitzky, A. Erdmann, and T. Fühner, “Extended Abbe approach for fast and accurate lithography imaging simulations,” Proc. SPIE 7470, 747007 (2009).
[CrossRef]

Figueiredo, M. A. T.

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Signal Process. 1, 586–597 (2007).
[CrossRef]

Fühner, T.

D. Xu, S. Li, X. Wang, T. Fühner, and A. Erdmann, “Defect parameters retrieval based on optical projection images,” Proc. SPIE 8789, 87890J (2013).
[CrossRef]

P. Evanschitzky, A. Erdmann, and T. Fühner, “Extended Abbe approach for fast and accurate lithography imaging simulations,” Proc. SPIE 7470, 747007 (2009).
[CrossRef]

T. Fühner, A. Erdmann, and S. Seifert, “Direct optimization approach for lithographic process conditions,” J. Microlithogr., Microfabr., Microsyst. 6, 031006 (2007).
[CrossRef]

T. Fühner, T. Schnattinger, G. Ardelean, and A. Erdmann, “Dr. LiTHO-a development and research lithography simulator,” Proc. SPIE 6520, 65203F (2007).
[CrossRef]

A. Erdmann, T. Fühner, T. Schnattinger, and B. Tollkühn, “Towards automatic mask and source optimization for optical lithography,” Proc. SPIE 5377, 646–657 (2004).
[CrossRef]

Gazit, S.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
[CrossRef]

S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse subwavelength images,” Opt. Express 17, 23920–23946 (2009).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).

Granik, Y.

Y. Granik, “Fast pixel-based mask optimization for inverse lithography,” J. Microlithogr., Microfabr., Microsyst. 5, 043002 (2006).
[CrossRef]

Heintzmann, R.

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[CrossRef]

Higashikawa, I.

T. Yasui, I. Higashikawa, P. Kuschnerus, W. Degel, K. Boehm, A. Zibold, Y. Kobiyama, J. Urbach, C. M. Schilz, and S. T. Semmler, “Actinic aerial image measurement for qualification of defect on 157  nm photomask,” Proc. SPIE 5446, 743–750 (2004).
[CrossRef]

Huang, F. M.

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9, 1249–1254 (2009).
[CrossRef]

Jeon, C. U.

J. H. Park, P. D. H. Chung, C. U. Jeon, and H. K. Cho, “Mask pattern recovery by Level Set Technique based Inverse Inspection Technology (IIT) and its application on defect auto disposition,” Proc. SPIE 7488, 748809 (2009).
[CrossRef]

Kley, E. B.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
[CrossRef]

Kobiyama, Y.

T. Yasui, I. Higashikawa, P. Kuschnerus, W. Degel, K. Boehm, A. Zibold, Y. Kobiyama, J. Urbach, C. M. Schilz, and S. T. Semmler, “Actinic aerial image measurement for qualification of defect on 157  nm photomask,” Proc. SPIE 5446, 743–750 (2004).
[CrossRef]

Kuschnerus, P.

T. Yasui, I. Higashikawa, P. Kuschnerus, W. Degel, K. Boehm, A. Zibold, Y. Kobiyama, J. Urbach, C. M. Schilz, and S. T. Semmler, “Actinic aerial image measurement for qualification of defect on 157  nm photomask,” Proc. SPIE 5446, 743–750 (2004).
[CrossRef]

Kutyniok, G.

Y. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University, 2011).

Li, S.

D. Xu, S. Li, X. Wang, T. Fühner, and A. Erdmann, “Defect parameters retrieval based on optical projection images,” Proc. SPIE 8789, 87890J (2013).
[CrossRef]

Mack, C. A.

C. A. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (Wiley, 2007).

Nowak, R. D.

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Signal Process. 1, 586–597 (2007).
[CrossRef]

Osherovich, E.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
[CrossRef]

Park, J. H.

J. H. Park, P. D. H. Chung, C. U. Jeon, and H. K. Cho, “Mask pattern recovery by Level Set Technique based Inverse Inspection Technology (IIT) and its application on defect auto disposition,” Proc. SPIE 7488, 748809 (2009).
[CrossRef]

Schellenberg, F.

F. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future, optical microlithography,” Proc. SPIE 5377, 1–20 (2004).
[CrossRef]

Schilz, C. M.

T. Yasui, I. Higashikawa, P. Kuschnerus, W. Degel, K. Boehm, A. Zibold, Y. Kobiyama, J. Urbach, C. M. Schilz, and S. T. Semmler, “Actinic aerial image measurement for qualification of defect on 157  nm photomask,” Proc. SPIE 5446, 743–750 (2004).
[CrossRef]

Schnattinger, T.

T. Fühner, T. Schnattinger, G. Ardelean, and A. Erdmann, “Dr. LiTHO-a development and research lithography simulator,” Proc. SPIE 6520, 65203F (2007).
[CrossRef]

A. Erdmann, T. Fühner, T. Schnattinger, and B. Tollkühn, “Towards automatic mask and source optimization for optical lithography,” Proc. SPIE 5377, 646–657 (2004).
[CrossRef]

Segev, M.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
[CrossRef]

Y. Shechteman, Y. C. Eldar, A. Szameit, and M. Segev, “Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing,” Opt. Express 19, 14807–14822 (2011).
[CrossRef]

S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse subwavelength images,” Opt. Express 17, 23920–23946 (2009).
[CrossRef]

Seifert, S.

T. Fühner, A. Erdmann, and S. Seifert, “Direct optimization approach for lithographic process conditions,” J. Microlithogr., Microfabr., Microsyst. 6, 031006 (2007).
[CrossRef]

Semmler, S. T.

T. Yasui, I. Higashikawa, P. Kuschnerus, W. Degel, K. Boehm, A. Zibold, Y. Kobiyama, J. Urbach, C. M. Schilz, and S. T. Semmler, “Actinic aerial image measurement for qualification of defect on 157  nm photomask,” Proc. SPIE 5446, 743–750 (2004).
[CrossRef]

Shechteman, Y.

Shechtman, Y.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
[CrossRef]

Shoham, S.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
[CrossRef]

Sidorenko, P.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
[CrossRef]

Steiner, S.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
[CrossRef]

Szameit, A.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
[CrossRef]

Y. Shechteman, Y. C. Eldar, A. Szameit, and M. Segev, “Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing,” Opt. Express 19, 14807–14822 (2011).
[CrossRef]

S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, “Super-resolution and reconstruction of sparse subwavelength images,” Opt. Express 17, 23920–23946 (2009).
[CrossRef]

Tollkühn, B.

A. Erdmann, T. Fühner, T. Schnattinger, and B. Tollkühn, “Towards automatic mask and source optimization for optical lithography,” Proc. SPIE 5377, 646–657 (2004).
[CrossRef]

Urbach, J.

T. Yasui, I. Higashikawa, P. Kuschnerus, W. Degel, K. Boehm, A. Zibold, Y. Kobiyama, J. Urbach, C. M. Schilz, and S. T. Semmler, “Actinic aerial image measurement for qualification of defect on 157  nm photomask,” Proc. SPIE 5446, 743–750 (2004).
[CrossRef]

Wang, X.

D. Xu, S. Li, X. Wang, T. Fühner, and A. Erdmann, “Defect parameters retrieval based on optical projection images,” Proc. SPIE 8789, 87890J (2013).
[CrossRef]

Wright, S. J.

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Signal Process. 1, 586–597 (2007).
[CrossRef]

Xu, D.

D. Xu, S. Li, X. Wang, T. Fühner, and A. Erdmann, “Defect parameters retrieval based on optical projection images,” Proc. SPIE 8789, 87890J (2013).
[CrossRef]

Yasui, T.

T. Yasui, I. Higashikawa, P. Kuschnerus, W. Degel, K. Boehm, A. Zibold, Y. Kobiyama, J. Urbach, C. M. Schilz, and S. T. Semmler, “Actinic aerial image measurement for qualification of defect on 157  nm photomask,” Proc. SPIE 5446, 743–750 (2004).
[CrossRef]

Yavneh, I.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
[CrossRef]

Zheludev, N. I.

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9, 1249–1254 (2009).
[CrossRef]

Zibold, A.

T. Yasui, I. Higashikawa, P. Kuschnerus, W. Degel, K. Boehm, A. Zibold, Y. Kobiyama, J. Urbach, C. M. Schilz, and S. T. Semmler, “Actinic aerial image measurement for qualification of defect on 157  nm photomask,” Proc. SPIE 5446, 743–750 (2004).
[CrossRef]

Zibulevsky, M.

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
[CrossRef]

IEEE J. Sel. Top. Signal Process. (1)

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems,” IEEE J. Sel. Top. Signal Process. 1, 586–597 (2007).
[CrossRef]

IEEE Trans. Inf. Theory (1)

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[CrossRef]

J. Microlithogr., Microfabr., Microsyst. (2)

Y. Granik, “Fast pixel-based mask optimization for inverse lithography,” J. Microlithogr., Microfabr., Microsyst. 5, 043002 (2006).
[CrossRef]

T. Fühner, A. Erdmann, and S. Seifert, “Direct optimization approach for lithographic process conditions,” J. Microlithogr., Microfabr., Microsyst. 6, 031006 (2007).
[CrossRef]

Nano Lett. (1)

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9, 1249–1254 (2009).
[CrossRef]

Nat. Mater. (1)

A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012).
[CrossRef]

Opt. Express (2)

Proc. SPIE (8)

A. Erdmann, T. Fühner, T. Schnattinger, and B. Tollkühn, “Towards automatic mask and source optimization for optical lithography,” Proc. SPIE 5377, 646–657 (2004).
[CrossRef]

P. Evanschitzky, A. Erdmann, and T. Fühner, “Extended Abbe approach for fast and accurate lithography imaging simulations,” Proc. SPIE 7470, 747007 (2009).
[CrossRef]

D. Xu, S. Li, X. Wang, T. Fühner, and A. Erdmann, “Defect parameters retrieval based on optical projection images,” Proc. SPIE 8789, 87890J (2013).
[CrossRef]

T. Fühner, T. Schnattinger, G. Ardelean, and A. Erdmann, “Dr. LiTHO-a development and research lithography simulator,” Proc. SPIE 6520, 65203F (2007).
[CrossRef]

F. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future, optical microlithography,” Proc. SPIE 5377, 1–20 (2004).
[CrossRef]

T. Yasui, I. Higashikawa, P. Kuschnerus, W. Degel, K. Boehm, A. Zibold, Y. Kobiyama, J. Urbach, C. M. Schilz, and S. T. Semmler, “Actinic aerial image measurement for qualification of defect on 157  nm photomask,” Proc. SPIE 5446, 743–750 (2004).
[CrossRef]

J. H. Park, P. D. H. Chung, C. U. Jeon, and H. K. Cho, “Mask pattern recovery by Level Set Technique based Inverse Inspection Technology (IIT) and its application on defect auto disposition,” Proc. SPIE 7488, 748809 (2009).
[CrossRef]

R. Heintzmann and C. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–196 (1999).
[CrossRef]

Other (4)

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).

www.drlitho.com .

Y. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University, 2011).

C. A. Mack, Fundamental Principles of Optical Lithography: The Science of Microfabrication (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Isolated bright defect, (b) its image, and (c) guessed defect.

Fig. 2.
Fig. 2.

Convergence of the nonsparse retrieval algorithm for the defect shown in Fig. 1: (a) based on cost function 1 [Eq. (3)] and (b) based on cost function 2 [Eq. (4)].

Fig. 3.
Fig. 3.

Flow chart of optimization procedure.

Fig. 4.
Fig. 4.

Convergence of sparse retrieval algorithm for the defect shown in Fig. 1: (a) based on cost function 1 [Eq. (3)] and (b) based on cost function 2 [Eq. (4)].

Fig. 5.
Fig. 5.

Image misfit according to Eq. (2) and reconstruction result.

Fig. 6.
Fig. 6.

Bright defect and its effect on the image: (a) defective mask, (b) defect image, (c) intensity profile along the line, and (d) footprint of the defect.

Fig. 7.
Fig. 7.

Impact of the defects with different size and position on the image misfit and on the sum of the gradient of the footprint (imaging conditions are given in Table 1): (a) sum of the footprint and (b) sum of the gradient of the footprint.

Fig. 8.
Fig. 8.

Guessed defective mask.

Fig. 9.
Fig. 9.

Optimization procedure.

Fig. 10.
Fig. 10.

Types of defect for 90 nm dense lines main features: (a)–(f) are called defect 1–6.

Fig. 11.
Fig. 11.

Corresponding guessed defect for 90 nm dense lines main features: (a)–(f) are called guessed defect 1–6.

Tables (4)

Tables Icon

Table 1. Parameter Settings

Tables Icon

Table 2. Defect Size (nm) and Shape Settings for Test Cases

Tables Icon

Table 3. Possibility of Success for Cost Function 1

Tables Icon

Table 4. Possibility of Success for Cost Function 2

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Fd=d{Ig,Io}=d{T{M},Io}.
Fd=IgIo1,
F=IgIo22,
F=d(IgIo)dx+d(IgIo)dy22.
Noise Amplitude=n%×n=1NIn/N,

Metrics