Abstract

We report an experimental implementation of long-range polarimetric imaging through fog over kilometric distance in real field atmospheric conditions. An incoherent polarized light source settled on a telecommunication tower is imaged at a distance of 1.3 km with a snapshot polarimetric camera including a birefringent Wollaston prism, allowing simultaneous acquisition of two images along orthogonal polarization directions. From a large number of acquisitions datasets and under various environmental conditions (clear sky/fog/haze, day/night), we compare the efficiency of using polarized light for source contrast increase with different signal representations (intensity, polarimetric difference, polarimetric contrast, etc.). With the limited-dynamics detector used, a maximum fourfold increase in contrast was demonstrated under bright background illumination using polarimetric difference image.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Andersson-Engels, R. Berg, S. Svanberg, and O. Jarlman, “Time-resolved transillumination for medical diagnostics,” Opt. Lett. 15, 1179–1181 (1990).
    [CrossRef]
  2. N. Zeng, X. Jiang, Q. Gao, Y. He, and H. Ma, “Linear polarization difference imaging and its potential applications,” Appl. Opt. 48, 6734–6739 (2009).
    [CrossRef]
  3. M. Dubreuil, P. Delrot, I. Leonard, A. Alfalou, C. Brosseau, and A. Dogariu, “Exploring underwater target detection by imaging polarimetry and correlation techniques,” Appl. Opt. 52, 997–1005 (2013).
    [CrossRef]
  4. W. R. Watkins, D. H. Tofsted, V. G. CuQlock-Knopp, J. B. Jordan, and J. O. Merritt, “Navigation through fog using stereoscopic active imaging,” Proc. SPIE 4023, 20–28 (2000).
    [CrossRef]
  5. L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef]
  6. Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20, 1498–1500 (1995).
    [CrossRef]
  7. E. Leith, B. Hoover, S. Grannell, K. Mills, H. Chen, and D. Dilworth, “Realization of time gating by use of spatial filtering,” Appl. Opt. 38, 1370–1376 (1999).
    [CrossRef]
  8. M. Oleary, D. Boas, B. Chance, and A. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
    [CrossRef]
  9. L. Mullen, A. Laux, B. Concannon, E. P. Zege, I. L. Katsev, and A. S. Prikhach, “Amplitude-modulated laser imager,” Appl. Opt. 43, 3874–3892 (2004).
    [CrossRef]
  10. E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744–746 (1999).
    [CrossRef]
  11. E. Belin and V. Boucher, “An imaging system based on laser optical feedback for fog vision applications,” Proc. SPIE 7088, 70880N (2008).
    [CrossRef]
  12. J. Schmitt, A. Gandjbakhche, and R. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
    [CrossRef]
  13. H. Horinaka, K. Hashimoto, K. Wada, Y. Cho, and M. Osawa, “Extraction of quasi-straightforward-propagating photons from diffused light transmitting through a scattering medium by polarization modulation,” Opt. Lett. 20, 1501–1503 (1995).
    [CrossRef]
  14. O. Emile, F. Bretenaker, and A. Floch, “Rotating polarization imaging in turbid media,” Opt. Lett. 21, 1706–1708 (1996).
    [CrossRef]
  15. H. Ramachandran and A. Narayanan, “Two-dimensional imaging through turbid media using a continuous wave light source,” Opt. Commun. 154, 255–260 (1998).
    [CrossRef]
  16. S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: dependence on scattering anisotropy,” Opt. Commun. 241, 1–9 (2004).
    [CrossRef]
  17. J. S. Ryan and A. I. Carswell, “Laser beam broadening and depolarization in dense fogs,” J. Opt. Soc. Am. 68, 900–908 (1978).
    [CrossRef]
  18. M. Xu and R. Alfano, “Circular polarization memory of light,” Phys. Rev. E 72, 065601 (2005).
  19. R. Nothdurft and G. Yao, “Applying the polarization memory effect in polarization-gated subsurface imaging,” Opt. Express 14, 4656–4661 (2006).
    [CrossRef]
  20. J. A. Garland, “Some fog droplet size distributions obtained by an impaction method,” Q. J. Roy. Meteor. Soc. 97, 483–494 (1971).
    [CrossRef]
  21. M. Hayman, S. Spuler, B. Morley, and J. VanAndel, “Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers,” Opt. Express 20, 29553–29567 (2012).
    [CrossRef]
  22. S. Demos and R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
    [CrossRef]
  23. P. Terrier, V. Devlaminck, and J. Charbois, “Segmentation of rough surfaces using a polarization imaging system,” J. Opt. Soc. Am. A 25, 423–430 (2008).
    [CrossRef]
  24. O. Morel, C. Stolz, F. Meriaudeau, and P. Gorria, “Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging,” Appl. Opt. 45, 4062–4068 (2006).
    [CrossRef]
  25. M. Yamada, K. Ueda, I. Horiba, and N. Sugie, “Discrimination of the road condition toward understanding of vehicle driving environments,” IEEE Trans. Intell. Transp. Syst. 2, 26–31 (2001).
    [CrossRef]
  26. A. Bénière, M. Alouini, F. Goudail, and D. Dolfi, “Design and experimental validation of a snapshot polarization contrast imager,” Appl. Opt. 48, 5764–5773 (2009).
    [CrossRef]
  27. H. Luo, K. Oka, D. Edward, M. Kudenov, J. Schiewgerling, and E. Dereniak, “Compact and miniature snapshot imaging polarimeter,” Appl. Opt. 47, 4413–4417 (2008).
    [CrossRef]
  28. M. W. Kudenov, M. J. Escuti, N. Hagen, E. L. Dereniak, and K. Oka, “Snapshot imaging Mueller matrix polarimeter using polarization gratings,” Opt. Lett. 37, 1367–1369 (2012).
    [CrossRef]
  29. S. Alali, T. Yang, and I. Vitkin, “Rapid time-gated polarimetric Stokes imaging using photoelastic modulators,” Opt. Lett. 38, 2997–3000 (2013).
    [CrossRef]
  30. V. Gruev, R. Perkins, and T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18, 19087–19094 (2010).
    [CrossRef]
  31. M. C. Simon, “Wollaston prism with large split angle,” Appl. Opt. 25, 369–376 (1986).
    [CrossRef]
  32. D. Bicout, C. Brosseau, A. Martinez, and J. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
    [CrossRef]
  33. M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J. Appl. Phys. 42, 129–139 (2008).
    [CrossRef]
  34. A. Bénière, F. Goudail, D. Dolfi, and M. Alouini, “Target detection in active polarization images perturbed with additive noise and illumination nonuniformity,” J. Opt. Soc. Am. A 26, 1678–1686 (2009).
    [CrossRef]
  35. J. Fade, S. Panigrahi, and M. Alouini, “Optimal estimation in polarimetric imaging in the presence of correlated noise fluctuations,” Opt. Express 22, 4920–4931 (2014).
    [CrossRef]

2014 (1)

2013 (2)

2012 (2)

2010 (1)

2009 (3)

2008 (4)

E. Belin and V. Boucher, “An imaging system based on laser optical feedback for fog vision applications,” Proc. SPIE 7088, 70880N (2008).
[CrossRef]

H. Luo, K. Oka, D. Edward, M. Kudenov, J. Schiewgerling, and E. Dereniak, “Compact and miniature snapshot imaging polarimeter,” Appl. Opt. 47, 4413–4417 (2008).
[CrossRef]

P. Terrier, V. Devlaminck, and J. Charbois, “Segmentation of rough surfaces using a polarization imaging system,” J. Opt. Soc. Am. A 25, 423–430 (2008).
[CrossRef]

M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J. Appl. Phys. 42, 129–139 (2008).
[CrossRef]

2006 (2)

2005 (1)

M. Xu and R. Alfano, “Circular polarization memory of light,” Phys. Rev. E 72, 065601 (2005).

2004 (2)

S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: dependence on scattering anisotropy,” Opt. Commun. 241, 1–9 (2004).
[CrossRef]

L. Mullen, A. Laux, B. Concannon, E. P. Zege, I. L. Katsev, and A. S. Prikhach, “Amplitude-modulated laser imager,” Appl. Opt. 43, 3874–3892 (2004).
[CrossRef]

2001 (1)

M. Yamada, K. Ueda, I. Horiba, and N. Sugie, “Discrimination of the road condition toward understanding of vehicle driving environments,” IEEE Trans. Intell. Transp. Syst. 2, 26–31 (2001).
[CrossRef]

2000 (1)

W. R. Watkins, D. H. Tofsted, V. G. CuQlock-Knopp, J. B. Jordan, and J. O. Merritt, “Navigation through fog using stereoscopic active imaging,” Proc. SPIE 4023, 20–28 (2000).
[CrossRef]

1999 (2)

1998 (1)

H. Ramachandran and A. Narayanan, “Two-dimensional imaging through turbid media using a continuous wave light source,” Opt. Commun. 154, 255–260 (1998).
[CrossRef]

1997 (1)

1996 (1)

1995 (2)

1994 (1)

D. Bicout, C. Brosseau, A. Martinez, and J. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

1992 (2)

J. Schmitt, A. Gandjbakhche, and R. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
[CrossRef]

M. Oleary, D. Boas, B. Chance, and A. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[CrossRef]

1991 (1)

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

1990 (1)

1986 (1)

1978 (1)

1971 (1)

J. A. Garland, “Some fog droplet size distributions obtained by an impaction method,” Q. J. Roy. Meteor. Soc. 97, 483–494 (1971).
[CrossRef]

Alali, S.

Alfalou, A.

Alfano, R.

M. Xu and R. Alfano, “Circular polarization memory of light,” Phys. Rev. E 72, 065601 (2005).

S. Demos and R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
[CrossRef]

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Alfano, R. R.

Alouini, M.

Andersson-Engels, S.

Belin, E.

E. Belin and V. Boucher, “An imaging system based on laser optical feedback for fog vision applications,” Proc. SPIE 7088, 70880N (2008).
[CrossRef]

Bénière, A.

Berg, R.

Bicout, D.

D. Bicout, C. Brosseau, A. Martinez, and J. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Boas, D.

M. Oleary, D. Boas, B. Chance, and A. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[CrossRef]

Bonner, R.

Boucher, V.

E. Belin and V. Boucher, “An imaging system based on laser optical feedback for fog vision applications,” Proc. SPIE 7088, 70880N (2008).
[CrossRef]

Bretenaker, F.

Breugnot, S.

M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J. Appl. Phys. 42, 129–139 (2008).
[CrossRef]

Brosseau, C.

M. Dubreuil, P. Delrot, I. Leonard, A. Alfalou, C. Brosseau, and A. Dogariu, “Exploring underwater target detection by imaging polarimetry and correlation techniques,” Appl. Opt. 52, 997–1005 (2013).
[CrossRef]

D. Bicout, C. Brosseau, A. Martinez, and J. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Carswell, A. I.

Chance, B.

M. Oleary, D. Boas, B. Chance, and A. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[CrossRef]

Charbois, J.

Chen, H.

Cho, Y.

Concannon, B.

CuQlock-Knopp, V. G.

W. R. Watkins, D. H. Tofsted, V. G. CuQlock-Knopp, J. B. Jordan, and J. O. Merritt, “Navigation through fog using stereoscopic active imaging,” Proc. SPIE 4023, 20–28 (2000).
[CrossRef]

Day, R.

Delrot, P.

Demos, S.

Dereniak, E.

Dereniak, E. L.

Devlaminck, V.

Dilworth, D.

Dogariu, A.

Dolfi, D.

Dubreuil, M.

Edward, D.

Emile, O.

Escuti, M. J.

Fade, J.

Floch, A.

Gandjbakhche, A.

Gao, Q.

Garland, J. A.

J. A. Garland, “Some fog droplet size distributions obtained by an impaction method,” Q. J. Roy. Meteor. Soc. 97, 483–494 (1971).
[CrossRef]

Gorria, P.

Goudail, F.

Grannell, S.

Gruev, V.

Hagen, N.

Hartemann, P.

M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J. Appl. Phys. 42, 129–139 (2008).
[CrossRef]

Hashimoto, K.

Hayman, M.

He, Y.

Ho, P.

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Ho, P. P.

Hoover, B.

Horiba, I.

M. Yamada, K. Ueda, I. Horiba, and N. Sugie, “Discrimination of the road condition toward understanding of vehicle driving environments,” IEEE Trans. Intell. Transp. Syst. 2, 26–31 (2001).
[CrossRef]

Horinaka, H.

Jarlman, O.

Jiang, X.

Jordan, J. B.

W. R. Watkins, D. H. Tofsted, V. G. CuQlock-Knopp, J. B. Jordan, and J. O. Merritt, “Navigation through fog using stereoscopic active imaging,” Proc. SPIE 4023, 20–28 (2000).
[CrossRef]

Katsev, I. L.

Kudenov, M.

Kudenov, M. W.

Lacot, E.

Laux, A.

Le Hors, L.

M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J. Appl. Phys. 42, 129–139 (2008).
[CrossRef]

Leith, E.

Leonard, I.

Liang, X.

Liu, C.

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Luo, H.

Ma, H.

Martinez, A.

D. Bicout, C. Brosseau, A. Martinez, and J. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

Meriaudeau, F.

Merritt, J. O.

W. R. Watkins, D. H. Tofsted, V. G. CuQlock-Knopp, J. B. Jordan, and J. O. Merritt, “Navigation through fog using stereoscopic active imaging,” Proc. SPIE 4023, 20–28 (2000).
[CrossRef]

Mills, K.

Morel, O.

Morley, B.

Mujumdar, S.

S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: dependence on scattering anisotropy,” Opt. Commun. 241, 1–9 (2004).
[CrossRef]

Mullen, L.

Narayanan, A.

H. Ramachandran and A. Narayanan, “Two-dimensional imaging through turbid media using a continuous wave light source,” Opt. Commun. 154, 255–260 (1998).
[CrossRef]

Nothdurft, R.

Oka, K.

Oleary, M.

M. Oleary, D. Boas, B. Chance, and A. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[CrossRef]

Osawa, M.

Panigrahi, S.

Perkins, R.

Prikhach, A. S.

Ramachandran, H.

S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: dependence on scattering anisotropy,” Opt. Commun. 241, 1–9 (2004).
[CrossRef]

H. Ramachandran and A. Narayanan, “Two-dimensional imaging through turbid media using a continuous wave light source,” Opt. Commun. 154, 255–260 (1998).
[CrossRef]

Roux, N.

M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J. Appl. Phys. 42, 129–139 (2008).
[CrossRef]

Ryan, J. S.

Schiewgerling, J.

Schmitt, J.

D. Bicout, C. Brosseau, A. Martinez, and J. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

J. Schmitt, A. Gandjbakhche, and R. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
[CrossRef]

Simon, M. C.

Spuler, S.

Stoeckel, F.

Stolz, C.

Sugie, N.

M. Yamada, K. Ueda, I. Horiba, and N. Sugie, “Discrimination of the road condition toward understanding of vehicle driving environments,” IEEE Trans. Intell. Transp. Syst. 2, 26–31 (2001).
[CrossRef]

Svanberg, S.

Terrier, P.

Tofsted, D. H.

W. R. Watkins, D. H. Tofsted, V. G. CuQlock-Knopp, J. B. Jordan, and J. O. Merritt, “Navigation through fog using stereoscopic active imaging,” Proc. SPIE 4023, 20–28 (2000).
[CrossRef]

Ueda, K.

M. Yamada, K. Ueda, I. Horiba, and N. Sugie, “Discrimination of the road condition toward understanding of vehicle driving environments,” IEEE Trans. Intell. Transp. Syst. 2, 26–31 (2001).
[CrossRef]

VanAndel, J.

Vitkin, I.

Wada, K.

Wang, L.

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, and R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20, 1498–1500 (1995).
[CrossRef]

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Wang, Q. Z.

Watkins, W. R.

W. R. Watkins, D. H. Tofsted, V. G. CuQlock-Knopp, J. B. Jordan, and J. O. Merritt, “Navigation through fog using stereoscopic active imaging,” Proc. SPIE 4023, 20–28 (2000).
[CrossRef]

Xu, M.

M. Xu and R. Alfano, “Circular polarization memory of light,” Phys. Rev. E 72, 065601 (2005).

Yamada, M.

M. Yamada, K. Ueda, I. Horiba, and N. Sugie, “Discrimination of the road condition toward understanding of vehicle driving environments,” IEEE Trans. Intell. Transp. Syst. 2, 26–31 (2001).
[CrossRef]

Yang, T.

Yao, G.

Yodh, A.

M. Oleary, D. Boas, B. Chance, and A. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[CrossRef]

York, T.

Zege, E. P.

Zeng, N.

Zhang, G.

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Appl. Opt. (10)

M. C. Simon, “Wollaston prism with large split angle,” Appl. Opt. 25, 369–376 (1986).
[CrossRef]

J. Schmitt, A. Gandjbakhche, and R. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
[CrossRef]

S. Demos and R. Alfano, “Optical polarization imaging,” Appl. Opt. 36, 150–155 (1997).
[CrossRef]

E. Leith, B. Hoover, S. Grannell, K. Mills, H. Chen, and D. Dilworth, “Realization of time gating by use of spatial filtering,” Appl. Opt. 38, 1370–1376 (1999).
[CrossRef]

L. Mullen, A. Laux, B. Concannon, E. P. Zege, I. L. Katsev, and A. S. Prikhach, “Amplitude-modulated laser imager,” Appl. Opt. 43, 3874–3892 (2004).
[CrossRef]

O. Morel, C. Stolz, F. Meriaudeau, and P. Gorria, “Active lighting applied to three-dimensional reconstruction of specular metallic surfaces by polarization imaging,” Appl. Opt. 45, 4062–4068 (2006).
[CrossRef]

A. Bénière, M. Alouini, F. Goudail, and D. Dolfi, “Design and experimental validation of a snapshot polarization contrast imager,” Appl. Opt. 48, 5764–5773 (2009).
[CrossRef]

N. Zeng, X. Jiang, Q. Gao, Y. He, and H. Ma, “Linear polarization difference imaging and its potential applications,” Appl. Opt. 48, 6734–6739 (2009).
[CrossRef]

H. Luo, K. Oka, D. Edward, M. Kudenov, J. Schiewgerling, and E. Dereniak, “Compact and miniature snapshot imaging polarimeter,” Appl. Opt. 47, 4413–4417 (2008).
[CrossRef]

M. Dubreuil, P. Delrot, I. Leonard, A. Alfalou, C. Brosseau, and A. Dogariu, “Exploring underwater target detection by imaging polarimetry and correlation techniques,” Appl. Opt. 52, 997–1005 (2013).
[CrossRef]

Eur. Phys. J. Appl. Phys. (1)

M. Alouini, F. Goudail, N. Roux, L. Le Hors, P. Hartemann, S. Breugnot, and D. Dolfi, “Active spectro-polarimetric imaging: signature modeling, imaging demonstrator and target detection,” Eur. Phys. J. Appl. Phys. 42, 129–139 (2008).
[CrossRef]

IEEE Trans. Intell. Transp. Syst. (1)

M. Yamada, K. Ueda, I. Horiba, and N. Sugie, “Discrimination of the road condition toward understanding of vehicle driving environments,” IEEE Trans. Intell. Transp. Syst. 2, 26–31 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Opt. Commun. (2)

H. Ramachandran and A. Narayanan, “Two-dimensional imaging through turbid media using a continuous wave light source,” Opt. Commun. 154, 255–260 (1998).
[CrossRef]

S. Mujumdar and H. Ramachandran, “Imaging through turbid media using polarization modulation: dependence on scattering anisotropy,” Opt. Commun. 241, 1–9 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (7)

Phys. Rev. E (2)

D. Bicout, C. Brosseau, A. Martinez, and J. Schmitt, “Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter,” Phys. Rev. E 49, 1767–1770 (1994).
[CrossRef]

M. Xu and R. Alfano, “Circular polarization memory of light,” Phys. Rev. E 72, 065601 (2005).

Phys. Rev. Lett. (1)

M. Oleary, D. Boas, B. Chance, and A. Yodh, “Refraction of diffuse photon density waves,” Phys. Rev. Lett. 69, 2658–2661 (1992).
[CrossRef]

Proc. SPIE (2)

E. Belin and V. Boucher, “An imaging system based on laser optical feedback for fog vision applications,” Proc. SPIE 7088, 70880N (2008).
[CrossRef]

W. R. Watkins, D. H. Tofsted, V. G. CuQlock-Knopp, J. B. Jordan, and J. O. Merritt, “Navigation through fog using stereoscopic active imaging,” Proc. SPIE 4023, 20–28 (2000).
[CrossRef]

Q. J. Roy. Meteor. Soc. (1)

J. A. Garland, “Some fog droplet size distributions obtained by an impaction method,” Q. J. Roy. Meteor. Soc. 97, 483–494 (1971).
[CrossRef]

Science (1)

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Long-range polarimetric imaging experimental setup. The source and the camera are separated by 1.27 km with the camera placed in the University of Rennes 1 campus and the source located on a telecommunication tower of the TDF company. The photograph shows the polarized light source settled on the telecommunication tower.

Fig. 2.
Fig. 2.

Polarimetric imaging setup: The WP angularly separates the incident beam into two orthogonal polarization components forming two images I and I on the CCD. The illustration in (a) shows a orthographic view of the polarimetric imager while the schematic in (b) geometrically indicates the working principle of the imaging setup. A top view photograph of the imaging setup is shown in (c).

Fig. 3.
Fig. 3.

Difference image (II) of the calibration target (grid of dots) (left) and test object (right). The top images correspond to the difference images formed with approximate extraction of the two image channels. The middle row is the result of image registration correction by pixel linear translation, and the bottom row corresponds to the difference images created after applying the distortion correction algorithm. The inset shows the correlation map obtained by translating the I over 21×21 pixels and finding maximum correlation with I.

Fig. 4.
Fig. 4.

Raw image obtained from the camera with 782×582 pixels. Extraction of two image channels after applying image registration process is demarcated in the yellow dashed box. The ambient illumination is obtained by averaging over the region shown in red-dashed lines, and the region shown in blue dashed lines is the 21×21 pixel ROI that includes the source at its center.

Fig. 5.
Fig. 5.

(a) Time evolution of the source (signal) intensity, ambient intensity, and camera exposure time across daytime experiment. (b) Time evolution of the CNR of four polarimetric signal representations. (c) Raw images of four frames labeled H, I, J, and K, corresponding to various visibility conditions across daytime experiments.

Fig. 6.
Fig. 6.

CNR images of the 21×21 ROI around the polarized light source, extracted at times indicated by H, I, J, and K in Fig. 5. Rows 1 to 4 correspond to the CNR obtained with intensity image, difference image, OSC image, and contrast ratio image, respectively. The corresponding CNRs for the central source pixel are also given as numerical figures for comparison.

Fig. 7.
Fig. 7.

Same as Fig. 5 for nighttime experiment. The inset shows a magnified part of the plot where the fog is thinning and the CNRs are comparable for all signal representations. Four frames labeled L, M, N, and O have been selected to be representative of visibility conditions during night experiments. The display dynamics in (c) has been expanded by a factor of 20 for all night situations so that the background becomes visible.

Fig. 8.
Fig. 8.

Same as Fig. 6 for nighttime experiments. The OSC image is observed to be noisy and has the least signal contrast as a result.

Tables (1)

Tables Icon

Table 1. Signal Representations of Polarimetric Data, with χk Denoting Spatial Averaging over a Square Neighborhood χk of the Central Pixel of Size Nk Pixels

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S=(S0S1S2S3)=(Ix+IyIxIyI+45°I45°IRIL),
OSC=S1S0=III+I,
OSCA=(IsIa)(IsIa)(IsIa)+(IsIa).
CNR=γsγχk1Nk1iχk(γiγχk)2,

Metrics