Abstract

We propose and demonstrate a 5-cm-long monolithic dual-wavelength single-longitudinal mode distributed Bragg reflector (DBR) all-phosphate fiber laser. Strong UV-induced fiber Bragg gratings are directly written in highly Er/Yb codoped phosphate fiber. The separation between gratings is selected as 1 cm to only excite two longitudinal modes in the DBR cavity. By exploiting the spatial hole burning effect and the polarization hole burning effect, stable narrow-linewidth dual-wavelength lasing emission with 38 pm wavelength spacing and a total emitted power of 2.8 mW is obtained from this DBR fiber laser. A microwave signal at 4.58 GHz is generated by the heterodyne detection of the dual-wavelength laser.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+- and Yb3+–Er3+-doped phosphate glasses,” J. Opt. Soc. Am. B 17, 833–839 (2000).
    [CrossRef]
  2. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550  nm,” J. Lightwave Technol. 22, 57–62 (2004).
    [CrossRef]
  3. T. Qiu, S. Suzuki, A. Schülzgen, L. Li, A. Polynkin, V. Temyanko, J. V. Moloney, and N. Peyghambarian, “Generation of watt-level single-longitudinal-mode output from cladding-pumped short fiber lasers,” Opt. Lett. 30, 2748–2750 (2005).
    [CrossRef]
  4. L. Li, A. Schülzgen, V. L. Temyanko, M. M. Morrell, S. Sabet, H. Li, J. V. Moloney, and N. Peyghambarian, “Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode output power,” Appl. Phys. Lett. 88, 161106 (2006).
    [CrossRef]
  5. A. Schülzgen, L. Li, V. L. Temyanko, S. Suzuki, J. V. Moloney, and N. Peyghambarian, “Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber,” Opt. Express 14, 7087–7092 (2006).
    [CrossRef]
  6. X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33, 908–910 (2008).
    [CrossRef]
  7. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300  mW narrow-linewidth single frequency fiber laser at 1.5  μm,” Opt. Express 18, 1249–1254 (2010).
    [CrossRef]
  8. J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett. 89, 101127 (2006).
    [CrossRef]
  9. L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “Photo-thermal growth of unsaturated and saturated Bragg gratings in phosphate glass fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (OSA, 2010), paper BTuB1.
  10. A. Schülzgen, L. Li, D. Nguyen, C. Spiegelberg, R. M. Rogojan, A. Laronche, J. Albert, and N. Peyghambarian, “Distributed feedback fiber laser pumped by multimode laser diodes,” Opt. Lett. 33, 614–616 (2008).
    [CrossRef]
  11. L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1  W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett. 92, 051111 (2008).
    [CrossRef]
  12. P. Hofmann, A. Pirson-Chavez, A. Schülzgen, L. Xiong, A. Laronche, J. Albert, and N. Peyghambarian, “Low-noise single frequency all phosphate fiber laser,” Proc. SPIE 8039, 803911 (2011).
    [CrossRef]
  13. S. Pradhan, G. E. Town, and K. J. Grant, “Dual-wavelength DBR fiber laser,” IEEE Photon. Technol. Lett. 18, 1741–1743 (2006).
    [CrossRef]
  14. Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
    [CrossRef]
  15. Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18, 1964–1966 (2006).
    [CrossRef]
  16. G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
    [CrossRef]
  17. L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, “Beating frequency tunable dual-wavelength erbium-doped fiber laser with one fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1453–1455 (2004).
    [CrossRef]
  18. S. Feng, O. Xu, S. Lu, X. Mao, T. Ning, and S. Jian, “Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization-maintaining fiber Bragg gratings,” Opt. Express 16, 11830–11835 (2008).
    [CrossRef]
  19. W. Liu, M. Jiang, D. Chen, S. He, and S. Member, “Dual-wavelength single-longitudinal-mode polarization-maintaining fiber laser and its application in microwave generation,” J. Lightwave Technol. 27, 4455–4459 (2009).
    [CrossRef]
  20. P. Rugeland, Z. Yu, O. Tarasenko, G. Tengstrand, and W. Margulis, “Tunable photonic microwave generation based on a novel dual-polarization fiber laser cavity,” IEEE Photon. Technol. Lett. 23, 1878–1880 (2011).
    [CrossRef]
  21. X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Opt. Express 17, 21773–21781 (2009).
    [CrossRef]
  22. B. Lin, S. Chuan Tjin, M. Jiang, and P. Shum, “Tunable microwave generation based on a dual-wavelength fiber laser with an inverse-Gaussian apodized fiber Bragg grating,” Appl. Opt. 50, 4912–4916 (2011).
    [CrossRef]
  23. S. Pan, X. Zhao, and C. Lou, “Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier,” Opt. Lett. 33, 764–766 (2008).
    [CrossRef]
  24. B. Lin, S. C. Tjin, H. Zhang, D. Tang, J. Hao, B. Dong, and S. Liang, “Switchable dual-wavelength single-longitudinal-mode erbium-doped fiber laser using an inverse-Gaussian apodized fiber Bragg grating filter and a low-gain semiconductor optical amplifier,” Appl. Opt. 49, 6855–6860 (2010).
    [CrossRef]
  25. M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Tunable Terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser,” Opt. Express 19, 779–786 (2011).
    [CrossRef]
  26. M. A. Ummy, N. Madamopoulos, M. Razani, A. Hossain, and R. Dorsinville, “Switchable dual-wavelength SOA-based fiber laser with continuous tunability over the C-band at room-temperature,” Opt. Express 20, 23367–23373 (2012).
    [CrossRef]
  27. L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “A short dual-wavelength DBR phosphate fiber laser,” in CLEO: 2011—Laser Applications to Photonic Applications (OSA, 2011), paper CTuI3.
  28. Y. Liu, L. Wei, and J. W. Y. Lit, “Transmission loss of phase-shifted fiber Bragg gratings in lossy materials: a theoretical and experimental investigation,” Appl. Opt. 46, 6770–6773 (2007).
    [CrossRef]
  29. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry–Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14, 6394–6399 (2006).
    [CrossRef]

2012 (1)

2011 (4)

P. Rugeland, Z. Yu, O. Tarasenko, G. Tengstrand, and W. Margulis, “Tunable photonic microwave generation based on a novel dual-polarization fiber laser cavity,” IEEE Photon. Technol. Lett. 23, 1878–1880 (2011).
[CrossRef]

B. Lin, S. Chuan Tjin, M. Jiang, and P. Shum, “Tunable microwave generation based on a dual-wavelength fiber laser with an inverse-Gaussian apodized fiber Bragg grating,” Appl. Opt. 50, 4912–4916 (2011).
[CrossRef]

M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Tunable Terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser,” Opt. Express 19, 779–786 (2011).
[CrossRef]

P. Hofmann, A. Pirson-Chavez, A. Schülzgen, L. Xiong, A. Laronche, J. Albert, and N. Peyghambarian, “Low-noise single frequency all phosphate fiber laser,” Proc. SPIE 8039, 803911 (2011).
[CrossRef]

2010 (3)

2009 (2)

2008 (5)

2007 (1)

2006 (7)

Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry–Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14, 6394–6399 (2006).
[CrossRef]

S. Pradhan, G. E. Town, and K. J. Grant, “Dual-wavelength DBR fiber laser,” IEEE Photon. Technol. Lett. 18, 1741–1743 (2006).
[CrossRef]

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
[CrossRef]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18, 1964–1966 (2006).
[CrossRef]

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett. 89, 101127 (2006).
[CrossRef]

L. Li, A. Schülzgen, V. L. Temyanko, M. M. Morrell, S. Sabet, H. Li, J. V. Moloney, and N. Peyghambarian, “Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode output power,” Appl. Phys. Lett. 88, 161106 (2006).
[CrossRef]

A. Schülzgen, L. Li, V. L. Temyanko, S. Suzuki, J. V. Moloney, and N. Peyghambarian, “Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber,” Opt. Express 14, 7087–7092 (2006).
[CrossRef]

2005 (1)

2004 (2)

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550  nm,” J. Lightwave Technol. 22, 57–62 (2004).
[CrossRef]

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, “Beating frequency tunable dual-wavelength erbium-doped fiber laser with one fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1453–1455 (2004).
[CrossRef]

2000 (1)

Albert, J.

P. Hofmann, A. Pirson-Chavez, A. Schülzgen, L. Xiong, A. Laronche, J. Albert, and N. Peyghambarian, “Low-noise single frequency all phosphate fiber laser,” Proc. SPIE 8039, 803911 (2011).
[CrossRef]

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1  W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett. 92, 051111 (2008).
[CrossRef]

A. Schülzgen, L. Li, D. Nguyen, C. Spiegelberg, R. M. Rogojan, A. Laronche, J. Albert, and N. Peyghambarian, “Distributed feedback fiber laser pumped by multimode laser diodes,” Opt. Lett. 33, 614–616 (2008).
[CrossRef]

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett. 89, 101127 (2006).
[CrossRef]

L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “Photo-thermal growth of unsaturated and saturated Bragg gratings in phosphate glass fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (OSA, 2010), paper BTuB1.

L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “A short dual-wavelength DBR phosphate fiber laser,” in CLEO: 2011—Laser Applications to Photonic Applications (OSA, 2011), paper CTuI3.

Andres, M. V.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

Andrés, M. V.

Barmenkov, Y. O.

Chen, D.

Chen, X.

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
[CrossRef]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18, 1964–1966 (2006).
[CrossRef]

Chuan Tjin, S.

Cruz, J. L.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry–Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14, 6394–6399 (2006).
[CrossRef]

Dai, Y.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18, 1964–1966 (2006).
[CrossRef]

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
[CrossRef]

Dong, B.

Dong, X.

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, “Beating frequency tunable dual-wavelength erbium-doped fiber laser with one fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1453–1455 (2004).
[CrossRef]

Dorsinville, R.

Fang, X.

Feng, S.

Feng, X.

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, “Beating frequency tunable dual-wavelength erbium-doped fiber laser with one fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1453–1455 (2004).
[CrossRef]

Feng, Z. M.

Geng, J.

Grant, K. J.

S. Pradhan, G. E. Town, and K. J. Grant, “Dual-wavelength DBR fiber laser,” IEEE Photon. Technol. Lett. 18, 1741–1743 (2006).
[CrossRef]

Hao, J.

He, S.

He, X.

Hofmann, P.

P. Hofmann, A. Pirson-Chavez, A. Schülzgen, L. Xiong, A. Laronche, J. Albert, and N. Peyghambarian, “Low-noise single frequency all phosphate fiber laser,” Proc. SPIE 8039, 803911 (2011).
[CrossRef]

L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “Photo-thermal growth of unsaturated and saturated Bragg gratings in phosphate glass fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (OSA, 2010), paper BTuB1.

L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “A short dual-wavelength DBR phosphate fiber laser,” in CLEO: 2011—Laser Applications to Photonic Applications (OSA, 2011), paper CTuI3.

Honkanen, S.

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett. 89, 101127 (2006).
[CrossRef]

Hossain, A.

Hu, Y.

Hwang, B.

Ito, H.

Jian, S.

Jiang, M.

Jiang, S.

Jiang, Z. H.

Kai, G.

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, “Beating frequency tunable dual-wavelength erbium-doped fiber laser with one fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1453–1455 (2004).
[CrossRef]

Kaneda, Y.

Laronche, A.

P. Hofmann, A. Pirson-Chavez, A. Schülzgen, L. Xiong, A. Laronche, J. Albert, and N. Peyghambarian, “Low-noise single frequency all phosphate fiber laser,” Proc. SPIE 8039, 803911 (2011).
[CrossRef]

A. Schülzgen, L. Li, D. Nguyen, C. Spiegelberg, R. M. Rogojan, A. Laronche, J. Albert, and N. Peyghambarian, “Distributed feedback fiber laser pumped by multimode laser diodes,” Opt. Lett. 33, 614–616 (2008).
[CrossRef]

Li, H.

X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33, 908–910 (2008).
[CrossRef]

L. Li, A. Schülzgen, V. L. Temyanko, M. M. Morrell, S. Sabet, H. Li, J. V. Moloney, and N. Peyghambarian, “Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode output power,” Appl. Phys. Lett. 88, 161106 (2006).
[CrossRef]

Li, L.

Liang, S.

Liao, C.

Lin, B.

Lit, J. W. Y.

Liu, T.

Liu, W.

Liu, Y.

Y. Liu, L. Wei, and J. W. Y. Lit, “Transmission loss of phase-shifted fiber Bragg gratings in lossy materials: a theoretical and experimental investigation,” Appl. Opt. 46, 6770–6773 (2007).
[CrossRef]

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, “Beating frequency tunable dual-wavelength erbium-doped fiber laser with one fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1453–1455 (2004).
[CrossRef]

Lou, C.

Lu, S.

Luo, T.

Madamopoulos, N.

Mao, X.

Margulis, W.

P. Rugeland, Z. Yu, O. Tarasenko, G. Tengstrand, and W. Margulis, “Tunable photonic microwave generation based on a novel dual-polarization fiber laser cavity,” IEEE Photon. Technol. Lett. 23, 1878–1880 (2011).
[CrossRef]

Marti, J.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

Member, S.

Minamide, H.

Moloney, J. V.

Morrell, M. M.

L. Li, A. Schülzgen, V. L. Temyanko, M. M. Morrell, S. Sabet, H. Li, J. V. Moloney, and N. Peyghambarian, “Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode output power,” Appl. Phys. Lett. 88, 161106 (2006).
[CrossRef]

Nguyen, D.

Ning, T.

Notake, T.

Ohno, S.

Palaci, J.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

Pan, S.

Perez-Millan, P.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

Peyghambarian, N.

P. Hofmann, A. Pirson-Chavez, A. Schülzgen, L. Xiong, A. Laronche, J. Albert, and N. Peyghambarian, “Low-noise single frequency all phosphate fiber laser,” Proc. SPIE 8039, 803911 (2011).
[CrossRef]

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1  W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett. 92, 051111 (2008).
[CrossRef]

X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33, 908–910 (2008).
[CrossRef]

A. Schülzgen, L. Li, D. Nguyen, C. Spiegelberg, R. M. Rogojan, A. Laronche, J. Albert, and N. Peyghambarian, “Distributed feedback fiber laser pumped by multimode laser diodes,” Opt. Lett. 33, 614–616 (2008).
[CrossRef]

A. Schülzgen, L. Li, V. L. Temyanko, S. Suzuki, J. V. Moloney, and N. Peyghambarian, “Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber,” Opt. Express 14, 7087–7092 (2006).
[CrossRef]

L. Li, A. Schülzgen, V. L. Temyanko, M. M. Morrell, S. Sabet, H. Li, J. V. Moloney, and N. Peyghambarian, “Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode output power,” Appl. Phys. Lett. 88, 161106 (2006).
[CrossRef]

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett. 89, 101127 (2006).
[CrossRef]

T. Qiu, S. Suzuki, A. Schülzgen, L. Li, A. Polynkin, V. Temyanko, J. V. Moloney, and N. Peyghambarian, “Generation of watt-level single-longitudinal-mode output from cladding-pumped short fiber lasers,” Opt. Lett. 30, 2748–2750 (2005).
[CrossRef]

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550  nm,” J. Lightwave Technol. 22, 57–62 (2004).
[CrossRef]

B. Hwang, S. Jiang, T. Luo, J. Watson, G. Sorbello, and N. Peyghambarian, “Cooperative upconversion and energy transfer of new high Er3+- and Yb3+–Er3+-doped phosphate glasses,” J. Opt. Soc. Am. B 17, 833–839 (2000).
[CrossRef]

L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “A short dual-wavelength DBR phosphate fiber laser,” in CLEO: 2011—Laser Applications to Photonic Applications (OSA, 2011), paper CTuI3.

L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “Photo-thermal growth of unsaturated and saturated Bragg gratings in phosphate glass fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (OSA, 2010), paper BTuB1.

Pirson-Chavez, A.

P. Hofmann, A. Pirson-Chavez, A. Schülzgen, L. Xiong, A. Laronche, J. Albert, and N. Peyghambarian, “Low-noise single frequency all phosphate fiber laser,” Proc. SPIE 8039, 803911 (2011).
[CrossRef]

Polynkin, A.

Pradhan, S.

S. Pradhan, G. E. Town, and K. J. Grant, “Dual-wavelength DBR fiber laser,” IEEE Photon. Technol. Lett. 18, 1741–1743 (2006).
[CrossRef]

Qiu, T.

Razani, M.

Rogojan, R. M.

Rugeland, P.

P. Rugeland, Z. Yu, O. Tarasenko, G. Tengstrand, and W. Margulis, “Tunable photonic microwave generation based on a novel dual-polarization fiber laser cavity,” IEEE Photon. Technol. Lett. 23, 1878–1880 (2011).
[CrossRef]

Sabet, S.

L. Li, A. Schülzgen, V. L. Temyanko, M. M. Morrell, S. Sabet, H. Li, J. V. Moloney, and N. Peyghambarian, “Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode output power,” Appl. Phys. Lett. 88, 161106 (2006).
[CrossRef]

Schülzgen, A.

P. Hofmann, A. Pirson-Chavez, A. Schülzgen, L. Xiong, A. Laronche, J. Albert, and N. Peyghambarian, “Low-noise single frequency all phosphate fiber laser,” Proc. SPIE 8039, 803911 (2011).
[CrossRef]

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1  W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett. 92, 051111 (2008).
[CrossRef]

A. Schülzgen, L. Li, D. Nguyen, C. Spiegelberg, R. M. Rogojan, A. Laronche, J. Albert, and N. Peyghambarian, “Distributed feedback fiber laser pumped by multimode laser diodes,” Opt. Lett. 33, 614–616 (2008).
[CrossRef]

X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33, 908–910 (2008).
[CrossRef]

A. Schülzgen, L. Li, V. L. Temyanko, S. Suzuki, J. V. Moloney, and N. Peyghambarian, “Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber,” Opt. Express 14, 7087–7092 (2006).
[CrossRef]

L. Li, A. Schülzgen, V. L. Temyanko, M. M. Morrell, S. Sabet, H. Li, J. V. Moloney, and N. Peyghambarian, “Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode output power,” Appl. Phys. Lett. 88, 161106 (2006).
[CrossRef]

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett. 89, 101127 (2006).
[CrossRef]

T. Qiu, S. Suzuki, A. Schülzgen, L. Li, A. Polynkin, V. Temyanko, J. V. Moloney, and N. Peyghambarian, “Generation of watt-level single-longitudinal-mode output from cladding-pumped short fiber lasers,” Opt. Lett. 30, 2748–2750 (2005).
[CrossRef]

L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “Photo-thermal growth of unsaturated and saturated Bragg gratings in phosphate glass fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (OSA, 2010), paper BTuB1.

L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “A short dual-wavelength DBR phosphate fiber laser,” in CLEO: 2011—Laser Applications to Photonic Applications (OSA, 2011), paper CTuI3.

Shum, P.

Sorbello, G.

Spiegelberg, C.

Sun, J.

X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Opt. Express 17, 21773–21781 (2009).
[CrossRef]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18, 1964–1966 (2006).
[CrossRef]

Sun, L.

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, “Beating frequency tunable dual-wavelength erbium-doped fiber laser with one fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1453–1455 (2004).
[CrossRef]

Suzuki, S.

Tang, D.

Tang, M.

Tarasenko, O.

P. Rugeland, Z. Yu, O. Tarasenko, G. Tengstrand, and W. Margulis, “Tunable photonic microwave generation based on a novel dual-polarization fiber laser cavity,” IEEE Photon. Technol. Lett. 23, 1878–1880 (2011).
[CrossRef]

Temyanko, V.

Temyanko, V. L.

X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33, 908–910 (2008).
[CrossRef]

A. Schülzgen, L. Li, V. L. Temyanko, S. Suzuki, J. V. Moloney, and N. Peyghambarian, “Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber,” Opt. Express 14, 7087–7092 (2006).
[CrossRef]

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett. 89, 101127 (2006).
[CrossRef]

L. Li, A. Schülzgen, V. L. Temyanko, M. M. Morrell, S. Sabet, H. Li, J. V. Moloney, and N. Peyghambarian, “Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode output power,” Appl. Phys. Lett. 88, 161106 (2006).
[CrossRef]

Tengstrand, G.

P. Rugeland, Z. Yu, O. Tarasenko, G. Tengstrand, and W. Margulis, “Tunable photonic microwave generation based on a novel dual-polarization fiber laser cavity,” IEEE Photon. Technol. Lett. 23, 1878–1880 (2011).
[CrossRef]

Tjin, S. C.

Torres-Peiró, S.

Town, G. E.

S. Pradhan, G. E. Town, and K. J. Grant, “Dual-wavelength DBR fiber laser,” IEEE Photon. Technol. Lett. 18, 1741–1743 (2006).
[CrossRef]

Ummy, M. A.

Villanueva, G. E.

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

Wang, D. N.

Wang, Q.

Wang, Y.

Watson, J.

Wei, L.

Xie, S.

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18, 1964–1966 (2006).
[CrossRef]

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
[CrossRef]

Xiong, L.

P. Hofmann, A. Pirson-Chavez, A. Schülzgen, L. Xiong, A. Laronche, J. Albert, and N. Peyghambarian, “Low-noise single frequency all phosphate fiber laser,” Proc. SPIE 8039, 803911 (2011).
[CrossRef]

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, “Beating frequency tunable dual-wavelength erbium-doped fiber laser with one fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1453–1455 (2004).
[CrossRef]

L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “Photo-thermal growth of unsaturated and saturated Bragg gratings in phosphate glass fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (OSA, 2010), paper BTuB1.

L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “A short dual-wavelength DBR phosphate fiber laser,” in CLEO: 2011—Laser Applications to Photonic Applications (OSA, 2011), paper CTuI3.

Xu, O.

Xu, S. H.

Yang, Z. M.

Yao, Y.

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
[CrossRef]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18, 1964–1966 (2006).
[CrossRef]

Yu, Z.

P. Rugeland, Z. Yu, O. Tarasenko, G. Tengstrand, and W. Margulis, “Tunable photonic microwave generation based on a novel dual-polarization fiber laser cavity,” IEEE Photon. Technol. Lett. 23, 1878–1880 (2011).
[CrossRef]

Yuan, S.

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, “Beating frequency tunable dual-wavelength erbium-doped fiber laser with one fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1453–1455 (2004).
[CrossRef]

Zalvidea, D.

Zhang, H.

Zhang, Q. Y.

Zhang, W.

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, “Beating frequency tunable dual-wavelength erbium-doped fiber laser with one fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1453–1455 (2004).
[CrossRef]

Zhang, W. N.

Zhao, X.

Zhu, X.

X. Zhu, A. Schülzgen, H. Li, L. Li, Q. Wang, S. Suzuki, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett. 33, 908–910 (2008).
[CrossRef]

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1  W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett. 92, 051111 (2008).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

L. Li, A. Schülzgen, V. L. Temyanko, M. M. Morrell, S. Sabet, H. Li, J. V. Moloney, and N. Peyghambarian, “Ultracompact cladding-pumped 35-mm-short fiber laser with 4.7-W single-mode output power,” Appl. Phys. Lett. 88, 161106 (2006).
[CrossRef]

J. Albert, A. Schülzgen, V. L. Temyanko, S. Honkanen, and N. Peyghambarian, “Strong Bragg gratings in phosphate glass single mode fiber,” Appl. Phys. Lett. 89, 101127 (2006).
[CrossRef]

L. Li, A. Schülzgen, X. Zhu, J. V. Moloney, J. Albert, and N. Peyghambarian, “1  W tunable dual-wavelength emission from cascaded distributed feedback fiber lasers,” Appl. Phys. Lett. 92, 051111 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

S. Pradhan, G. E. Town, and K. J. Grant, “Dual-wavelength DBR fiber laser,” IEEE Photon. Technol. Lett. 18, 1741–1743 (2006).
[CrossRef]

Y. Yao, X. Chen, Y. Dai, and S. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).
[CrossRef]

Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, “Dual-wavelength DFB fiber laser based on a chirped structure and the equivalent phase shift method,” IEEE Photon. Technol. Lett. 18, 1964–1966 (2006).
[CrossRef]

G. E. Villanueva, P. Perez-Millan, J. Palaci, J. L. Cruz, M. V. Andres, and J. Marti, “Dual-wavelength DFB erbium-doped fiber laser with tunable wavelength spacing,” IEEE Photon. Technol. Lett. 22, 254–256 (2010).
[CrossRef]

L. Sun, X. Feng, W. Zhang, L. Xiong, Y. Liu, G. Kai, S. Yuan, and X. Dong, “Beating frequency tunable dual-wavelength erbium-doped fiber laser with one fiber Bragg grating,” IEEE Photon. Technol. Lett. 16, 1453–1455 (2004).
[CrossRef]

P. Rugeland, Z. Yu, O. Tarasenko, G. Tengstrand, and W. Margulis, “Tunable photonic microwave generation based on a novel dual-polarization fiber laser cavity,” IEEE Photon. Technol. Lett. 23, 1878–1880 (2011).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Express (7)

S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300  mW narrow-linewidth single frequency fiber laser at 1.5  μm,” Opt. Express 18, 1249–1254 (2010).
[CrossRef]

A. Schülzgen, L. Li, V. L. Temyanko, S. Suzuki, J. V. Moloney, and N. Peyghambarian, “Single-frequency fiber oscillator with watt-level output power using photonic crystal phosphate glass fiber,” Opt. Express 14, 7087–7092 (2006).
[CrossRef]

S. Feng, O. Xu, S. Lu, X. Mao, T. Ning, and S. Jian, “Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization-maintaining fiber Bragg gratings,” Opt. Express 16, 11830–11835 (2008).
[CrossRef]

X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Opt. Express 17, 21773–21781 (2009).
[CrossRef]

M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Tunable Terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser,” Opt. Express 19, 779–786 (2011).
[CrossRef]

M. A. Ummy, N. Madamopoulos, M. Razani, A. Hossain, and R. Dorsinville, “Switchable dual-wavelength SOA-based fiber laser with continuous tunability over the C-band at room-temperature,” Opt. Express 20, 23367–23373 (2012).
[CrossRef]

Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry–Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14, 6394–6399 (2006).
[CrossRef]

Opt. Lett. (4)

Proc. SPIE (1)

P. Hofmann, A. Pirson-Chavez, A. Schülzgen, L. Xiong, A. Laronche, J. Albert, and N. Peyghambarian, “Low-noise single frequency all phosphate fiber laser,” Proc. SPIE 8039, 803911 (2011).
[CrossRef]

Other (2)

L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “Photo-thermal growth of unsaturated and saturated Bragg gratings in phosphate glass fibers,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (OSA, 2010), paper BTuB1.

L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, and J. Albert, “A short dual-wavelength DBR phosphate fiber laser,” in CLEO: 2011—Laser Applications to Photonic Applications (OSA, 2011), paper CTuI3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the short dual-wavelength single-longitudinal mode DBR phosphate fiber laser.

Fig. 2.
Fig. 2.

Transmission spectra of the uniform FBG1 and the DBR grating structure in the Er/Yb-doped phosphate fiber.

Fig. 3.
Fig. 3.

Optical spectra of the dual-wavelength DBR phosphate fiber laser pumped at 350 and 500 mW.

Fig. 4.
Fig. 4.

(a) Laser output spectra for 16 continuous sweeps taken at 1 min intervals; fluctuation of (b) wavelengths and (c) peak output powers for dual-wavelength laser pumped at 500 mW.

Fig. 5.
Fig. 5.

Electrical spectrum of the microwave signal generated by the dual-wavelength DBR phosphate fiber laser.

Fig. 6.
Fig. 6.

Laser output spectra transmitted through a polarization analyzer at different angles. The inset shows the polarization states of two lasing lines (λ1 and λ2: short- and long-lasing wavelengths).

Fig. 7.
Fig. 7.

Microscope images of UV-induced damages on the phosphate fiber cladding surface for (a) FBG1 with rotation angle θ=0°; (b) FBG2 with rotation angle θ=70°; (c) cross-section of a cleaved FBG.

Metrics