Abstract

In this work, a configuration of bulk gold nanorings with certain geometrical sizes has been utilized for designing efficient photonic subwavelength nanostructures. We verify that adjacent heptamers based on gold nanorings are able to couple and transport magnetic plasmon resonance along a nanoring array in chrysene and triphenylene molecule orientations. This magnetic resonance transmission is caused by an antiphase circular current through the heptamer arrays. An orientation model of nanoring heptamers helps us to provide efficient optical structures with a remarkable decay length and a trivial ratio of destructive interferences. Exploiting the robust magnetic plasmon resonance coupling effect between heptamers arrays, we would be able to propose a practical plasmonic waveguide, a Y-shaped optical power divider (splitter), and an ON/OFF router that is operating based on destructive and constructive interferences. The quality of power splitting has been discussed comprehensively and also, the effect of undesirable occasions on the functioning performance of the proposed router has been investigated numerically. Ultimately, we verify that employing heptamers based on gold nanorings leads us to propose efficient plasmonic nanostructures and devices that are able to work in the telecommunication spectrum.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. B. E. A. Saleh and M. C. Tiech, Fundamentals of Photonics (Wiley, 1991).
  3. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  4. C. F. Bohren and D. R. Huffman, Absorption, and Scattering of Light by Small Particles (Wiley, 1998).
  5. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [CrossRef]
  6. D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
    [CrossRef]
  7. J. B. Lassiter, J. Azipurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
    [CrossRef]
  8. Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002).
    [CrossRef]
  9. K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon resonance to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
    [CrossRef]
  10. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
    [CrossRef]
  11. N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20, 4521–4525 (2008).
    [CrossRef]
  12. N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
    [CrossRef]
  13. N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanoclusters networks,” ACS Nano 6, 5482–5488 (2012).
    [CrossRef]
  14. M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behaviors,” ACS Nano 5, 2042–2050 (2011).
    [CrossRef]
  15. J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Gapasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
    [CrossRef]
  16. A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11, 1685–1689 (2011).
    [CrossRef]
  17. M. Siveirinha and N. Engheta, “Tunneling of electromagnetic energy through sub-wavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006).
    [CrossRef]
  18. T. R. Jesen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. V. Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).
  19. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
  20. K. Y. Jung, F. L. Teixeira, and R. M. Reano, “Au/SiO2 nanoring plasmon waveguides at optical communication band,” J. Lightwave Technol. 25, 2757–2765 (2007).
    [CrossRef]
  21. A. Ahmadivand and S. Golmohammadi, “Comprehensive investigation of noble metal nanoparticles shape, size, and material on the optical response of optimal plasmonic Y-splitter waveguides,” Opt. Commun. 310, 1–11 (2014).
    [CrossRef]
  22. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86, 455–460 (2007).
    [CrossRef]
  23. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
    [CrossRef]
  24. N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
    [CrossRef]
  25. A. Ahmadivand, “Hybrid photonic-plasmonic polarization beam splitter (HPPPBS) based on metal-silica-silicon interactions,” Opt. Laser Technol. 58, 145–150 (2014).
    [CrossRef]
  26. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
    [CrossRef]
  27. C. Johnathan, N. Greeves, S. Warren, and P. Wothers, Organic Chemistry (Oxford University, 2001).
  28. E. D. Palik, Handbook of Optical Constants of Solids, 2nd ed. (Academic, 1991).
  29. A. Ahmadivand, S. Golmohammadi, and A. Rostami, “T and Y-splitters based on Au/SiO2 nanoring chain at an optical communication band,” Appl. Opt. 51, 2784–2793 (2012).
    [CrossRef]
  30. M. Burresi, “Nanoscale investigation of light matter interactions mediated by magnetic and electric coupling,” Ph.D. dissertation (University of Twente, 2009).

2014 (2)

A. Ahmadivand and S. Golmohammadi, “Comprehensive investigation of noble metal nanoparticles shape, size, and material on the optical response of optimal plasmonic Y-splitter waveguides,” Opt. Commun. 310, 1–11 (2014).
[CrossRef]

A. Ahmadivand, “Hybrid photonic-plasmonic polarization beam splitter (HPPPBS) based on metal-silica-silicon interactions,” Opt. Laser Technol. 58, 145–150 (2014).
[CrossRef]

2012 (3)

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanoclusters networks,” ACS Nano 6, 5482–5488 (2012).
[CrossRef]

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[CrossRef]

A. Ahmadivand, S. Golmohammadi, and A. Rostami, “T and Y-splitters based on Au/SiO2 nanoring chain at an optical communication band,” Appl. Opt. 51, 2784–2793 (2012).
[CrossRef]

2011 (2)

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behaviors,” ACS Nano 5, 2042–2050 (2011).
[CrossRef]

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11, 1685–1689 (2011).
[CrossRef]

2010 (2)

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Gapasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
[CrossRef]

2008 (4)

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20, 4521–4525 (2008).
[CrossRef]

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[CrossRef]

J. B. Lassiter, J. Azipurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

2007 (2)

K. Y. Jung, F. L. Teixeira, and R. M. Reano, “Au/SiO2 nanoring plasmon waveguides at optical communication band,” J. Lightwave Technol. 25, 2757–2765 (2007).
[CrossRef]

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86, 455–460 (2007).
[CrossRef]

2006 (2)

M. Siveirinha and N. Engheta, “Tunneling of electromagnetic energy through sub-wavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef]

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon resonance to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef]

2004 (1)

D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

2002 (1)

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002).
[CrossRef]

2001 (1)

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

2000 (1)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).

1999 (1)

T. R. Jesen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. V. Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).

Adegoke, J.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86, 455–460 (2007).
[CrossRef]

Ahmadivand, A.

A. Ahmadivand and S. Golmohammadi, “Comprehensive investigation of noble metal nanoparticles shape, size, and material on the optical response of optimal plasmonic Y-splitter waveguides,” Opt. Commun. 310, 1–11 (2014).
[CrossRef]

A. Ahmadivand, “Hybrid photonic-plasmonic polarization beam splitter (HPPPBS) based on metal-silica-silicon interactions,” Opt. Laser Technol. 58, 145–150 (2014).
[CrossRef]

A. Ahmadivand, S. Golmohammadi, and A. Rostami, “T and Y-splitters based on Au/SiO2 nanoring chain at an optical communication band,” Appl. Opt. 51, 2784–2793 (2012).
[CrossRef]

Aizpurua, J.

B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Altug, H.

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11, 1685–1689 (2011).
[CrossRef]

Artar, A.

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11, 1685–1689 (2011).
[CrossRef]

Atwater, H. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).

Azipurua, J.

J. B. Lassiter, J. Azipurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Bahoura, M.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86, 455–460 (2007).
[CrossRef]

Bao, J. M.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Gapasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

Bao, K.

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanoclusters networks,” ACS Nano 6, 5482–5488 (2012).
[CrossRef]

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[CrossRef]

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Gapasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

Bardhan, R.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Gapasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption, and Scattering of Light by Small Particles (Wiley, 1998).

Brandl, D. W.

J. B. Lassiter, J. Azipurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Brongersma, M. L.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).

Brown, L. V.

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[CrossRef]

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanoclusters networks,” ACS Nano 6, 5482–5488 (2012).
[CrossRef]

Burresi, M.

M. Burresi, “Nanoscale investigation of light matter interactions mediated by magnetic and electric coupling,” Ph.D. dissertation (University of Twente, 2009).

Dorfmuller, J.

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[CrossRef]

Drachev, V. P.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86, 455–460 (2007).
[CrossRef]

Dregely, D.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behaviors,” ACS Nano 5, 2042–2050 (2011).
[CrossRef]

Duval, M. L.

T. R. Jesen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. V. Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).

Duyne, R. P. V.

T. R. Jesen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. V. Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
[CrossRef]

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon resonance to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef]

Engheta, N.

M. Siveirinha and N. Engheta, “Tunneling of electromagnetic energy through sub-wavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef]

Fan, J. A.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Gapasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

Fu, L. W.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[CrossRef]

Gapasso, F.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Gapasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

Giessen, H.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behaviors,” ACS Nano 5, 2042–2050 (2011).
[CrossRef]

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[CrossRef]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20, 4521–4525 (2008).
[CrossRef]

Golmohammadi, S.

A. Ahmadivand and S. Golmohammadi, “Comprehensive investigation of noble metal nanoparticles shape, size, and material on the optical response of optimal plasmonic Y-splitter waveguides,” Opt. Commun. 310, 1–11 (2014).
[CrossRef]

A. Ahmadivand, S. Golmohammadi, and A. Rostami, “T and Y-splitters based on Au/SiO2 nanoring chain at an optical communication band,” Appl. Opt. 51, 2784–2793 (2012).
[CrossRef]

Greeves, N.

C. Johnathan, N. Greeves, S. Warren, and P. Wothers, Organic Chemistry (Oxford University, 2001).

Guo, H. C.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[CrossRef]

Hafner, J. H.

B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

J. B. Lassiter, J. Azipurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Halas, N. J.

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[CrossRef]

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanoclusters networks,” ACS Nano 6, 5482–5488 (2012).
[CrossRef]

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Gapasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

J. B. Lassiter, J. Azipurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).

Hentschel, M.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behaviors,” ACS Nano 5, 2042–2050 (2011).
[CrossRef]

Hernandez, L. I.

B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

J. B. Lassiter, J. Azipurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption, and Scattering of Light by Small Particles (Wiley, 1998).

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
[CrossRef]

Jesen, T. R.

T. R. Jesen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. V. Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).

Johnathan, C.

C. Johnathan, N. Greeves, S. Warren, and P. Wothers, Organic Chemistry (Oxford University, 2001).

Jung, K. Y.

Kaiser, S.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[CrossRef]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20, 4521–4525 (2008).
[CrossRef]

Kelly, K. L.

T. R. Jesen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. V. Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).

Kik, P. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

Lal, S.

J. B. Lassiter, J. Azipurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Lassiter, B.

B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Lassiter, J. B.

J. B. Lassiter, J. Azipurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Lazarides, A. A.

T. R. Jesen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. V. Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).

Lee, K. S.

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon resonance to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef]

Li, Y.

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanoclusters networks,” ACS Nano 6, 5482–5488 (2012).
[CrossRef]

Liu, N.

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanoclusters networks,” ACS Nano 6, 5482–5488 (2012).
[CrossRef]

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[CrossRef]

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behaviors,” ACS Nano 5, 2042–2050 (2011).
[CrossRef]

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[CrossRef]

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20, 4521–4525 (2008).
[CrossRef]

Maier, S. A.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Manoharan, V. N.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Gapasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

Meltzer, S.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Mukherjee, S.

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanoclusters networks,” ACS Nano 6, 5482–5488 (2012).
[CrossRef]

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86, 455–460 (2007).
[CrossRef]

Nordlander, P.

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[CrossRef]

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanoclusters networks,” ACS Nano 6, 5482–5488 (2012).
[CrossRef]

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Gapasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

J. B. Lassiter, J. Azipurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Oubre, C.

D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, 2nd ed. (Academic, 1991).

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Reano, R. M.

Requicha, A. A. G.

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Ritzo, B. A.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86, 455–460 (2007).
[CrossRef]

Romero, I.

B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

J. B. Lassiter, J. Azipurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Rostami, A.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Tiech, Fundamentals of Photonics (Wiley, 1991).

Schatz, G. C.

T. R. Jesen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. V. Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).

Schweizer, H.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[CrossRef]

Shalaev, V. M.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86, 455–460 (2007).
[CrossRef]

Shvets, G.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Gapasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

Siveirinha, M.

M. Siveirinha and N. Engheta, “Tunneling of electromagnetic energy through sub-wavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef]

Small, C.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86, 455–460 (2007).
[CrossRef]

Sun, Y.

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002).
[CrossRef]

Teixeira, F. L.

Tiech, M. C.

B. E. A. Saleh and M. C. Tiech, Fundamentals of Photonics (Wiley, 1991).

Vogelgesang, R.

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behaviors,” ACS Nano 5, 2042–2050 (2011).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

Warren, S.

C. Johnathan, N. Greeves, S. Warren, and P. Wothers, Organic Chemistry (Oxford University, 2001).

Wothers, P.

C. Johnathan, N. Greeves, S. Warren, and P. Wothers, Organic Chemistry (Oxford University, 2001).

Wu, C. H.

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Gapasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

Xia, Y.

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002).
[CrossRef]

Yanik, A. A.

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11, 1685–1689 (2011).
[CrossRef]

Zhu, G.

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86, 455–460 (2007).
[CrossRef]

ACS Nano (2)

N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, “Manipulating magnetic plasmon propagation in metallic nanoclusters networks,” ACS Nano 6, 5482–5488 (2012).
[CrossRef]

M. Hentschel, D. Dregely, R. Vogelgesang, H. Giessen, and N. Liu, “Plasmonic oligomers: the role of individual particles in collective behaviors,” ACS Nano 5, 2042–2050 (2011).
[CrossRef]

Adv. Mater. (2)

N. Liu, S. Kaiser, and H. Giessen, “Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules,” Adv. Mater. 20, 4521–4525 (2008).
[CrossRef]

S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86, 455–460 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164 (2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. Chem. B (2)

T. R. Jesen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. V. Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103, 3854–3863 (1999).

K. S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon resonance to size, shape, and metal composition,” J. Phys. Chem. B 110, 19220–19225 (2006).
[CrossRef]

Nano Lett. (5)

D. W. Brandl, C. Oubre, and P. Nordlander, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

J. B. Lassiter, J. Azipurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

A. Artar, A. A. Yanik, and H. Altug, “Multispectral plasmon induced transparency in coupled meta-atoms,” Nano Lett. 11, 1685–1689 (2011).
[CrossRef]

N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmuller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364–369 (2012).
[CrossRef]

B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8, 1212–1218 (2008).
[CrossRef]

Nat. Mater. (1)

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
[CrossRef]

Opt. Commun. (1)

A. Ahmadivand and S. Golmohammadi, “Comprehensive investigation of noble metal nanoparticles shape, size, and material on the optical response of optimal plasmonic Y-splitter waveguides,” Opt. Commun. 310, 1–11 (2014).
[CrossRef]

Opt. Laser Technol. (1)

A. Ahmadivand, “Hybrid photonic-plasmonic polarization beam splitter (HPPPBS) based on metal-silica-silicon interactions,” Opt. Laser Technol. 58, 145–150 (2014).
[CrossRef]

Phys. Rev. B (1)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).

Phys. Rev. Lett. (1)

M. Siveirinha and N. Engheta, “Tunneling of electromagnetic energy through sub-wavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006).
[CrossRef]

Science (3)

J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Gapasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1138 (2010).
[CrossRef]

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298, 2176–2179 (2002).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Other (7)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

B. E. A. Saleh and M. C. Tiech, Fundamentals of Photonics (Wiley, 1991).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

C. F. Bohren and D. R. Huffman, Absorption, and Scattering of Light by Small Particles (Wiley, 1998).

C. Johnathan, N. Greeves, S. Warren, and P. Wothers, Organic Chemistry (Oxford University, 2001).

E. D. Palik, Handbook of Optical Constants of Solids, 2nd ed. (Academic, 1991).

M. Burresi, “Nanoscale investigation of light matter interactions mediated by magnetic and electric coupling,” Ph.D. dissertation (University of Twente, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(A) Schematic diagram of the gold nanoring heptamers in plasmonic chrysene orientation, which are embedded in a glass host substance. (B) Simulation results of the scattering cross-sectional diagram for the proposed heptamers in the plasmonic chrysene structure; plasmon magnetic resonance has occurred at λ1600nm, and the other minima are related to Fano-like resonance. (C) Illuminating the clusters by an incident electric dipole. SPs have been excited in adjacent gold nanorings heptamers and coupled to neighboring ones robustly. The electric dipole source with an amplitude of 1.1217e20mA is located 220 nm away from the center of the first heptamer.

Fig. 2.
Fig. 2.

(A) Schematic diagram of the gold nanoring heptamers in plasmonic chrysene orientation as a linear plasmonic waveguide. (B) The optical power propagates through the structure via magnetic plasmon resonance coupling at the mutual rings. The propagation direction and polarization direction are indicated by arrows in the snapshot. (C) This figure exhibits the logarithmic-scale diagram of the field intensity along the heptamer arrays for the bandwidth λ13001600nm, which decays exponentially. The numbered peaks correspond to the plasmon coupling at mutual rings of the clusters. (D) This diagram depicts the transmission of the propagated and coupled fields along the waveguide on a logarithmic scale over the NIR spectrum and the extreme of transmission has taken place around λ1600nm. (E) Evaluation of transported power (PR) through the zigzag-shape plasmonic waveguide based on ring heptamers with other configurations. PR is 91% and decay length is 3 μm. (F) Amplitude peak positions of the field intensity diagram (numbered extremes) versus simulation time (picoseconds) along the straight chain of heptamers in a chrysene fashion.

Fig. 3.
Fig. 3.

(A) Schematic diagram of the gold nanoring heptamers in plasmonic triphenylene orientation. (B) Scattering spectra for the proposed plasmonic triphenylene structure of nanorings under illumination by an electrical dipole that is located 220 nm away from the center of the first heptamer. This diagram includes more multiple resonance minima in comparison with the prior structure of nanorings; these plasmon resonance decreases have occurred at approximately λ940, 1180, 1340, and 1600 nm. (C) Illumination of the clusters by an incident electric dipole, and only magnetic plasmon modes propagated along them.

Fig. 4.
Fig. 4.

(A) Schematic diagram of the Y-shaped splitter based on plasmonic triphenylene gold nanoring heptamers. (B) Utilizing a magnetic dipole source that is located at the shell center of the first and main heptamer excited the plasmon resonance modes, and arm spacing is 1000 nm. (C) The intensity of the propagated and coupled plasmon fields is illustrated over the plasmonic waveguide on a logarithmic scale, and the peaks correspond to the coupling points at mutual rings. The operating wavelength for the proposed devices is in the range λ13001550nm. (D) The quality of power division by the proposed device is illustrated with a PR of 43.7%. (E) Evaluating the effect of offset distance variations on optical power division. Accordingly, setting the offset to 1200 nm is encountered by a ratio of power lower than 39.1% (PR<39.1).

Fig. 5.
Fig. 5.

(A) Schematic diagram of the Y-shaped ON/OFF router based on gold nanoring heptamers in triphenylene orientation which functions based on constructive and destructive interference of incident waves from input ports (ports A and B), and C is the output port. (B) Excitation and coupling of magnetic plasmon resonance modes in the ON state; both magnetic dipoles utilized have the same phases (in-phase regime). (C) Excitation and coupling of magnetic plasmon resonance modes in the OFF state; the magnetic dipoles utilized have opposite phases (out-of-phase regime). (D) Simulated magnetic field plot of the plasmonic Y-shaped router with destructive interference of plasmon modes, which corresponds to the circular charge current in the heptamers. (E) Transmission of optical power against spectrum variations for destructive and constructive interferences are illustrated and compared. In the destructive interference or OFF state, we observed nearly zero field propagation at λ1310nm and a trivial amount at λ1550nm.

Tables (2)

Tables Icon

Table 1. Geometrical Sizes of Bulk Gold Nanoring Heptamers that are Embedded in a Glass Substance and Suited at an Adjacent Distance

Tables Icon

Table 2. FDTD Simulation Parameters and Identificationsa

Metrics