Abstract

This work proposes a scheme of all-optical XNOR/NOT logic gates based on a reflective vertical cavity semiconductor (quantum wells, QWs) saturable absorber (VCSSA). In a semiconductor Fabry–Perot cavity operated with a low-intensity resonance wavelength, both intensity-dependent saturating phase-shift and thermal phase-shift occur, which are considered in the proposed logic operations. The VCSSA-based logics are possible using the saturable behavior of reflectivity under the typical operating conditions. The low-intensity saturable reflectivity is reported for all-optical logic operations where all possible nonlinear phase-shifts are ignored. Here, saturable absorption (SA) and the nonlinear phase-shift-based all-optical XNOR/NOT gates and one-bit memory or LATCH are proposed under new operating conditions. All operations are demonstrated for a VCSSA based on InGaAs/InP QWs. These types of SA-based logic devices can be comfortably used for a signal bit rate of about 10 GHz corresponding to the carrier recovery time of the semiconductor material.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Porzi, A. Isomaki, M. Guina, and O. G. Okhotnikov, “Impedance-detuned high-contrast vertical cavity semiconductor switch,” in Proceedings of the Optical Fiber Communication Conference (OFC) (2005), paper OThM 5.
  2. C. Porzi, M. Guina, L. Orsila, A. Bogoni, and L. Poti, “Simultaneous dual-wavelength conversion with multiresonant saturable absorption vertical-cavity semiconductor gate,” IEEE Photon. Technol. Lett. 20, 499–501 (2008).
    [CrossRef]
  3. Y. Tang, A. Siahmakoun, G. Sergio, M. Guina, and M. Pessa, “Optical switching in a resonant Fabry–Perot saturable absorber,” J. Opt. A 8, 991–995 (2006).
    [CrossRef]
  4. G. de Valicourt, C. Porzi, M. Guina, and N. Balkan, “Dilute nitride vertical-cavity gate for all-optical logic at 1.3  mm,” IET Optoelectron. 4, 201–209 (2010).
    [CrossRef]
  5. C. Porzi, M. Guina, A. Bogoni, and L. Poti, “All-optical NAND/NOR logic gates based on semiconductor saturable absorber etalons,” IEEE J. Sel. Top. Quantum Electron. 14, 927–937 (2008).
    [CrossRef]
  6. E. Garmire, “Criteria for optical bistability in a lossy saturating Fabry–Perot,” IEEE J. Quantum Electron. 25, 289–295 (1989).
    [CrossRef]
  7. S. Bhargava, C. Porzi, P. K. Datta, A. Bogoni, L. Potì, and R. Gangopadhyay, “Optical bistability in a nonlinear resonator with saturable losses and intensity-dependent refractive index,” in Proceedings of International Conference on Communications (2010), pp. 1–5.
  8. R. Pradhan, S. Saha, and P. K. Datta, “Dispersive bi-stability in a vertical microcavity-based saturable absorber due to photo-thermal effect and initial phase-detuning,” Opt. Commun. 287, 203–209 (2013).
    [CrossRef]
  9. M. Guina, A. Vainionpää, A. Harkonen, L. Orsila, J. Lyytikäinen, and O. G. Okhotnikov, “Vertical-cavity saturable-absorber intensity modulator,” Opt. Lett. 28, 43–45 (2003).
    [CrossRef]
  10. D. Massoubre, J. L. Oudar, A. O’Hare, M. Gay, L. Bramerie, J. C. Soimn, A. Shen, and J. J. Decobert, “Analysis of thermal limitations in high-speed microcavity saturable absorber all-optical switching gates,” J. Lightwave Technol. 24, 3400–3408 (2006).
    [CrossRef]
  11. É. L. Cren, S. Lobo, S. Fève, and J.-C. Simon, “Observation of thermal effects due to an optical incident signal and high fluence on InGaAs/InP multiple quantum-well saturable absorber nonlinear mirrors: evolution of characteristics and time constants,” Appl. Opt. 45, 6831–6838 (2006).
    [CrossRef]
  12. R. Pradhan, K. Hussain, and P. K. Datta, “Reflective vertical cavity semiconductor saturable absorber for functional operations with thermal limitations and saturable index change,” Opt. Commun. 284, 3416–3421 (2011).
    [CrossRef]
  13. R. Pradhan, L. Mishra, K. Hussain, S. Saha, and P. K. Datta, “All-optical 2R regeneration with contrast enhancement in a reflective vertical cavity quantum-wells saturable absorber,” J. Opt. Commun. Networks 5, 457–464 (2013).
    [CrossRef]
  14. P. K. Datta, R. Pradhan, L. Mishra, and S. Saha, “Effect of saturable index change on all-optical logic operations in passive vertical cavity semiconductor saturable absorber,” IET Optoelectron. 5, 77–82 (2011).
    [CrossRef]
  15. C. Cacciatore, D. Campi, C. Coriasso, G. Meneghini, and C. Rigo, “Low-power, refractive nonlinearity in InGaAs/InP multi-quantum well waveguide,” Electron. Lett. 28, 1624–1625 (1992).
    [CrossRef]
  16. A. M. Fox, A. C. Mciel, M. G. Shorthose, and J. F. Ryan, “Nonlinear excitonic optical absorption in GaLnAs/InP,” Appl. Phys. Lett. 51, 30–32 (1987).
    [CrossRef]
  17. J. S. Weiner, D. B. Pearson, D. A. B. Miller, and D. S. Chemler, “Nonlinear spectroscopy of InGaAs/InAlAs multiple quantum well structures,” Appl. Phys. Lett. 49, 531–533 (1986).
    [CrossRef]
  18. R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, “Ultrafast 1.55  μm photoresponses in low-temperature-grown InGaAs/InAlAs quantum wells,” Appl. Phys. Lett. 65, 1790–1792 (1994).
    [CrossRef]
  19. C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500  fs carrier lifetimes,” Appl. Phys. Lett. 85, 4965–4967 (2004).
    [CrossRef]
  20. Y. Chen, S. S. Prabhu, S. E. Ralf, and D. T. McLnturff, “Trapping and recombination dynamics of low-temperature-grown InGaAs/InAlAs multiple quantum-wells,” Appl. Phys. Lett. 72, 439–441 (1998).
    [CrossRef]
  21. E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
    [CrossRef]
  22. M. B. Johnson, T. C. Mcgill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54, 2424–2426 (1989).
    [CrossRef]
  23. M. Lambsdorff, J. Kulh, J. Rosenzweig, A. Axmann, and J. Schneider, “Sub-picosecond lifetimes in radiation damaged GaAs,” Appl. Phys. Lett. 58, 1881–1883 (1991).
    [CrossRef]

2013 (2)

R. Pradhan, L. Mishra, K. Hussain, S. Saha, and P. K. Datta, “All-optical 2R regeneration with contrast enhancement in a reflective vertical cavity quantum-wells saturable absorber,” J. Opt. Commun. Networks 5, 457–464 (2013).
[CrossRef]

R. Pradhan, S. Saha, and P. K. Datta, “Dispersive bi-stability in a vertical microcavity-based saturable absorber due to photo-thermal effect and initial phase-detuning,” Opt. Commun. 287, 203–209 (2013).
[CrossRef]

2011 (2)

R. Pradhan, K. Hussain, and P. K. Datta, “Reflective vertical cavity semiconductor saturable absorber for functional operations with thermal limitations and saturable index change,” Opt. Commun. 284, 3416–3421 (2011).
[CrossRef]

P. K. Datta, R. Pradhan, L. Mishra, and S. Saha, “Effect of saturable index change on all-optical logic operations in passive vertical cavity semiconductor saturable absorber,” IET Optoelectron. 5, 77–82 (2011).
[CrossRef]

2010 (1)

G. de Valicourt, C. Porzi, M. Guina, and N. Balkan, “Dilute nitride vertical-cavity gate for all-optical logic at 1.3  mm,” IET Optoelectron. 4, 201–209 (2010).
[CrossRef]

2008 (2)

C. Porzi, M. Guina, A. Bogoni, and L. Poti, “All-optical NAND/NOR logic gates based on semiconductor saturable absorber etalons,” IEEE J. Sel. Top. Quantum Electron. 14, 927–937 (2008).
[CrossRef]

C. Porzi, M. Guina, L. Orsila, A. Bogoni, and L. Poti, “Simultaneous dual-wavelength conversion with multiresonant saturable absorption vertical-cavity semiconductor gate,” IEEE Photon. Technol. Lett. 20, 499–501 (2008).
[CrossRef]

2006 (3)

Y. Tang, A. Siahmakoun, G. Sergio, M. Guina, and M. Pessa, “Optical switching in a resonant Fabry–Perot saturable absorber,” J. Opt. A 8, 991–995 (2006).
[CrossRef]

É. L. Cren, S. Lobo, S. Fève, and J.-C. Simon, “Observation of thermal effects due to an optical incident signal and high fluence on InGaAs/InP multiple quantum-well saturable absorber nonlinear mirrors: evolution of characteristics and time constants,” Appl. Opt. 45, 6831–6838 (2006).
[CrossRef]

D. Massoubre, J. L. Oudar, A. O’Hare, M. Gay, L. Bramerie, J. C. Soimn, A. Shen, and J. J. Decobert, “Analysis of thermal limitations in high-speed microcavity saturable absorber all-optical switching gates,” J. Lightwave Technol. 24, 3400–3408 (2006).
[CrossRef]

2004 (1)

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500  fs carrier lifetimes,” Appl. Phys. Lett. 85, 4965–4967 (2004).
[CrossRef]

2003 (1)

1998 (2)

Y. Chen, S. S. Prabhu, S. E. Ralf, and D. T. McLnturff, “Trapping and recombination dynamics of low-temperature-grown InGaAs/InAlAs multiple quantum-wells,” Appl. Phys. Lett. 72, 439–441 (1998).
[CrossRef]

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
[CrossRef]

1994 (1)

R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, “Ultrafast 1.55  μm photoresponses in low-temperature-grown InGaAs/InAlAs quantum wells,” Appl. Phys. Lett. 65, 1790–1792 (1994).
[CrossRef]

1992 (1)

C. Cacciatore, D. Campi, C. Coriasso, G. Meneghini, and C. Rigo, “Low-power, refractive nonlinearity in InGaAs/InP multi-quantum well waveguide,” Electron. Lett. 28, 1624–1625 (1992).
[CrossRef]

1991 (1)

M. Lambsdorff, J. Kulh, J. Rosenzweig, A. Axmann, and J. Schneider, “Sub-picosecond lifetimes in radiation damaged GaAs,” Appl. Phys. Lett. 58, 1881–1883 (1991).
[CrossRef]

1989 (2)

E. Garmire, “Criteria for optical bistability in a lossy saturating Fabry–Perot,” IEEE J. Quantum Electron. 25, 289–295 (1989).
[CrossRef]

M. B. Johnson, T. C. Mcgill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54, 2424–2426 (1989).
[CrossRef]

1987 (1)

A. M. Fox, A. C. Mciel, M. G. Shorthose, and J. F. Ryan, “Nonlinear excitonic optical absorption in GaLnAs/InP,” Appl. Phys. Lett. 51, 30–32 (1987).
[CrossRef]

1986 (1)

J. S. Weiner, D. B. Pearson, D. A. B. Miller, and D. S. Chemler, “Nonlinear spectroscopy of InGaAs/InAlAs multiple quantum well structures,” Appl. Phys. Lett. 49, 531–533 (1986).
[CrossRef]

Axmann, A.

M. Lambsdorff, J. Kulh, J. Rosenzweig, A. Axmann, and J. Schneider, “Sub-picosecond lifetimes in radiation damaged GaAs,” Appl. Phys. Lett. 58, 1881–1883 (1991).
[CrossRef]

Baker, C.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500  fs carrier lifetimes,” Appl. Phys. Lett. 85, 4965–4967 (2004).
[CrossRef]

Balkan, N.

G. de Valicourt, C. Porzi, M. Guina, and N. Balkan, “Dilute nitride vertical-cavity gate for all-optical logic at 1.3  mm,” IET Optoelectron. 4, 201–209 (2010).
[CrossRef]

Bhargava, S.

S. Bhargava, C. Porzi, P. K. Datta, A. Bogoni, L. Potì, and R. Gangopadhyay, “Optical bistability in a nonlinear resonator with saturable losses and intensity-dependent refractive index,” in Proceedings of International Conference on Communications (2010), pp. 1–5.

Bogoni, A.

C. Porzi, M. Guina, L. Orsila, A. Bogoni, and L. Poti, “Simultaneous dual-wavelength conversion with multiresonant saturable absorption vertical-cavity semiconductor gate,” IEEE Photon. Technol. Lett. 20, 499–501 (2008).
[CrossRef]

C. Porzi, M. Guina, A. Bogoni, and L. Poti, “All-optical NAND/NOR logic gates based on semiconductor saturable absorber etalons,” IEEE J. Sel. Top. Quantum Electron. 14, 927–937 (2008).
[CrossRef]

S. Bhargava, C. Porzi, P. K. Datta, A. Bogoni, L. Potì, and R. Gangopadhyay, “Optical bistability in a nonlinear resonator with saturable losses and intensity-dependent refractive index,” in Proceedings of International Conference on Communications (2010), pp. 1–5.

Bouché, N.

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
[CrossRef]

Bradley, I. V.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500  fs carrier lifetimes,” Appl. Phys. Lett. 85, 4965–4967 (2004).
[CrossRef]

Bramerie, L.

Cacciatore, C.

C. Cacciatore, D. Campi, C. Coriasso, G. Meneghini, and C. Rigo, “Low-power, refractive nonlinearity in InGaAs/InP multi-quantum well waveguide,” Electron. Lett. 28, 1624–1625 (1992).
[CrossRef]

Campi, D.

C. Cacciatore, D. Campi, C. Coriasso, G. Meneghini, and C. Rigo, “Low-power, refractive nonlinearity in InGaAs/InP multi-quantum well waveguide,” Electron. Lett. 28, 1624–1625 (1992).
[CrossRef]

Chemler, D. S.

J. S. Weiner, D. B. Pearson, D. A. B. Miller, and D. S. Chemler, “Nonlinear spectroscopy of InGaAs/InAlAs multiple quantum well structures,” Appl. Phys. Lett. 49, 531–533 (1986).
[CrossRef]

Chen, Y.

Y. Chen, S. S. Prabhu, S. E. Ralf, and D. T. McLnturff, “Trapping and recombination dynamics of low-temperature-grown InGaAs/InAlAs multiple quantum-wells,” Appl. Phys. Lett. 72, 439–441 (1998).
[CrossRef]

Coriasso, C.

C. Cacciatore, D. Campi, C. Coriasso, G. Meneghini, and C. Rigo, “Low-power, refractive nonlinearity in InGaAs/InP multi-quantum well waveguide,” Electron. Lett. 28, 1624–1625 (1992).
[CrossRef]

Cren, É. L.

É. L. Cren, S. Lobo, S. Fève, and J.-C. Simon, “Observation of thermal effects due to an optical incident signal and high fluence on InGaAs/InP multiple quantum-well saturable absorber nonlinear mirrors: evolution of characteristics and time constants,” Appl. Opt. 45, 6831–6838 (2006).
[CrossRef]

Datta, P. K.

R. Pradhan, L. Mishra, K. Hussain, S. Saha, and P. K. Datta, “All-optical 2R regeneration with contrast enhancement in a reflective vertical cavity quantum-wells saturable absorber,” J. Opt. Commun. Networks 5, 457–464 (2013).
[CrossRef]

R. Pradhan, S. Saha, and P. K. Datta, “Dispersive bi-stability in a vertical microcavity-based saturable absorber due to photo-thermal effect and initial phase-detuning,” Opt. Commun. 287, 203–209 (2013).
[CrossRef]

R. Pradhan, K. Hussain, and P. K. Datta, “Reflective vertical cavity semiconductor saturable absorber for functional operations with thermal limitations and saturable index change,” Opt. Commun. 284, 3416–3421 (2011).
[CrossRef]

P. K. Datta, R. Pradhan, L. Mishra, and S. Saha, “Effect of saturable index change on all-optical logic operations in passive vertical cavity semiconductor saturable absorber,” IET Optoelectron. 5, 77–82 (2011).
[CrossRef]

S. Bhargava, C. Porzi, P. K. Datta, A. Bogoni, L. Potì, and R. Gangopadhyay, “Optical bistability in a nonlinear resonator with saturable losses and intensity-dependent refractive index,” in Proceedings of International Conference on Communications (2010), pp. 1–5.

de Valicourt, G.

G. de Valicourt, C. Porzi, M. Guina, and N. Balkan, “Dilute nitride vertical-cavity gate for all-optical logic at 1.3  mm,” IET Optoelectron. 4, 201–209 (2010).
[CrossRef]

Decobert, J. J.

Delpon, E. L.

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
[CrossRef]

Evans, M. J.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500  fs carrier lifetimes,” Appl. Phys. Lett. 85, 4965–4967 (2004).
[CrossRef]

Fève, S.

É. L. Cren, S. Lobo, S. Fève, and J.-C. Simon, “Observation of thermal effects due to an optical incident signal and high fluence on InGaAs/InP multiple quantum-well saturable absorber nonlinear mirrors: evolution of characteristics and time constants,” Appl. Opt. 45, 6831–6838 (2006).
[CrossRef]

Fox, A. M.

A. M. Fox, A. C. Mciel, M. G. Shorthose, and J. F. Ryan, “Nonlinear excitonic optical absorption in GaLnAs/InP,” Appl. Phys. Lett. 51, 30–32 (1987).
[CrossRef]

Gangopadhyay, R.

S. Bhargava, C. Porzi, P. K. Datta, A. Bogoni, L. Potì, and R. Gangopadhyay, “Optical bistability in a nonlinear resonator with saturable losses and intensity-dependent refractive index,” in Proceedings of International Conference on Communications (2010), pp. 1–5.

Garmire, E.

E. Garmire, “Criteria for optical bistability in a lossy saturating Fabry–Perot,” IEEE J. Quantum Electron. 25, 289–295 (1989).
[CrossRef]

Gay, M.

Gregory, I. S.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500  fs carrier lifetimes,” Appl. Phys. Lett. 85, 4965–4967 (2004).
[CrossRef]

Guina, M.

G. de Valicourt, C. Porzi, M. Guina, and N. Balkan, “Dilute nitride vertical-cavity gate for all-optical logic at 1.3  mm,” IET Optoelectron. 4, 201–209 (2010).
[CrossRef]

C. Porzi, M. Guina, L. Orsila, A. Bogoni, and L. Poti, “Simultaneous dual-wavelength conversion with multiresonant saturable absorption vertical-cavity semiconductor gate,” IEEE Photon. Technol. Lett. 20, 499–501 (2008).
[CrossRef]

C. Porzi, M. Guina, A. Bogoni, and L. Poti, “All-optical NAND/NOR logic gates based on semiconductor saturable absorber etalons,” IEEE J. Sel. Top. Quantum Electron. 14, 927–937 (2008).
[CrossRef]

Y. Tang, A. Siahmakoun, G. Sergio, M. Guina, and M. Pessa, “Optical switching in a resonant Fabry–Perot saturable absorber,” J. Opt. A 8, 991–995 (2006).
[CrossRef]

M. Guina, A. Vainionpää, A. Harkonen, L. Orsila, J. Lyytikäinen, and O. G. Okhotnikov, “Vertical-cavity saturable-absorber intensity modulator,” Opt. Lett. 28, 43–45 (2003).
[CrossRef]

C. Porzi, A. Isomaki, M. Guina, and O. G. Okhotnikov, “Impedance-detuned high-contrast vertical cavity semiconductor switch,” in Proceedings of the Optical Fiber Communication Conference (OFC) (2005), paper OThM 5.

Harkonen, A.

Hussain, K.

R. Pradhan, L. Mishra, K. Hussain, S. Saha, and P. K. Datta, “All-optical 2R regeneration with contrast enhancement in a reflective vertical cavity quantum-wells saturable absorber,” J. Opt. Commun. Networks 5, 457–464 (2013).
[CrossRef]

R. Pradhan, K. Hussain, and P. K. Datta, “Reflective vertical cavity semiconductor saturable absorber for functional operations with thermal limitations and saturable index change,” Opt. Commun. 284, 3416–3421 (2011).
[CrossRef]

Isomaki, A.

C. Porzi, A. Isomaki, M. Guina, and O. G. Okhotnikov, “Impedance-detuned high-contrast vertical cavity semiconductor switch,” in Proceedings of the Optical Fiber Communication Conference (OFC) (2005), paper OThM 5.

Iwamura, H.

R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, “Ultrafast 1.55  μm photoresponses in low-temperature-grown InGaAs/InAlAs quantum wells,” Appl. Phys. Lett. 65, 1790–1792 (1994).
[CrossRef]

Johnson, M. B.

M. B. Johnson, T. C. Mcgill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54, 2424–2426 (1989).
[CrossRef]

Kagawa, T.

R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, “Ultrafast 1.55  μm photoresponses in low-temperature-grown InGaAs/InAlAs quantum wells,” Appl. Phys. Lett. 65, 1790–1792 (1994).
[CrossRef]

Kawamura, Y.

R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, “Ultrafast 1.55  μm photoresponses in low-temperature-grown InGaAs/InAlAs quantum wells,” Appl. Phys. Lett. 65, 1790–1792 (1994).
[CrossRef]

Kulh, J.

M. Lambsdorff, J. Kulh, J. Rosenzweig, A. Axmann, and J. Schneider, “Sub-picosecond lifetimes in radiation damaged GaAs,” Appl. Phys. Lett. 58, 1881–1883 (1991).
[CrossRef]

Lambsdorff, M.

M. Lambsdorff, J. Kulh, J. Rosenzweig, A. Axmann, and J. Schneider, “Sub-picosecond lifetimes in radiation damaged GaAs,” Appl. Phys. Lett. 58, 1881–1883 (1991).
[CrossRef]

Linfield, E. H.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500  fs carrier lifetimes,” Appl. Phys. Lett. 85, 4965–4967 (2004).
[CrossRef]

Lobo, S.

É. L. Cren, S. Lobo, S. Fève, and J.-C. Simon, “Observation of thermal effects due to an optical incident signal and high fluence on InGaAs/InP multiple quantum-well saturable absorber nonlinear mirrors: evolution of characteristics and time constants,” Appl. Opt. 45, 6831–6838 (2006).
[CrossRef]

Lourtioz, J. M.

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
[CrossRef]

Lyytikäinen, J.

Massoubre, D.

Mcgill, T. C.

M. B. Johnson, T. C. Mcgill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54, 2424–2426 (1989).
[CrossRef]

Mciel, A. C.

A. M. Fox, A. C. Mciel, M. G. Shorthose, and J. F. Ryan, “Nonlinear excitonic optical absorption in GaLnAs/InP,” Appl. Phys. Lett. 51, 30–32 (1987).
[CrossRef]

McLnturff, D. T.

Y. Chen, S. S. Prabhu, S. E. Ralf, and D. T. McLnturff, “Trapping and recombination dynamics of low-temperature-grown InGaAs/InAlAs multiple quantum-wells,” Appl. Phys. Lett. 72, 439–441 (1998).
[CrossRef]

Meneghini, G.

C. Cacciatore, D. Campi, C. Coriasso, G. Meneghini, and C. Rigo, “Low-power, refractive nonlinearity in InGaAs/InP multi-quantum well waveguide,” Electron. Lett. 28, 1624–1625 (1992).
[CrossRef]

Miller, D. A. B.

J. S. Weiner, D. B. Pearson, D. A. B. Miller, and D. S. Chemler, “Nonlinear spectroscopy of InGaAs/InAlAs multiple quantum well structures,” Appl. Phys. Lett. 49, 531–533 (1986).
[CrossRef]

Mishra, L.

R. Pradhan, L. Mishra, K. Hussain, S. Saha, and P. K. Datta, “All-optical 2R regeneration with contrast enhancement in a reflective vertical cavity quantum-wells saturable absorber,” J. Opt. Commun. Networks 5, 457–464 (2013).
[CrossRef]

P. K. Datta, R. Pradhan, L. Mishra, and S. Saha, “Effect of saturable index change on all-optical logic operations in passive vertical cavity semiconductor saturable absorber,” IET Optoelectron. 5, 77–82 (2011).
[CrossRef]

Missous, M.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500  fs carrier lifetimes,” Appl. Phys. Lett. 85, 4965–4967 (2004).
[CrossRef]

O’Hare, A.

Okhotnikov, O. G.

M. Guina, A. Vainionpää, A. Harkonen, L. Orsila, J. Lyytikäinen, and O. G. Okhotnikov, “Vertical-cavity saturable-absorber intensity modulator,” Opt. Lett. 28, 43–45 (2003).
[CrossRef]

C. Porzi, A. Isomaki, M. Guina, and O. G. Okhotnikov, “Impedance-detuned high-contrast vertical cavity semiconductor switch,” in Proceedings of the Optical Fiber Communication Conference (OFC) (2005), paper OThM 5.

Orsila, L.

C. Porzi, M. Guina, L. Orsila, A. Bogoni, and L. Poti, “Simultaneous dual-wavelength conversion with multiresonant saturable absorption vertical-cavity semiconductor gate,” IEEE Photon. Technol. Lett. 20, 499–501 (2008).
[CrossRef]

M. Guina, A. Vainionpää, A. Harkonen, L. Orsila, J. Lyytikäinen, and O. G. Okhotnikov, “Vertical-cavity saturable-absorber intensity modulator,” Opt. Lett. 28, 43–45 (2003).
[CrossRef]

Oudar, J. L.

D. Massoubre, J. L. Oudar, A. O’Hare, M. Gay, L. Bramerie, J. C. Soimn, A. Shen, and J. J. Decobert, “Analysis of thermal limitations in high-speed microcavity saturable absorber all-optical switching gates,” J. Lightwave Technol. 24, 3400–3408 (2006).
[CrossRef]

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
[CrossRef]

Paulter, N. G.

M. B. Johnson, T. C. Mcgill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54, 2424–2426 (1989).
[CrossRef]

Pearson, D. B.

J. S. Weiner, D. B. Pearson, D. A. B. Miller, and D. S. Chemler, “Nonlinear spectroscopy of InGaAs/InAlAs multiple quantum well structures,” Appl. Phys. Lett. 49, 531–533 (1986).
[CrossRef]

Pessa, M.

Y. Tang, A. Siahmakoun, G. Sergio, M. Guina, and M. Pessa, “Optical switching in a resonant Fabry–Perot saturable absorber,” J. Opt. A 8, 991–995 (2006).
[CrossRef]

Porzi, C.

G. de Valicourt, C. Porzi, M. Guina, and N. Balkan, “Dilute nitride vertical-cavity gate for all-optical logic at 1.3  mm,” IET Optoelectron. 4, 201–209 (2010).
[CrossRef]

C. Porzi, M. Guina, L. Orsila, A. Bogoni, and L. Poti, “Simultaneous dual-wavelength conversion with multiresonant saturable absorption vertical-cavity semiconductor gate,” IEEE Photon. Technol. Lett. 20, 499–501 (2008).
[CrossRef]

C. Porzi, M. Guina, A. Bogoni, and L. Poti, “All-optical NAND/NOR logic gates based on semiconductor saturable absorber etalons,” IEEE J. Sel. Top. Quantum Electron. 14, 927–937 (2008).
[CrossRef]

C. Porzi, A. Isomaki, M. Guina, and O. G. Okhotnikov, “Impedance-detuned high-contrast vertical cavity semiconductor switch,” in Proceedings of the Optical Fiber Communication Conference (OFC) (2005), paper OThM 5.

S. Bhargava, C. Porzi, P. K. Datta, A. Bogoni, L. Potì, and R. Gangopadhyay, “Optical bistability in a nonlinear resonator with saturable losses and intensity-dependent refractive index,” in Proceedings of International Conference on Communications (2010), pp. 1–5.

Poti, L.

C. Porzi, M. Guina, A. Bogoni, and L. Poti, “All-optical NAND/NOR logic gates based on semiconductor saturable absorber etalons,” IEEE J. Sel. Top. Quantum Electron. 14, 927–937 (2008).
[CrossRef]

C. Porzi, M. Guina, L. Orsila, A. Bogoni, and L. Poti, “Simultaneous dual-wavelength conversion with multiresonant saturable absorption vertical-cavity semiconductor gate,” IEEE Photon. Technol. Lett. 20, 499–501 (2008).
[CrossRef]

Potì, L.

S. Bhargava, C. Porzi, P. K. Datta, A. Bogoni, L. Potì, and R. Gangopadhyay, “Optical bistability in a nonlinear resonator with saturable losses and intensity-dependent refractive index,” in Proceedings of International Conference on Communications (2010), pp. 1–5.

Prabhu, S. S.

Y. Chen, S. S. Prabhu, S. E. Ralf, and D. T. McLnturff, “Trapping and recombination dynamics of low-temperature-grown InGaAs/InAlAs multiple quantum-wells,” Appl. Phys. Lett. 72, 439–441 (1998).
[CrossRef]

Pradhan, R.

R. Pradhan, L. Mishra, K. Hussain, S. Saha, and P. K. Datta, “All-optical 2R regeneration with contrast enhancement in a reflective vertical cavity quantum-wells saturable absorber,” J. Opt. Commun. Networks 5, 457–464 (2013).
[CrossRef]

R. Pradhan, S. Saha, and P. K. Datta, “Dispersive bi-stability in a vertical microcavity-based saturable absorber due to photo-thermal effect and initial phase-detuning,” Opt. Commun. 287, 203–209 (2013).
[CrossRef]

R. Pradhan, K. Hussain, and P. K. Datta, “Reflective vertical cavity semiconductor saturable absorber for functional operations with thermal limitations and saturable index change,” Opt. Commun. 284, 3416–3421 (2011).
[CrossRef]

P. K. Datta, R. Pradhan, L. Mishra, and S. Saha, “Effect of saturable index change on all-optical logic operations in passive vertical cavity semiconductor saturable absorber,” IET Optoelectron. 5, 77–82 (2011).
[CrossRef]

Raj, R.

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
[CrossRef]

Ralf, S. E.

Y. Chen, S. S. Prabhu, S. E. Ralf, and D. T. McLnturff, “Trapping and recombination dynamics of low-temperature-grown InGaAs/InAlAs multiple quantum-wells,” Appl. Phys. Lett. 72, 439–441 (1998).
[CrossRef]

Rigo, C.

C. Cacciatore, D. Campi, C. Coriasso, G. Meneghini, and C. Rigo, “Low-power, refractive nonlinearity in InGaAs/InP multi-quantum well waveguide,” Electron. Lett. 28, 1624–1625 (1992).
[CrossRef]

Rosenzweig, J.

M. Lambsdorff, J. Kulh, J. Rosenzweig, A. Axmann, and J. Schneider, “Sub-picosecond lifetimes in radiation damaged GaAs,” Appl. Phys. Lett. 58, 1881–1883 (1991).
[CrossRef]

Ryan, J. F.

A. M. Fox, A. C. Mciel, M. G. Shorthose, and J. F. Ryan, “Nonlinear excitonic optical absorption in GaLnAs/InP,” Appl. Phys. Lett. 51, 30–32 (1987).
[CrossRef]

Saha, S.

R. Pradhan, S. Saha, and P. K. Datta, “Dispersive bi-stability in a vertical microcavity-based saturable absorber due to photo-thermal effect and initial phase-detuning,” Opt. Commun. 287, 203–209 (2013).
[CrossRef]

R. Pradhan, L. Mishra, K. Hussain, S. Saha, and P. K. Datta, “All-optical 2R regeneration with contrast enhancement in a reflective vertical cavity quantum-wells saturable absorber,” J. Opt. Commun. Networks 5, 457–464 (2013).
[CrossRef]

P. K. Datta, R. Pradhan, L. Mishra, and S. Saha, “Effect of saturable index change on all-optical logic operations in passive vertical cavity semiconductor saturable absorber,” IET Optoelectron. 5, 77–82 (2011).
[CrossRef]

Schneider, J.

M. Lambsdorff, J. Kulh, J. Rosenzweig, A. Axmann, and J. Schneider, “Sub-picosecond lifetimes in radiation damaged GaAs,” Appl. Phys. Lett. 58, 1881–1883 (1991).
[CrossRef]

Sergio, G.

Y. Tang, A. Siahmakoun, G. Sergio, M. Guina, and M. Pessa, “Optical switching in a resonant Fabry–Perot saturable absorber,” J. Opt. A 8, 991–995 (2006).
[CrossRef]

Shen, A.

D. Massoubre, J. L. Oudar, A. O’Hare, M. Gay, L. Bramerie, J. C. Soimn, A. Shen, and J. J. Decobert, “Analysis of thermal limitations in high-speed microcavity saturable absorber all-optical switching gates,” J. Lightwave Technol. 24, 3400–3408 (2006).
[CrossRef]

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
[CrossRef]

Shorthose, M. G.

A. M. Fox, A. C. Mciel, M. G. Shorthose, and J. F. Ryan, “Nonlinear excitonic optical absorption in GaLnAs/InP,” Appl. Phys. Lett. 51, 30–32 (1987).
[CrossRef]

Siahmakoun, A.

Y. Tang, A. Siahmakoun, G. Sergio, M. Guina, and M. Pessa, “Optical switching in a resonant Fabry–Perot saturable absorber,” J. Opt. A 8, 991–995 (2006).
[CrossRef]

Simon, J.-C.

É. L. Cren, S. Lobo, S. Fève, and J.-C. Simon, “Observation of thermal effects due to an optical incident signal and high fluence on InGaAs/InP multiple quantum-well saturable absorber nonlinear mirrors: evolution of characteristics and time constants,” Appl. Opt. 45, 6831–6838 (2006).
[CrossRef]

Soimn, J. C.

Stelmakh, N.

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
[CrossRef]

Takahashi, R.

R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, “Ultrafast 1.55  μm photoresponses in low-temperature-grown InGaAs/InAlAs quantum wells,” Appl. Phys. Lett. 65, 1790–1792 (1994).
[CrossRef]

Tang, Y.

Y. Tang, A. Siahmakoun, G. Sergio, M. Guina, and M. Pessa, “Optical switching in a resonant Fabry–Perot saturable absorber,” J. Opt. A 8, 991–995 (2006).
[CrossRef]

Tribe, W. R.

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500  fs carrier lifetimes,” Appl. Phys. Lett. 85, 4965–4967 (2004).
[CrossRef]

Vainionpää, A.

Weiner, J. S.

J. S. Weiner, D. B. Pearson, D. A. B. Miller, and D. S. Chemler, “Nonlinear spectroscopy of InGaAs/InAlAs multiple quantum well structures,” Appl. Phys. Lett. 49, 531–533 (1986).
[CrossRef]

Appl. Opt (1)

É. L. Cren, S. Lobo, S. Fève, and J.-C. Simon, “Observation of thermal effects due to an optical incident signal and high fluence on InGaAs/InP multiple quantum-well saturable absorber nonlinear mirrors: evolution of characteristics and time constants,” Appl. Opt. 45, 6831–6838 (2006).
[CrossRef]

Appl. Phys. Lett. (8)

A. M. Fox, A. C. Mciel, M. G. Shorthose, and J. F. Ryan, “Nonlinear excitonic optical absorption in GaLnAs/InP,” Appl. Phys. Lett. 51, 30–32 (1987).
[CrossRef]

J. S. Weiner, D. B. Pearson, D. A. B. Miller, and D. S. Chemler, “Nonlinear spectroscopy of InGaAs/InAlAs multiple quantum well structures,” Appl. Phys. Lett. 49, 531–533 (1986).
[CrossRef]

R. Takahashi, Y. Kawamura, T. Kagawa, and H. Iwamura, “Ultrafast 1.55  μm photoresponses in low-temperature-grown InGaAs/InAlAs quantum wells,” Appl. Phys. Lett. 65, 1790–1792 (1994).
[CrossRef]

C. Baker, I. S. Gregory, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, and M. Missous, “Highly resistive annealed low-temperature-grown InGaAs with sub-500  fs carrier lifetimes,” Appl. Phys. Lett. 85, 4965–4967 (2004).
[CrossRef]

Y. Chen, S. S. Prabhu, S. E. Ralf, and D. T. McLnturff, “Trapping and recombination dynamics of low-temperature-grown InGaAs/InAlAs multiple quantum-wells,” Appl. Phys. Lett. 72, 439–441 (1998).
[CrossRef]

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAlAs multiple quantum wells,” Appl. Phys. Lett. 72, 759–761 (1998).
[CrossRef]

M. B. Johnson, T. C. Mcgill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54, 2424–2426 (1989).
[CrossRef]

M. Lambsdorff, J. Kulh, J. Rosenzweig, A. Axmann, and J. Schneider, “Sub-picosecond lifetimes in radiation damaged GaAs,” Appl. Phys. Lett. 58, 1881–1883 (1991).
[CrossRef]

Electron. Lett. (1)

C. Cacciatore, D. Campi, C. Coriasso, G. Meneghini, and C. Rigo, “Low-power, refractive nonlinearity in InGaAs/InP multi-quantum well waveguide,” Electron. Lett. 28, 1624–1625 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Garmire, “Criteria for optical bistability in a lossy saturating Fabry–Perot,” IEEE J. Quantum Electron. 25, 289–295 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Porzi, M. Guina, A. Bogoni, and L. Poti, “All-optical NAND/NOR logic gates based on semiconductor saturable absorber etalons,” IEEE J. Sel. Top. Quantum Electron. 14, 927–937 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Porzi, M. Guina, L. Orsila, A. Bogoni, and L. Poti, “Simultaneous dual-wavelength conversion with multiresonant saturable absorption vertical-cavity semiconductor gate,” IEEE Photon. Technol. Lett. 20, 499–501 (2008).
[CrossRef]

IET Optoelectron. (2)

G. de Valicourt, C. Porzi, M. Guina, and N. Balkan, “Dilute nitride vertical-cavity gate for all-optical logic at 1.3  mm,” IET Optoelectron. 4, 201–209 (2010).
[CrossRef]

P. K. Datta, R. Pradhan, L. Mishra, and S. Saha, “Effect of saturable index change on all-optical logic operations in passive vertical cavity semiconductor saturable absorber,” IET Optoelectron. 5, 77–82 (2011).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A (1)

Y. Tang, A. Siahmakoun, G. Sergio, M. Guina, and M. Pessa, “Optical switching in a resonant Fabry–Perot saturable absorber,” J. Opt. A 8, 991–995 (2006).
[CrossRef]

J. Opt. Commun. Networks (1)

R. Pradhan, L. Mishra, K. Hussain, S. Saha, and P. K. Datta, “All-optical 2R regeneration with contrast enhancement in a reflective vertical cavity quantum-wells saturable absorber,” J. Opt. Commun. Networks 5, 457–464 (2013).
[CrossRef]

Opt. Commun. (2)

R. Pradhan, K. Hussain, and P. K. Datta, “Reflective vertical cavity semiconductor saturable absorber for functional operations with thermal limitations and saturable index change,” Opt. Commun. 284, 3416–3421 (2011).
[CrossRef]

R. Pradhan, S. Saha, and P. K. Datta, “Dispersive bi-stability in a vertical microcavity-based saturable absorber due to photo-thermal effect and initial phase-detuning,” Opt. Commun. 287, 203–209 (2013).
[CrossRef]

Opt. Lett. (1)

Other (2)

S. Bhargava, C. Porzi, P. K. Datta, A. Bogoni, L. Potì, and R. Gangopadhyay, “Optical bistability in a nonlinear resonator with saturable losses and intensity-dependent refractive index,” in Proceedings of International Conference on Communications (2010), pp. 1–5.

C. Porzi, A. Isomaki, M. Guina, and O. G. Okhotnikov, “Impedance-detuned high-contrast vertical cavity semiconductor switch,” in Proceedings of the Optical Fiber Communication Conference (OFC) (2005), paper OThM 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Effect of the nonlinear phase-shift in the forward-saturation characteristics of reflectivity with operation at low-intensity resonance wavelength (1555 nm).

Fig. 2.
Fig. 2.

Inverse saturation characteristic of reflectivity at 1555 nm is plotted with the effect of nonlinear phase-shift.

Fig. 3.
Fig. 3.

Round-trip phase-shift of a VCSSA operated at 1555 nm is a function of input intensity at various signal wavelengths.

Fig. 4.
Fig. 4.

Reflectivity characteristics of the VCSSA for the probe signal at 1564.5 nm are simulated (a) with the variation of Rt value at pump signal wavelength of 1555 nm, and (b) at Rt=0.915 with the different pump wavelengths.

Fig. 5.
Fig. 5.

Schematic diagram of VCSG-based XNOR logic.

Fig. 6.
Fig. 6.

Schematic diagram of VCSG-based LATCH.

Tables (3)

Tables Icon

Table 1. Parameters of an InGaAs/InP QW-Based VCSSA

Tables Icon

Table 2. Truth Table for XNOR Operation

Tables Icon

Table 3. Truth Table for NOT Operation

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

dNCdt=αIChνNCτ,
NC=αICτhν.
αα0=(N2NC)Nor,ααnsα0=(N2NC)N,
α(IC)=αns+α0{1+(IC/IS)},
Δα(IC)=α(IC)α(0)=αs(IC/IS).
αC=(αns+α0)+Δα=(αns+α0)αS(IC/IS).
n=n0+Δn=n0+Δns(IC/IS){1+(IC/IS)},
ϕrt_sat.=4π(Δns)dλ0(IC/IS){1+(IC/IS)},
Eg(Tact)=Eg(300)+dEgdTact(Tact300).
λ(Tact)=λ0(300)+dλ0dTact(Tact300),
Tact=300+RthPabs_QWs,
Pabs_QWs=AIS(ICIS)αd
αd=αnsd+α0d1+(IC/IS),
ΔT=RthAIS(ICIS)αd.
(Δλ0)red-shift=(dλ0dTact)RthAIS(ICIS)αd.
ϕrt_th.=4π(n0d)(1λw1λ0+(Δλ0)red-shift),
IC=Iin(1Rt)(1eαd)(1+Rbeαd)αd{(1RtRbeαd)2+4RtRbeαdsin2(ϕ/2)}
ϕ=ϕrt_lin.+ϕrt_nonlin.=ϕrt_lin.+ϕrt_sat.+ϕrt_th.,
R(Iin,λw)=(RtRbeαd)2+4RtRbsin2(ϕ/2)eαd(1RtRbeαd)2+4RtRbsin2(ϕ/2)eαd.
R(Iin)=(RtRbeαd)2(1RtRbeαd)2.
Rt=Rbe2αd.
IC_IM=IS(α0d12ln(RbRt)αnsd1).
Rt_IM_LI=Rbexp(2αnsd2α0d).
Rt_IM_HI=Rbexp(2αnsd).

Metrics