Abstract

In this paper, we present a novel design configuration of double DHFLC wave plate continuous tunable Lyot filter, which exhibits a rapid response time of 185 μs, while the high-contrast ratio between the passband and stop band is maintained throughout a wide tunable range. A DHFLC tunable filter with a high-contrast ratio is attractive for realizing high-speed optical processing devices, such as multispectral and hyperspectral imaging systems, real-time remote sensing, field sequential color display, and wavelength demultiplexing in the metro network. In this work, an experimental prototype for a single-stage DHFLC Lyot filter of this design has been fabricated using photoalignment technology. We have demonstrated that the filter has a continuous tunable range of 30 nm for a blue wavelength, 45 nm for a green wavelength, and more than 50 nm for a red wavelength when the applied voltage gradually increases from 0 to 8 V. Within this tunable range, the contrast ratio of the proposed double wave plate configuration is maintained above 20 with small deviation in the transmittance level. Simulation and experimental results showed the proposed double DHFLC wave plate configuration enhances the contrast ratio of the tunable filter and, thus, increases the tunable range of the filter when compared with the Lyot filter using a single DHFLC wave plate. Moreover, we have proposed a polarization insensitive configuration for which the efficiency of the existing prototype can theoretically be doubled by the use of polarization beam splitters.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Luo and Z. Wan, “Design and tolerance analysis of optical interleaver based on retardant crystals,” Opt. Int. J. Light Electron Opt. 122, 133–135 (2011).
    [CrossRef]
  2. N. Tsumura, H. Sato, T. Hasegawa, H. Haneishi, and Y. Miyake, “Limitation of color samples for spectral estimation from sensor responses in fine art painting,” Opt. Rev. 6, 57–61 (1999).
    [CrossRef]
  3. G. A. Kopp, M. J. Derks, D. M. Hassler, J. C. Woods, J. L. Streete, and J. G. Blankner, “Tunable liquid-crystal filter for solar imaging at the He I 1083  nm line,” Appl. Opt. 36, 291–296 (1997).
    [CrossRef]
  4. B. N. Rock, J. E. Vogelmann, D. L. Williams, A. F. Vogelmann, and T. Hoshizaki, “Remote detection of forest damage,” Bioscience 36, 439–445 (1986).
    [CrossRef]
  5. G. Hedge, P. Xu, E. Pozhidaev, V. Chigrinov, and H. S. Kwok, “Electrically controlled birefringence colours in deformed helix ferroelectric liquid crystals,” Liq. Cryst. 35, 1137–1144 (2008).
    [CrossRef]
  6. H. Morris, C. Hoyt, and P. Treado, “Acousto-optic and liquid crystal tunable filters,” Appl. Spectrosc. 48, 857–866 (1994).
    [CrossRef]
  7. P. Yeh, “Dispersive birefringent filters,” Opt. Commun. 37, 153–158 (1981).
    [CrossRef]
  8. J. Staromlynska, S. M. Rees, and M. P. Gillyon, “High performance tunable filter,” Appl. Opt. 37, 1081–1088 (1998).
    [CrossRef]
  9. Y. Wong, Q. Sun, and H. Zhang, “Widely tunable optical filter with variable bandwidth based on spatially distributed cholesteric liquid crystal,” Opt. Eng. 52, 044003 (2013).
    [CrossRef]
  10. Acousto Optic Tunable Filters Application Notes (ISOMET 1998), Chap. 3.
  11. P. Bos, T. Buzak, and R. Vatne, “A full-color field-sequential color display,” Proc. Soc. Inf. Disp. 26, 157–161 (1985).
  12. S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid crystal materials find a new order in biomedical applications,” Nat. Mater. 6, 929–938 (2007).
    [CrossRef]
  13. A. Sneh and K. M. Johnson, “High speed continuously tunable liquid crystal filter for WDM networks,” J. Lightwave Technol. 14, 1067–1080 (1996).
    [CrossRef]
  14. H. J. Masterson, G. D. Sharp, and K. M. Johnson, “Ferroelectric liquid-crystal tunable filter,” Opt. Lett. 14, 1249–1251 (1989).
    [CrossRef]
  15. G. D. Sharp, K. M. Johnson, and D. Doroski, “Continuously tunable smectic A* liquid-crystal color filter,” Opt. Lett. 15, 523–525 (1990).
    [CrossRef]
  16. T. Vo-dinh, D. Stokes, M. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michuad, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics. Hyperspectral imaging basic principles, instrumental systems, and applications of biomedical interest,” IEEE Eng. Med. Biol. Mag. 23, 40–49 (2004).
    [CrossRef]
  17. B. Peterson, Spectrum Analysis Basics Application Note 150 (Agilent Technologies, 2013).
  18. V. G. Chigrinov, Liquid Crystal Devices—Physics and Applications (Artech House, 1999).
  19. E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak, A. Strigazzi, and E. Miraldi, “Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch,” Liq. Cryst. 37, 1067–1081 (2010).
    [CrossRef]
  20. D. Yang and S. Wu, Fundamentals of Liquid Crystal Devices, Wiley-SID Series in Display Technology (Wiley, 2006).
  21. Q. Guo, Z. Brodzeli, E. P. Pozhidaev, F. Fan, V. G. Chigrinov, H. S. Kwok, L. Silvestri, and F. Ladouceur, “Fast electro-optical mode in photo-aligned reflective deformed helix ferroelectric liquid crystal cells,” Opt. Lett. 37, 2343–2345 (2012).
    [CrossRef]
  22. G. Kopp, “Tunable birefrigent filters using liquid crystal variable retarders,” Proc. SPIE 2265, 193–201 (1994).
    [CrossRef]
  23. R. C. Jones, “A new calculus for the treatment of optical systems, III the Sohncke theory of optical activity,” J. Opt. Soc. Am. 31, 500–503 (1941).
    [CrossRef]
  24. V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment Liquid Crystalline Materials, Physics and Applications (Wiley, 2008).

2013 (1)

Y. Wong, Q. Sun, and H. Zhang, “Widely tunable optical filter with variable bandwidth based on spatially distributed cholesteric liquid crystal,” Opt. Eng. 52, 044003 (2013).
[CrossRef]

2012 (1)

2011 (1)

Z. Luo and Z. Wan, “Design and tolerance analysis of optical interleaver based on retardant crystals,” Opt. Int. J. Light Electron Opt. 122, 133–135 (2011).
[CrossRef]

2010 (1)

E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak, A. Strigazzi, and E. Miraldi, “Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch,” Liq. Cryst. 37, 1067–1081 (2010).
[CrossRef]

2008 (1)

G. Hedge, P. Xu, E. Pozhidaev, V. Chigrinov, and H. S. Kwok, “Electrically controlled birefringence colours in deformed helix ferroelectric liquid crystals,” Liq. Cryst. 35, 1137–1144 (2008).
[CrossRef]

2007 (1)

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid crystal materials find a new order in biomedical applications,” Nat. Mater. 6, 929–938 (2007).
[CrossRef]

2004 (1)

T. Vo-dinh, D. Stokes, M. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michuad, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics. Hyperspectral imaging basic principles, instrumental systems, and applications of biomedical interest,” IEEE Eng. Med. Biol. Mag. 23, 40–49 (2004).
[CrossRef]

1999 (1)

N. Tsumura, H. Sato, T. Hasegawa, H. Haneishi, and Y. Miyake, “Limitation of color samples for spectral estimation from sensor responses in fine art painting,” Opt. Rev. 6, 57–61 (1999).
[CrossRef]

1998 (1)

1997 (1)

1996 (1)

A. Sneh and K. M. Johnson, “High speed continuously tunable liquid crystal filter for WDM networks,” J. Lightwave Technol. 14, 1067–1080 (1996).
[CrossRef]

1994 (2)

G. Kopp, “Tunable birefrigent filters using liquid crystal variable retarders,” Proc. SPIE 2265, 193–201 (1994).
[CrossRef]

H. Morris, C. Hoyt, and P. Treado, “Acousto-optic and liquid crystal tunable filters,” Appl. Spectrosc. 48, 857–866 (1994).
[CrossRef]

1990 (1)

1989 (1)

1986 (1)

B. N. Rock, J. E. Vogelmann, D. L. Williams, A. F. Vogelmann, and T. Hoshizaki, “Remote detection of forest damage,” Bioscience 36, 439–445 (1986).
[CrossRef]

1985 (1)

P. Bos, T. Buzak, and R. Vatne, “A full-color field-sequential color display,” Proc. Soc. Inf. Disp. 26, 157–161 (1985).

1981 (1)

P. Yeh, “Dispersive birefringent filters,” Opt. Commun. 37, 153–158 (1981).
[CrossRef]

1941 (1)

Blankner, J. G.

Bos, P.

P. Bos, T. Buzak, and R. Vatne, “A full-color field-sequential color display,” Proc. Soc. Inf. Disp. 26, 157–161 (1985).

Brodzeli, Z.

Buzak, T.

P. Bos, T. Buzak, and R. Vatne, “A full-color field-sequential color display,” Proc. Soc. Inf. Disp. 26, 157–161 (1985).

Chigrinov, V.

G. Hedge, P. Xu, E. Pozhidaev, V. Chigrinov, and H. S. Kwok, “Electrically controlled birefringence colours in deformed helix ferroelectric liquid crystals,” Liq. Cryst. 35, 1137–1144 (2008).
[CrossRef]

Chigrinov, V. G.

Q. Guo, Z. Brodzeli, E. P. Pozhidaev, F. Fan, V. G. Chigrinov, H. S. Kwok, L. Silvestri, and F. Ladouceur, “Fast electro-optical mode in photo-aligned reflective deformed helix ferroelectric liquid crystal cells,” Opt. Lett. 37, 2343–2345 (2012).
[CrossRef]

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment Liquid Crystalline Materials, Physics and Applications (Wiley, 2008).

V. G. Chigrinov, Liquid Crystal Devices—Physics and Applications (Artech House, 1999).

Crawford, G. P.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid crystal materials find a new order in biomedical applications,” Nat. Mater. 6, 929–938 (2007).
[CrossRef]

Derks, M. J.

Doroski, D.

Fan, F.

Gillyon, M. P.

Guo, Q.

Haneishi, H.

N. Tsumura, H. Sato, T. Hasegawa, H. Haneishi, and Y. Miyake, “Limitation of color samples for spectral estimation from sensor responses in fine art painting,” Opt. Rev. 6, 57–61 (1999).
[CrossRef]

Hasegawa, T.

N. Tsumura, H. Sato, T. Hasegawa, H. Haneishi, and Y. Miyake, “Limitation of color samples for spectral estimation from sensor responses in fine art painting,” Opt. Rev. 6, 57–61 (1999).
[CrossRef]

Hassler, D. M.

Hedge, G.

G. Hedge, P. Xu, E. Pozhidaev, V. Chigrinov, and H. S. Kwok, “Electrically controlled birefringence colours in deformed helix ferroelectric liquid crystals,” Liq. Cryst. 35, 1137–1144 (2008).
[CrossRef]

Hoshizaki, T.

B. N. Rock, J. E. Vogelmann, D. L. Williams, A. F. Vogelmann, and T. Hoshizaki, “Remote detection of forest damage,” Bioscience 36, 439–445 (1986).
[CrossRef]

Hoyt, C.

Jagannathan, R.

T. Vo-dinh, D. Stokes, M. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michuad, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics. Hyperspectral imaging basic principles, instrumental systems, and applications of biomedical interest,” IEEE Eng. Med. Biol. Mag. 23, 40–49 (2004).
[CrossRef]

Jay, G. D.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid crystal materials find a new order in biomedical applications,” Nat. Mater. 6, 929–938 (2007).
[CrossRef]

Johnson, K. M.

Jones, R. C.

Kopp, G.

G. Kopp, “Tunable birefrigent filters using liquid crystal variable retarders,” Proc. SPIE 2265, 193–201 (1994).
[CrossRef]

Kopp, G. A.

Kozenkov, V. M.

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment Liquid Crystalline Materials, Physics and Applications (Wiley, 2008).

Kwok, H. S.

Q. Guo, Z. Brodzeli, E. P. Pozhidaev, F. Fan, V. G. Chigrinov, H. S. Kwok, L. Silvestri, and F. Ladouceur, “Fast electro-optical mode in photo-aligned reflective deformed helix ferroelectric liquid crystal cells,” Opt. Lett. 37, 2343–2345 (2012).
[CrossRef]

G. Hedge, P. Xu, E. Pozhidaev, V. Chigrinov, and H. S. Kwok, “Electrically controlled birefringence colours in deformed helix ferroelectric liquid crystals,” Liq. Cryst. 35, 1137–1144 (2008).
[CrossRef]

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment Liquid Crystalline Materials, Physics and Applications (Wiley, 2008).

Ladouceur, F.

Lee, R.

T. Vo-dinh, D. Stokes, M. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michuad, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics. Hyperspectral imaging basic principles, instrumental systems, and applications of biomedical interest,” IEEE Eng. Med. Biol. Mag. 23, 40–49 (2004).
[CrossRef]

Luo, Z.

Z. Luo and Z. Wan, “Design and tolerance analysis of optical interleaver based on retardant crystals,” Opt. Int. J. Light Electron Opt. 122, 133–135 (2011).
[CrossRef]

Martin, M.

T. Vo-dinh, D. Stokes, M. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michuad, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics. Hyperspectral imaging basic principles, instrumental systems, and applications of biomedical interest,” IEEE Eng. Med. Biol. Mag. 23, 40–49 (2004).
[CrossRef]

Masterson, H. J.

Michuad, E.

T. Vo-dinh, D. Stokes, M. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michuad, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics. Hyperspectral imaging basic principles, instrumental systems, and applications of biomedical interest,” IEEE Eng. Med. Biol. Mag. 23, 40–49 (2004).
[CrossRef]

Minchenko, M.

E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak, A. Strigazzi, and E. Miraldi, “Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch,” Liq. Cryst. 37, 1067–1081 (2010).
[CrossRef]

Miraldi, E.

E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak, A. Strigazzi, and E. Miraldi, “Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch,” Liq. Cryst. 37, 1067–1081 (2010).
[CrossRef]

Miyake, Y.

N. Tsumura, H. Sato, T. Hasegawa, H. Haneishi, and Y. Miyake, “Limitation of color samples for spectral estimation from sensor responses in fine art painting,” Opt. Rev. 6, 57–61 (1999).
[CrossRef]

Morris, H.

Pan, X.

T. Vo-dinh, D. Stokes, M. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michuad, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics. Hyperspectral imaging basic principles, instrumental systems, and applications of biomedical interest,” IEEE Eng. Med. Biol. Mag. 23, 40–49 (2004).
[CrossRef]

Peterson, B.

B. Peterson, Spectrum Analysis Basics Application Note 150 (Agilent Technologies, 2013).

Pozhidaev, E.

E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak, A. Strigazzi, and E. Miraldi, “Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch,” Liq. Cryst. 37, 1067–1081 (2010).
[CrossRef]

G. Hedge, P. Xu, E. Pozhidaev, V. Chigrinov, and H. S. Kwok, “Electrically controlled birefringence colours in deformed helix ferroelectric liquid crystals,” Liq. Cryst. 35, 1137–1144 (2008).
[CrossRef]

Pozhidaev, E. P.

Rees, S. M.

Rock, B. N.

B. N. Rock, J. E. Vogelmann, D. L. Williams, A. F. Vogelmann, and T. Hoshizaki, “Remote detection of forest damage,” Bioscience 36, 439–445 (1986).
[CrossRef]

Sato, H.

N. Tsumura, H. Sato, T. Hasegawa, H. Haneishi, and Y. Miyake, “Limitation of color samples for spectral estimation from sensor responses in fine art painting,” Opt. Rev. 6, 57–61 (1999).
[CrossRef]

Sharp, G. D.

Silvestri, L.

Sneh, A.

A. Sneh and K. M. Johnson, “High speed continuously tunable liquid crystal filter for WDM networks,” J. Lightwave Technol. 14, 1067–1080 (1996).
[CrossRef]

Song, J.

T. Vo-dinh, D. Stokes, M. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michuad, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics. Hyperspectral imaging basic principles, instrumental systems, and applications of biomedical interest,” IEEE Eng. Med. Biol. Mag. 23, 40–49 (2004).
[CrossRef]

Staromlynska, J.

Stokes, D.

T. Vo-dinh, D. Stokes, M. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michuad, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics. Hyperspectral imaging basic principles, instrumental systems, and applications of biomedical interest,” IEEE Eng. Med. Biol. Mag. 23, 40–49 (2004).
[CrossRef]

Streete, J. L.

Strigazzi, A.

E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak, A. Strigazzi, and E. Miraldi, “Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch,” Liq. Cryst. 37, 1067–1081 (2010).
[CrossRef]

Sun, Q.

Y. Wong, Q. Sun, and H. Zhang, “Widely tunable optical filter with variable bandwidth based on spatially distributed cholesteric liquid crystal,” Opt. Eng. 52, 044003 (2013).
[CrossRef]

Torgova, S.

E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak, A. Strigazzi, and E. Miraldi, “Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch,” Liq. Cryst. 37, 1067–1081 (2010).
[CrossRef]

Treado, P.

Tsumura, N.

N. Tsumura, H. Sato, T. Hasegawa, H. Haneishi, and Y. Miyake, “Limitation of color samples for spectral estimation from sensor responses in fine art painting,” Opt. Rev. 6, 57–61 (1999).
[CrossRef]

Vatne, R.

P. Bos, T. Buzak, and R. Vatne, “A full-color field-sequential color display,” Proc. Soc. Inf. Disp. 26, 157–161 (1985).

Vo-dinh, T.

T. Vo-dinh, D. Stokes, M. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michuad, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics. Hyperspectral imaging basic principles, instrumental systems, and applications of biomedical interest,” IEEE Eng. Med. Biol. Mag. 23, 40–49 (2004).
[CrossRef]

Vogelmann, A. F.

B. N. Rock, J. E. Vogelmann, D. L. Williams, A. F. Vogelmann, and T. Hoshizaki, “Remote detection of forest damage,” Bioscience 36, 439–445 (1986).
[CrossRef]

Vogelmann, J. E.

B. N. Rock, J. E. Vogelmann, D. L. Williams, A. F. Vogelmann, and T. Hoshizaki, “Remote detection of forest damage,” Bioscience 36, 439–445 (1986).
[CrossRef]

Wabuyele, M.

T. Vo-dinh, D. Stokes, M. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michuad, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics. Hyperspectral imaging basic principles, instrumental systems, and applications of biomedical interest,” IEEE Eng. Med. Biol. Mag. 23, 40–49 (2004).
[CrossRef]

Wan, Z.

Z. Luo and Z. Wan, “Design and tolerance analysis of optical interleaver based on retardant crystals,” Opt. Int. J. Light Electron Opt. 122, 133–135 (2011).
[CrossRef]

Williams, D. L.

B. N. Rock, J. E. Vogelmann, D. L. Williams, A. F. Vogelmann, and T. Hoshizaki, “Remote detection of forest damage,” Bioscience 36, 439–445 (1986).
[CrossRef]

Woltman, S. J.

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid crystal materials find a new order in biomedical applications,” Nat. Mater. 6, 929–938 (2007).
[CrossRef]

Wong, Y.

Y. Wong, Q. Sun, and H. Zhang, “Widely tunable optical filter with variable bandwidth based on spatially distributed cholesteric liquid crystal,” Opt. Eng. 52, 044003 (2013).
[CrossRef]

Woods, J. C.

Wu, S.

D. Yang and S. Wu, Fundamentals of Liquid Crystal Devices, Wiley-SID Series in Display Technology (Wiley, 2006).

Xu, P.

G. Hedge, P. Xu, E. Pozhidaev, V. Chigrinov, and H. S. Kwok, “Electrically controlled birefringence colours in deformed helix ferroelectric liquid crystals,” Liq. Cryst. 35, 1137–1144 (2008).
[CrossRef]

Yang, D.

D. Yang and S. Wu, Fundamentals of Liquid Crystal Devices, Wiley-SID Series in Display Technology (Wiley, 2006).

Yednak, C. A. R.

E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak, A. Strigazzi, and E. Miraldi, “Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch,” Liq. Cryst. 37, 1067–1081 (2010).
[CrossRef]

Yeh, P.

P. Yeh, “Dispersive birefringent filters,” Opt. Commun. 37, 153–158 (1981).
[CrossRef]

Zhang, H.

Y. Wong, Q. Sun, and H. Zhang, “Widely tunable optical filter with variable bandwidth based on spatially distributed cholesteric liquid crystal,” Opt. Eng. 52, 044003 (2013).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. (1)

Bioscience (1)

B. N. Rock, J. E. Vogelmann, D. L. Williams, A. F. Vogelmann, and T. Hoshizaki, “Remote detection of forest damage,” Bioscience 36, 439–445 (1986).
[CrossRef]

IEEE Eng. Med. Biol. Mag. (1)

T. Vo-dinh, D. Stokes, M. Wabuyele, M. Martin, J. Song, R. Jagannathan, E. Michuad, R. Lee, and X. Pan, “A hyperspectral imaging system for in vivo optical diagnostics. Hyperspectral imaging basic principles, instrumental systems, and applications of biomedical interest,” IEEE Eng. Med. Biol. Mag. 23, 40–49 (2004).
[CrossRef]

J. Lightwave Technol. (1)

A. Sneh and K. M. Johnson, “High speed continuously tunable liquid crystal filter for WDM networks,” J. Lightwave Technol. 14, 1067–1080 (1996).
[CrossRef]

J. Opt. Soc. Am. (1)

Liq. Cryst. (2)

E. Pozhidaev, S. Torgova, M. Minchenko, C. A. R. Yednak, A. Strigazzi, and E. Miraldi, “Phase modulation and ellipticity of the light transmitted through a smectic C* layer with short helix pitch,” Liq. Cryst. 37, 1067–1081 (2010).
[CrossRef]

G. Hedge, P. Xu, E. Pozhidaev, V. Chigrinov, and H. S. Kwok, “Electrically controlled birefringence colours in deformed helix ferroelectric liquid crystals,” Liq. Cryst. 35, 1137–1144 (2008).
[CrossRef]

Nat. Mater. (1)

S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid crystal materials find a new order in biomedical applications,” Nat. Mater. 6, 929–938 (2007).
[CrossRef]

Opt. Commun. (1)

P. Yeh, “Dispersive birefringent filters,” Opt. Commun. 37, 153–158 (1981).
[CrossRef]

Opt. Eng. (1)

Y. Wong, Q. Sun, and H. Zhang, “Widely tunable optical filter with variable bandwidth based on spatially distributed cholesteric liquid crystal,” Opt. Eng. 52, 044003 (2013).
[CrossRef]

Opt. Int. J. Light Electron Opt. (1)

Z. Luo and Z. Wan, “Design and tolerance analysis of optical interleaver based on retardant crystals,” Opt. Int. J. Light Electron Opt. 122, 133–135 (2011).
[CrossRef]

Opt. Lett. (3)

Opt. Rev. (1)

N. Tsumura, H. Sato, T. Hasegawa, H. Haneishi, and Y. Miyake, “Limitation of color samples for spectral estimation from sensor responses in fine art painting,” Opt. Rev. 6, 57–61 (1999).
[CrossRef]

Proc. Soc. Inf. Disp. (1)

P. Bos, T. Buzak, and R. Vatne, “A full-color field-sequential color display,” Proc. Soc. Inf. Disp. 26, 157–161 (1985).

Proc. SPIE (1)

G. Kopp, “Tunable birefrigent filters using liquid crystal variable retarders,” Proc. SPIE 2265, 193–201 (1994).
[CrossRef]

Other (5)

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment Liquid Crystalline Materials, Physics and Applications (Wiley, 2008).

D. Yang and S. Wu, Fundamentals of Liquid Crystal Devices, Wiley-SID Series in Display Technology (Wiley, 2006).

B. Peterson, Spectrum Analysis Basics Application Note 150 (Agilent Technologies, 2013).

V. G. Chigrinov, Liquid Crystal Devices—Physics and Applications (Artech House, 1999).

Acousto Optic Tunable Filters Application Notes (ISOMET 1998), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Structure of DHFLC wave plate with FLC director spatially rotated in the azimuth direction at period P0.

Fig. 2.
Fig. 2.

Continuous tunable DHFLC Lyot filter configuration with passive retarder and DHFLC retarder sandwiched between two parallel polarizers. (a) Typical single DHFLC configuration. (b) Proposed double DHFLC wave plate configuration.

Fig. 3.
Fig. 3.

Simulation results of transmission spectrums for (a) single DHFLC wave plate single-stage Lyot filter, (b) double DHFLC wave plate single-stage Lyot filter, and (c) three-stage double wave plate DHFLC Lyot filter.

Fig. 4.
Fig. 4.

Experimental measurement of single-stage DHFLC filter. (a) Transmittance for single DHFLC configuration. (b) Transmittance for double DHFLC configuration. (c) Direct comparison between simulation result and experimental result for 8 V applied voltage. (d) Contrast ratio against applied voltage for single and double FLC wave plate configuration.

Fig. 5.
Fig. 5.

Experimental measurements of DHFLC filter response time. (a) Measurement setup of DHFLC response time. (b) 4 μm DHFLC wave plate response with respect to ±5V AC square-wave voltage signal.

Fig. 6.
Fig. 6.

Increase in output intensity using PBS to design a polarization independent DHFLC tunable filter.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Ec=π216K22q02Ps,
ωc=K22q02γ,
α(E)=sin2θπ2E64(13/2sin2θ)Ec,
Δneff(E)=Δn(1+sin22θ13/2sin2θ(π232Ec)2E2),
T=12[1sin2[2(βα(E))]sin2(πdΔneff(E)λ)],
λmax=Δneff(E)dm,
FSR=Δλ=λ2Δneff(E)d.
Δλ1/2=0.886λ22NΔneff(E)d.
τ=γK22q02,
Tout=|EoutEin|2=|PR(a)G(Γ)R(a)R(b)G(Γ)R(b)R(45°)G(Γp)R(45°)PEin|2E02=12(|X|2cos(Γp2)+|Y|2sin2(Γp2)Im(XY*)sinΓp),
max[QE(β)]=k=1L[Ikmax(β)]2k=1M[Ikmin(β)]2,
CR(V)=k=1MIkmax(V)/Mk=1LIkmin(V)/L,

Metrics