Abstract

A high-resolution and multilevel designed reference pattern (DRP) is presented for improvement of both light utilization efficiency and the signal-to-noise ratio (SNR) of reconstructed images in coaxial holographic data storage. With a DRP, the desired Fourier power spectrum of a reference beam is obtained. Numerical and experimental results show that the DRP increases the SNR compared with that of a random phase mask (RPM). Moreover, the light utilization efficiency of the DRP is higher than that of a high-resolution RPM. In addition, the effect of the phase level and the pixel pitch of DRPs on the SNR and the light utilization efficiency are investigated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
    [CrossRef]
  2. M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1  Tbit/inch2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52, 09LD01 (2013).
    [CrossRef]
  3. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
    [CrossRef]
  4. K. Tanaka, M. Hara, K. Tokuyama, Y. Okamoto, H. Mori, A. Fukumoto, and K. Okada, “415  Gbit/in.2 recording in coaxial holographic storage using low-density parity-check codes,” in Optical Data Storage Topical Meeting (IEEE, 2009), pp. 70–72.
  5. M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
    [CrossRef]
  6. A. Shibukawa, A. Okamoto, A. Tomita, M. Takabayashi, and K. Sato, “Multilayer collinear holographic memory with movable random phase mask,” Jpn. J. Appl. Phys. 50, 09ME10 (2011).
    [CrossRef]
  7. J. Li, C. H. Gu, X. Tan, Q. He, and G. Jin, “Orthogonal-reference-pattern-modulated shift multiplexing for collinear holographic data storage,” Opt. Lett. 37, 936–938 (2012).
    [CrossRef]
  8. L. Cao, J. Liu, J. Li, Q. He, and G. Jin, “Orthogonal reference pattern multiplexing for collinear holographic data storage,” Appl. Opt. 53, 1–8 (2014).
    [CrossRef]
  9. E. Watanabe and K. Kodate, “Optical correlator for face recognition using collinear holographic system,” Jpn. J. Appl. Phys. 45, 6759–6761 (2006).
    [CrossRef]
  10. M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775–3781 (2007).
    [CrossRef]
  11. C. B. Burckhardt, “Use of a random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695–700 (1970).
    [CrossRef]
  12. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15, 16196–16209 (2007).
    [CrossRef]
  13. Y. Yu, C. Cheng, S. Hsieh, T. Teng, and C. Sun, “Point spread function by random phase reference in collinear holographic storage,” Opt. Eng. 48, 020501 (2009).
    [CrossRef]
  14. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902–4914 (2004).
    [CrossRef]
  15. T. Nobukawa and T. Nomura, “Coaxial holographic memory with designed reference pattern on the basis of Nyquist aperture for high density recording,” Jpn. J. Appl. Phys. 52, 09LD09 (2013).
    [CrossRef]
  16. N. Yoshikawa and T. Yatagai, “Phase optimization of a kinoform by simulated annealing,” Appl. Opt. 33, 863–868 (1994).
    [CrossRef]
  17. V. Vadde, B. V. K. V. Kumar, G. W. Burr, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, “A figure-of-merit for the optical aperture used in digital volume holographic data storage,” Proc. SPIE 3401, 194–200 (1998).
    [CrossRef]
  18. T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208–1210 (2006).
    [CrossRef]
  19. C. Sun, Y. Yu, S. Hsieh, T. Teng, and M. Tsai, “Point spread function of a collinear hoplographic storage system,” Opt. Express 15, 18111–18118 (2007).
    [CrossRef]
  20. Y. Yu, C. Chen, and C. Sun, “Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array,” Opt. Lett. 35, 1130–1132 (2010).
    [CrossRef]
  21. M. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377–5385 (1998).
    [CrossRef]
  22. Y. Saita, T. Nomura, E. Nitanai, and T. Numata, “Design of reference pattern and input phase mask for coaxial holographic memory,” Jpn. J. Appl. Phys. 50, 09ME03 (2011).
    [CrossRef]
  23. S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246–1252 (2006).
    [CrossRef]
  24. Y. Yonetani, K. Nitta, and O. Matoba, “Numerical evaluation of angular multiplexing in reflection-type holographic data storage in photopolymer with shrinkage,” Appl. Opt. 49, 694–700 (2010).
    [CrossRef]
  25. B. M. King and M. A. Neifeld, “Sparse modulation coding for increased capacity in volume holographic storage,” Appl. Opt. 39, 6681–6688 (2000).
    [CrossRef]
  26. T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2006).
    [CrossRef]
  27. Y. Yu, T. Teng, S. Hsieh, C. Cheng, and C. Sun, “Shift selectivity of collinear volume holographic storage,” Opt. Commun. 283, 3895–3900 (2010).
    [CrossRef]

2014 (1)

2013 (2)

M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1  Tbit/inch2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52, 09LD01 (2013).
[CrossRef]

T. Nobukawa and T. Nomura, “Coaxial holographic memory with designed reference pattern on the basis of Nyquist aperture for high density recording,” Jpn. J. Appl. Phys. 52, 09LD09 (2013).
[CrossRef]

2012 (1)

2011 (2)

A. Shibukawa, A. Okamoto, A. Tomita, M. Takabayashi, and K. Sato, “Multilayer collinear holographic memory with movable random phase mask,” Jpn. J. Appl. Phys. 50, 09ME10 (2011).
[CrossRef]

Y. Saita, T. Nomura, E. Nitanai, and T. Numata, “Design of reference pattern and input phase mask for coaxial holographic memory,” Jpn. J. Appl. Phys. 50, 09ME03 (2011).
[CrossRef]

2010 (3)

2009 (1)

Y. Yu, C. Cheng, S. Hsieh, T. Teng, and C. Sun, “Point spread function by random phase reference in collinear holographic storage,” Opt. Eng. 48, 020501 (2009).
[CrossRef]

2008 (1)

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
[CrossRef]

2007 (3)

2006 (4)

T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208–1210 (2006).
[CrossRef]

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246–1252 (2006).
[CrossRef]

T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2006).
[CrossRef]

E. Watanabe and K. Kodate, “Optical correlator for face recognition using collinear holographic system,” Jpn. J. Appl. Phys. 45, 6759–6761 (2006).
[CrossRef]

2005 (1)

2004 (2)

2000 (1)

1998 (2)

M. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377–5385 (1998).
[CrossRef]

V. Vadde, B. V. K. V. Kumar, G. W. Burr, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, “A figure-of-merit for the optical aperture used in digital volume holographic data storage,” Proc. SPIE 3401, 194–200 (1998).
[CrossRef]

1994 (1)

1970 (1)

Ashizuka, Y.

T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2006).
[CrossRef]

Bashaw, M. C.

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[CrossRef]

Bernal, M.

Bjornson, E.

Burckhardt, C. B.

Burr, G. W.

M. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377–5385 (1998).
[CrossRef]

V. Vadde, B. V. K. V. Kumar, G. W. Burr, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, “A figure-of-merit for the optical aperture used in digital volume holographic data storage,” Proc. SPIE 3401, 194–200 (1998).
[CrossRef]

Cao, L.

Chen, C.

Cheng, C.

Y. Yu, T. Teng, S. Hsieh, C. Cheng, and C. Sun, “Shift selectivity of collinear volume holographic storage,” Opt. Commun. 283, 3895–3900 (2010).
[CrossRef]

Y. Yu, C. Cheng, S. Hsieh, T. Teng, and C. Sun, “Point spread function by random phase reference in collinear holographic storage,” Opt. Eng. 48, 020501 (2009).
[CrossRef]

Coufal, H.

M. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377–5385 (1998).
[CrossRef]

V. Vadde, B. V. K. V. Kumar, G. W. Burr, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, “A figure-of-merit for the optical aperture used in digital volume holographic data storage,” Proc. SPIE 3401, 194–200 (1998).
[CrossRef]

Fujimura, R.

T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208–1210 (2006).
[CrossRef]

T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2006).
[CrossRef]

Fukumoto, A.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
[CrossRef]

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15, 16196–16209 (2007).
[CrossRef]

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246–1252 (2006).
[CrossRef]

K. Tanaka, M. Hara, K. Tokuyama, Y. Okamoto, H. Mori, A. Fukumoto, and K. Okada, “415  Gbit/in.2 recording in coaxial holographic storage using low-density parity-check codes,” in Optical Data Storage Topical Meeting (IEEE, 2009), pp. 70–72.

Gu, C. H.

Hara, M.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
[CrossRef]

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15, 16196–16209 (2007).
[CrossRef]

M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775–3781 (2007).
[CrossRef]

K. Tanaka, M. Hara, K. Tokuyama, Y. Okamoto, H. Mori, A. Fukumoto, and K. Okada, “415  Gbit/in.2 recording in coaxial holographic storage using low-density parity-check codes,” in Optical Data Storage Topical Meeting (IEEE, 2009), pp. 70–72.

He, Q.

Hesselink, L.

Hirooka, K.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
[CrossRef]

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15, 16196–16209 (2007).
[CrossRef]

Hoffnagle, J. A.

V. Vadde, B. V. K. V. Kumar, G. W. Burr, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, “A figure-of-merit for the optical aperture used in digital volume holographic data storage,” Proc. SPIE 3401, 194–200 (1998).
[CrossRef]

Horimai, H.

Hosaka, M.

M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1  Tbit/inch2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52, 09LD01 (2013).
[CrossRef]

Hoshizawa, T.

M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1  Tbit/inch2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52, 09LD01 (2013).
[CrossRef]

Hsieh, S.

Y. Yu, T. Teng, S. Hsieh, C. Cheng, and C. Sun, “Shift selectivity of collinear volume holographic storage,” Opt. Commun. 283, 3895–3900 (2010).
[CrossRef]

Y. Yu, C. Cheng, S. Hsieh, T. Teng, and C. Sun, “Point spread function by random phase reference in collinear holographic storage,” Opt. Eng. 48, 020501 (2009).
[CrossRef]

C. Sun, Y. Yu, S. Hsieh, T. Teng, and M. Tsai, “Point spread function of a collinear hoplographic storage system,” Opt. Express 15, 18111–18118 (2007).
[CrossRef]

Ichimura, S.

T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208–1210 (2006).
[CrossRef]

T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2006).
[CrossRef]

Ishii, T.

M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1  Tbit/inch2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52, 09LD01 (2013).
[CrossRef]

Ishioka, K.

Jefferson, C. M.

V. Vadde, B. V. K. V. Kumar, G. W. Burr, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, “A figure-of-merit for the optical aperture used in digital volume holographic data storage,” Proc. SPIE 3401, 194–200 (1998).
[CrossRef]

Jin, G.

King, B. M.

Kodate, K.

E. Watanabe and K. Kodate, “Optical correlator for face recognition using collinear holographic system,” Jpn. J. Appl. Phys. 45, 6759–6761 (2006).
[CrossRef]

Koga, S.

M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1  Tbit/inch2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52, 09LD01 (2013).
[CrossRef]

Kumar, B. V. K. V.

V. Vadde, B. V. K. V. Kumar, G. W. Burr, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, “A figure-of-merit for the optical aperture used in digital volume holographic data storage,” Proc. SPIE 3401, 194–200 (1998).
[CrossRef]

Kuroda, K.

T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208–1210 (2006).
[CrossRef]

T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2006).
[CrossRef]

Kwan, D.

Lambourdiere, S. R.

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246–1252 (2006).
[CrossRef]

Li, J.

Liu, J.

Matoba, O.

Mori, H.

K. Tanaka, M. Hara, K. Tokuyama, Y. Okamoto, H. Mori, A. Fukumoto, and K. Okada, “415  Gbit/in.2 recording in coaxial holographic storage using low-density parity-check codes,” in Optical Data Storage Topical Meeting (IEEE, 2009), pp. 70–72.

Neifeld, M. A.

Nitanai, E.

Y. Saita, T. Nomura, E. Nitanai, and T. Numata, “Design of reference pattern and input phase mask for coaxial holographic memory,” Jpn. J. Appl. Phys. 50, 09ME03 (2011).
[CrossRef]

Nitta, K.

Nobukawa, T.

T. Nobukawa and T. Nomura, “Coaxial holographic memory with designed reference pattern on the basis of Nyquist aperture for high density recording,” Jpn. J. Appl. Phys. 52, 09LD09 (2013).
[CrossRef]

Nomura, T.

T. Nobukawa and T. Nomura, “Coaxial holographic memory with designed reference pattern on the basis of Nyquist aperture for high density recording,” Jpn. J. Appl. Phys. 52, 09LD09 (2013).
[CrossRef]

Y. Saita, T. Nomura, E. Nitanai, and T. Numata, “Design of reference pattern and input phase mask for coaxial holographic memory,” Jpn. J. Appl. Phys. 50, 09ME03 (2011).
[CrossRef]

Numata, T.

Y. Saita, T. Nomura, E. Nitanai, and T. Numata, “Design of reference pattern and input phase mask for coaxial holographic memory,” Jpn. J. Appl. Phys. 50, 09ME03 (2011).
[CrossRef]

Okada, K.

K. Tanaka, M. Hara, K. Tokuyama, Y. Okamoto, H. Mori, A. Fukumoto, and K. Okada, “415  Gbit/in.2 recording in coaxial holographic storage using low-density parity-check codes,” in Optical Data Storage Topical Meeting (IEEE, 2009), pp. 70–72.

Okamoto, A.

A. Shibukawa, A. Okamoto, A. Tomita, M. Takabayashi, and K. Sato, “Multilayer collinear holographic memory with movable random phase mask,” Jpn. J. Appl. Phys. 50, 09ME10 (2011).
[CrossRef]

Okamoto, Y.

K. Tanaka, M. Hara, K. Tokuyama, Y. Okamoto, H. Mori, A. Fukumoto, and K. Okada, “415  Gbit/in.2 recording in coaxial holographic storage using low-density parity-check codes,” in Optical Data Storage Topical Meeting (IEEE, 2009), pp. 70–72.

Okas, R.

Orlov, S. S.

Phillips, W.

Quintanilla, M.

Saita, Y.

Y. Saita, T. Nomura, E. Nitanai, and T. Numata, “Design of reference pattern and input phase mask for coaxial holographic memory,” Jpn. J. Appl. Phys. 50, 09ME03 (2011).
[CrossRef]

Sato, K.

A. Shibukawa, A. Okamoto, A. Tomita, M. Takabayashi, and K. Sato, “Multilayer collinear holographic memory with movable random phase mask,” Jpn. J. Appl. Phys. 50, 09ME10 (2011).
[CrossRef]

Shibukawa, A.

A. Shibukawa, A. Okamoto, A. Tomita, M. Takabayashi, and K. Sato, “Multilayer collinear holographic memory with movable random phase mask,” Jpn. J. Appl. Phys. 50, 09ME10 (2011).
[CrossRef]

Shimura, T.

T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208–1210 (2006).
[CrossRef]

T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2006).
[CrossRef]

Snyder, R.

Sun, C.

Y. Yu, T. Teng, S. Hsieh, C. Cheng, and C. Sun, “Shift selectivity of collinear volume holographic storage,” Opt. Commun. 283, 3895–3900 (2010).
[CrossRef]

Y. Yu, C. Chen, and C. Sun, “Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array,” Opt. Lett. 35, 1130–1132 (2010).
[CrossRef]

Y. Yu, C. Cheng, S. Hsieh, T. Teng, and C. Sun, “Point spread function by random phase reference in collinear holographic storage,” Opt. Eng. 48, 020501 (2009).
[CrossRef]

C. Sun, Y. Yu, S. Hsieh, T. Teng, and M. Tsai, “Point spread function of a collinear hoplographic storage system,” Opt. Express 15, 18111–18118 (2007).
[CrossRef]

Sundaram, P.

Takabayashi, M.

A. Shibukawa, A. Okamoto, A. Tomita, M. Takabayashi, and K. Sato, “Multilayer collinear holographic memory with movable random phase mask,” Jpn. J. Appl. Phys. 50, 09ME10 (2011).
[CrossRef]

Takashima, Y.

Tan, X.

Tanaka, A.

M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1  Tbit/inch2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52, 09LD01 (2013).
[CrossRef]

Tanaka, K.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
[CrossRef]

M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775–3781 (2007).
[CrossRef]

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15, 16196–16209 (2007).
[CrossRef]

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246–1252 (2006).
[CrossRef]

K. Tanaka, M. Hara, K. Tokuyama, Y. Okamoto, H. Mori, A. Fukumoto, and K. Okada, “415  Gbit/in.2 recording in coaxial holographic storage using low-density parity-check codes,” in Optical Data Storage Topical Meeting (IEEE, 2009), pp. 70–72.

Tanaka, T.

M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775–3781 (2007).
[CrossRef]

Teng, T.

Y. Yu, T. Teng, S. Hsieh, C. Cheng, and C. Sun, “Shift selectivity of collinear volume holographic storage,” Opt. Commun. 283, 3895–3900 (2010).
[CrossRef]

Y. Yu, C. Cheng, S. Hsieh, T. Teng, and C. Sun, “Point spread function by random phase reference in collinear holographic storage,” Opt. Eng. 48, 020501 (2009).
[CrossRef]

C. Sun, Y. Yu, S. Hsieh, T. Teng, and M. Tsai, “Point spread function of a collinear hoplographic storage system,” Opt. Express 15, 18111–18118 (2007).
[CrossRef]

Toishi, M.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
[CrossRef]

M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775–3781 (2007).
[CrossRef]

Tokuyama, K.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
[CrossRef]

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15, 16196–16209 (2007).
[CrossRef]

K. Tanaka, M. Hara, K. Tokuyama, Y. Okamoto, H. Mori, A. Fukumoto, and K. Okada, “415  Gbit/in.2 recording in coaxial holographic storage using low-density parity-check codes,” in Optical Data Storage Topical Meeting (IEEE, 2009), pp. 70–72.

Tomita, A.

A. Shibukawa, A. Okamoto, A. Tomita, M. Takabayashi, and K. Sato, “Multilayer collinear holographic memory with movable random phase mask,” Jpn. J. Appl. Phys. 50, 09ME10 (2011).
[CrossRef]

Tsai, M.

Vadde, V.

V. Vadde, B. V. K. V. Kumar, G. W. Burr, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, “A figure-of-merit for the optical aperture used in digital volume holographic data storage,” Proc. SPIE 3401, 194–200 (1998).
[CrossRef]

Watanabe, E.

E. Watanabe and K. Kodate, “Optical correlator for face recognition using collinear holographic system,” Jpn. J. Appl. Phys. 45, 6759–6761 (2006).
[CrossRef]

Watanabe, K.

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
[CrossRef]

M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775–3781 (2007).
[CrossRef]

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15, 16196–16209 (2007).
[CrossRef]

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246–1252 (2006).
[CrossRef]

Yatagai, T.

Yonetani, Y.

Yoshikawa, N.

Yu, Y.

Y. Yu, C. Chen, and C. Sun, “Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array,” Opt. Lett. 35, 1130–1132 (2010).
[CrossRef]

Y. Yu, T. Teng, S. Hsieh, C. Cheng, and C. Sun, “Shift selectivity of collinear volume holographic storage,” Opt. Commun. 283, 3895–3900 (2010).
[CrossRef]

Y. Yu, C. Cheng, S. Hsieh, T. Teng, and C. Sun, “Point spread function by random phase reference in collinear holographic storage,” Opt. Eng. 48, 020501 (2009).
[CrossRef]

C. Sun, Y. Yu, S. Hsieh, T. Teng, and M. Tsai, “Point spread function of a collinear hoplographic storage system,” Opt. Express 15, 18111–18118 (2007).
[CrossRef]

Appl. Opt. (8)

Jpn. J. Appl. Phys. (8)

Y. Saita, T. Nomura, E. Nitanai, and T. Numata, “Design of reference pattern and input phase mask for coaxial holographic memory,” Jpn. J. Appl. Phys. 50, 09ME03 (2011).
[CrossRef]

S. R. Lambourdiere, A. Fukumoto, K. Tanaka, and K. Watanabe, “Simulation of holographic data storage for the optical collinear system,” Jpn. J. Appl. Phys. 45, 1246–1252 (2006).
[CrossRef]

T. Nobukawa and T. Nomura, “Coaxial holographic memory with designed reference pattern on the basis of Nyquist aperture for high density recording,” Jpn. J. Appl. Phys. 52, 09LD09 (2013).
[CrossRef]

E. Watanabe and K. Kodate, “Optical correlator for face recognition using collinear holographic system,” Jpn. J. Appl. Phys. 45, 6759–6761 (2006).
[CrossRef]

M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775–3781 (2007).
[CrossRef]

M. Hara, K. Tanaka, K. Tokuyama, M. Toishi, K. Hirooka, A. Fukumoto, and K. Watanabe, “Linear reproduction of a holographic storage channel using coherent addition of optical DC components,” Jpn. J. Appl. Phys. 47, 5885–5890 (2008).
[CrossRef]

A. Shibukawa, A. Okamoto, A. Tomita, M. Takabayashi, and K. Sato, “Multilayer collinear holographic memory with movable random phase mask,” Jpn. J. Appl. Phys. 50, 09ME10 (2011).
[CrossRef]

M. Hosaka, T. Ishii, A. Tanaka, S. Koga, and T. Hoshizawa, “1  Tbit/inch2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule,” Jpn. J. Appl. Phys. 52, 09LD01 (2013).
[CrossRef]

Opt. Commun. (1)

Y. Yu, T. Teng, S. Hsieh, C. Cheng, and C. Sun, “Shift selectivity of collinear volume holographic storage,” Opt. Commun. 283, 3895–3900 (2010).
[CrossRef]

Opt. Eng. (1)

Y. Yu, C. Cheng, S. Hsieh, T. Teng, and C. Sun, “Point spread function by random phase reference in collinear holographic storage,” Opt. Eng. 48, 020501 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Proc. IEEE (1)

L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231–1280 (2004).
[CrossRef]

Proc. SPIE (2)

V. Vadde, B. V. K. V. Kumar, G. W. Burr, H. Coufal, J. A. Hoffnagle, and C. M. Jefferson, “A figure-of-merit for the optical aperture used in digital volume holographic data storage,” Proc. SPIE 3401, 194–200 (1998).
[CrossRef]

T. Shimura, S. Ichimura, Y. Ashizuka, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Shift selectivity of the collinear holographic storage system,” Proc. SPIE 6282, 62820S (2006).
[CrossRef]

Other (1)

K. Tanaka, M. Hara, K. Tokuyama, Y. Okamoto, H. Mori, A. Fukumoto, and K. Okada, “415  Gbit/in.2 recording in coaxial holographic storage using low-density parity-check codes,” in Optical Data Storage Topical Meeting (IEEE, 2009), pp. 70–72.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic of the coaxial holographic data storage with a random phase mask.

Fig. 2.
Fig. 2.

Phase distribution of the reference beam for the RPM and the HRPM and the corresponding Fourier power spectra: (a) RPM and (b) HRPM consisting of pixels half the pitch of ON pixel; (c) HRPM consisting of pixels quarter the pitch of ON pixel. The white lines show the enlarged view. (d)–(f) The corresponding numerical Fourier power spectra and (g)–(i) the corresponding experimental Fourier power spectra.

Fig. 3.
Fig. 3.

Total intensity within various aperture size: (a) numerical and (b) experimental results.

Fig. 4.
Fig. 4.

Phase distribution of the reference beam for the DRPs and the corresponding Fourier power spectra. (a) DRP consisting of pixels half the pitch of ON pixel and (b) DRP consisting of pixels quarter the pitch of ON pixel. The white lines show the enlarged view. (c), (d) The corresponding numerical Fourier power spectra, and (e), (f) the corresponding experimental Fourier power spectra.

Fig. 5.
Fig. 5.

Phase distribution of the reference beam for the 256-level DRPs and the corresponding Fourier power spectra. (a) 256-level DRP consisting of pixels half the pitch of ON pixel and (b) 256-level DRP consisting of pixels quarter the pitch of ON pixel. The white lines show the enlarged view. (c), (d) The corresponding numerical Fourier power spectra, and (e), (f) the corresponding experimental Fourier power spectra.

Fig. 6.
Fig. 6.

PSF at various aperture width: (a) w, (b) 1.25w, (c) 1.5w, (d) 1.75w, and (e) 2w.

Fig. 7.
Fig. 7.

Simulation model.

Fig. 8.
Fig. 8.

Complex amplitude distribution of reference and signal beams in the numerical simulation.

Fig. 9.
Fig. 9.

Reconstructed images: (a) RPM, (b) HRPM, (c) two-level DRP, and (d) 256-level DRP.

Fig. 10.
Fig. 10.

Simulation results for RPM and half the pitch HRPM, two-level DRP, and 256-level DRP. (a) SNR and (b) SER.

Fig. 11.
Fig. 11.

Simulation results for RPM and quarter the pitch HRPM, two-level DRP, and 256-level DRP. (a) SNR and (b) SER.

Fig. 12.
Fig. 12.

Optical setup.

Fig. 13.
Fig. 13.

Complex amplitude distribution of reference and signal beams in the experiment.

Fig. 14.
Fig. 14.

Reconstructed images: (a) RPM, (b) HRPM, (c) two-level DRP, and (d) 256-level DRP.

Tables (1)

Tables Icon

Table 1. Simulation Parameters

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I(xf,yf)=A(xf,yf){|S(μ,ν)|2+|R(μ,ν)|2+S(μ,ν)R(μ,ν)*+S(μ,ν)*R(μ,ν)},
A(xf,yf)=rect(xflw)rect(yflw),
D(xf,yf)=R(μ,ν)A(xf,yf){|S(μ,ν)|2+|R(μ,ν)|2+S(μ,ν)R(μ,ν)*+S(μ,ν)*R(μ,ν)}.
|Ud(xd,yd)|2=|F[A(xf,yf)R(μ,ν)R*(μ,ν)S(μ,ν)]|2=|F[A(xf,yf)]Ur(xd,yd)Ur*(xd,yd)Us(x,y)|2,
E=within aperture{|F[Ur(xo,yo)]|A(xf,yf)}2,
P=1exp(1/T),
T=1log(i+1),
SNR=μonμoff(σon2+σoff2)1/2,

Metrics