Abstract

Using the random phase screen approach, we carry out a simulation analysis of the probability of error performance of Gaussian, annular Gaussian, cos Gaussian, and cosh Gaussian beams. In our scenario, these beams are intensity-modulated by the randomly generated binary symbols of an electrical message signal and then launched from the transmitter plane in equal powers. They propagate through a turbulent atmosphere modeled by a series of random phase screens. Upon arriving at the receiver plane, detection is performed in a circuitry consisting of a pin photodiode and a matched filter. The symbols detected are compared with the transmitted ones, errors are counted, and from there the probability of error is evaluated numerically. Within the range of source and propagation parameters tested, the lowest probability of error is obtained for the annular Gaussian beam. Our investigation reveals that there is hardly any difference between the aperture-averaged scintillations of the beams used, and the distinctive advantage of the annular Gaussian beam lies in the fact that the receiver aperture captures the maximum amount of power when this particular beam is launched from the transmitter plane.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Chaman-Motlagh, V. Ahmadi, and Z. Ghassemlooy, “A modified model of the atmospheric effects on the performance of FSO links employing single and multiple receivers,” J. Mod. Opt. 57, 37–42 (2010).
    [CrossRef]
  2. B. I. Erkmen and J. H. Shapiro, “Performance analysis for near-field atmospheric optical communications,” in Proceedings of Global Telecommunications Conference (GLOBECOM) (IEEE, 2004), pp. 318–324.
  3. R. K. Tyson, “Bit-error rate for free-space adaptive optics laser communications,” J. Opt. Soc. Am. A 19, 753–758 (2002).
    [CrossRef]
  4. R. K. Tyson, D. E. Canning, and J. S. Tharp, “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 1: tip-tilt configuration, diagnostics, and closed-loop results,” Opt. Eng. 44, 096002 (2005).
    [CrossRef]
  5. J. C. Ricklin and F. M. Davidson, “Atmospheric optical communication with a Gaussian Schell beam,” J. Opt. Soc. Am. A 20, 856–866 (2003).
    [CrossRef]
  6. L. C. Andrews and R. L. Phillips, “Free space optical communication link and atmospheric effects: single aperture and arrays,” Proc. SPIE 5338, 265–275 (2005).
    [CrossRef]
  7. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005), Chap. 5.
  8. F. Yang and J. Cheng, “Coherent free-space optical communications in lognormal-Rician turbulence,” IEEE Commun. Lett. 16, 1872–1875 (2012).
    [CrossRef]
  9. A. Garcia-Zambrana, B. Castillo-Vazquez, and C. Castillo-Vazquez, “Asymptotic error-rate analysis of FSO links using transmit laser selection over gamma–gamma atmospheric turbulence channels with pointing errors,” Opt. Express 20, 2096–2109 (2012).
    [CrossRef]
  10. G. K. Rodrigues, V. G. A. Carneiro, A. R. da Cruz, and M. T. M. R. Giraldi, “Evaluation of the strong turbulence impact over free-space optical links,” Opt. Commun. 305, 42–47 (2013).
    [CrossRef]
  11. K. Prabu, S. Bose, and D. S. Kumar, “BPSK based subcarrier intensity modulated free space optical system in combined strong atmospheric turbulence,” Opt. Commun. 305, 185–189 (2013).
    [CrossRef]
  12. L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 284, 1491–1495 (2011).
    [CrossRef]
  13. W. A. Coles, J. P. Filice, R. G. Frehlich, and M. Yadlowsky, “Simulation of wave propagation in three-dimensional random media,” Appl. Opt. 34, 2089–2101 (1995).
    [CrossRef]
  14. D. H. Nelson, D. L. Walters, E. P. MacKerrow, M. J. Schmitt, C. R. Quick, W. M. Porch, and R. R. Petrin, “Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar,” Appl. Opt. 39, 1857–1871 (2000).
    [CrossRef]
  15. A. Belmonte, “Feasibility study for the simulation of beam propagation: consideration of coherent lidar performance,” Appl. Opt. 39, 5426–5445 (2000).
    [CrossRef]
  16. J. D. Schmidt, “Propagation through atmospheric turbulence,” in Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE, 2010), Chap. 9, pp. 149–184.
  17. X. Qian, W. Zhu, and R. Rao, “Numerical investigation on propagation effects of pseudo-partially coherent Gaussian Schell-model beams in atmospheric turbulence,” Opt. Express 17, 3782–3791 (2009).
    [CrossRef]
  18. W. Cheng, J. H. Haus, and Q. Zhan, “Propagation of vector vortex beams through a turbulent atmosphere,” Opt. Express 17, 17829–17836 (2009).
    [CrossRef]
  19. X. Liu and J. Pu, “Investigation on the scintillation reduction of elliptical vortex beams propagating in atmospheric turbulence,” Opt. Express 19, 26444–26450 (2011).
    [CrossRef]
  20. H. T. Eyyuboğlu, “Estimation of aperture averaged scintillations in weak turbulence regime for annular, sinusoidal and hyperbolic Gaussian beams using random phase screen,” Opt. Laser Technol. 52, 96–102 (2013).
    [CrossRef]
  21. B. Sklar, Digital Communications Fundamentals and Applications (Prentice-Hall, 2002), Chap. 5.
  22. J. G. Proakis and M. Salehi, Fundamentals of Communication Systems (Pearson, 2005), Chaps. 8, 9.
  23. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002), Chap. 4.
  24. H. T. Eyyuboğlu, “Annular cosh and cos Gaussian beams in strong turbulence,” Appl. Phys. B 103, 763–769 (2011).
    [CrossRef]
  25. M. C. Jeruchim, “Techniques for estimating the bit error rate in the simulation of digital communication systems,” IEEE J. Sel. Areas Commun. 2, 153–170 (1984).
    [CrossRef]
  26. S. A. Arpali, H. T. Eyyuboğlu, and Y. Baykal, “Bit error rates for general beams,” Appl. Opt. 47, 5971–5975 (2008).
    [CrossRef]
  27. S. A. Arpali and Y. Baykal, “Bit error rates for focused general-type beams,” PIERS Online 5, 633–636 (2009).
    [CrossRef]

2013 (3)

G. K. Rodrigues, V. G. A. Carneiro, A. R. da Cruz, and M. T. M. R. Giraldi, “Evaluation of the strong turbulence impact over free-space optical links,” Opt. Commun. 305, 42–47 (2013).
[CrossRef]

K. Prabu, S. Bose, and D. S. Kumar, “BPSK based subcarrier intensity modulated free space optical system in combined strong atmospheric turbulence,” Opt. Commun. 305, 185–189 (2013).
[CrossRef]

H. T. Eyyuboğlu, “Estimation of aperture averaged scintillations in weak turbulence regime for annular, sinusoidal and hyperbolic Gaussian beams using random phase screen,” Opt. Laser Technol. 52, 96–102 (2013).
[CrossRef]

2012 (2)

2011 (3)

X. Liu and J. Pu, “Investigation on the scintillation reduction of elliptical vortex beams propagating in atmospheric turbulence,” Opt. Express 19, 26444–26450 (2011).
[CrossRef]

H. T. Eyyuboğlu, “Annular cosh and cos Gaussian beams in strong turbulence,” Appl. Phys. B 103, 763–769 (2011).
[CrossRef]

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 284, 1491–1495 (2011).
[CrossRef]

2010 (1)

A. Chaman-Motlagh, V. Ahmadi, and Z. Ghassemlooy, “A modified model of the atmospheric effects on the performance of FSO links employing single and multiple receivers,” J. Mod. Opt. 57, 37–42 (2010).
[CrossRef]

2009 (3)

2008 (1)

2005 (2)

L. C. Andrews and R. L. Phillips, “Free space optical communication link and atmospheric effects: single aperture and arrays,” Proc. SPIE 5338, 265–275 (2005).
[CrossRef]

R. K. Tyson, D. E. Canning, and J. S. Tharp, “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 1: tip-tilt configuration, diagnostics, and closed-loop results,” Opt. Eng. 44, 096002 (2005).
[CrossRef]

2003 (1)

2002 (1)

2000 (2)

1995 (1)

1984 (1)

M. C. Jeruchim, “Techniques for estimating the bit error rate in the simulation of digital communication systems,” IEEE J. Sel. Areas Commun. 2, 153–170 (1984).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002), Chap. 4.

Ahmadi, V.

A. Chaman-Motlagh, V. Ahmadi, and Z. Ghassemlooy, “A modified model of the atmospheric effects on the performance of FSO links employing single and multiple receivers,” J. Mod. Opt. 57, 37–42 (2010).
[CrossRef]

Andrews, L. C.

L. C. Andrews and R. L. Phillips, “Free space optical communication link and atmospheric effects: single aperture and arrays,” Proc. SPIE 5338, 265–275 (2005).
[CrossRef]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005), Chap. 5.

Arpali, S. A.

S. A. Arpali and Y. Baykal, “Bit error rates for focused general-type beams,” PIERS Online 5, 633–636 (2009).
[CrossRef]

S. A. Arpali, H. T. Eyyuboğlu, and Y. Baykal, “Bit error rates for general beams,” Appl. Opt. 47, 5971–5975 (2008).
[CrossRef]

Baykal, Y.

S. A. Arpali and Y. Baykal, “Bit error rates for focused general-type beams,” PIERS Online 5, 633–636 (2009).
[CrossRef]

S. A. Arpali, H. T. Eyyuboğlu, and Y. Baykal, “Bit error rates for general beams,” Appl. Opt. 47, 5971–5975 (2008).
[CrossRef]

Belmonte, A.

Bose, S.

K. Prabu, S. Bose, and D. S. Kumar, “BPSK based subcarrier intensity modulated free space optical system in combined strong atmospheric turbulence,” Opt. Commun. 305, 185–189 (2013).
[CrossRef]

Canning, D. E.

R. K. Tyson, D. E. Canning, and J. S. Tharp, “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 1: tip-tilt configuration, diagnostics, and closed-loop results,” Opt. Eng. 44, 096002 (2005).
[CrossRef]

Carneiro, V. G. A.

G. K. Rodrigues, V. G. A. Carneiro, A. R. da Cruz, and M. T. M. R. Giraldi, “Evaluation of the strong turbulence impact over free-space optical links,” Opt. Commun. 305, 42–47 (2013).
[CrossRef]

Castillo-Vazquez, B.

Castillo-Vazquez, C.

Chaman-Motlagh, A.

A. Chaman-Motlagh, V. Ahmadi, and Z. Ghassemlooy, “A modified model of the atmospheric effects on the performance of FSO links employing single and multiple receivers,” J. Mod. Opt. 57, 37–42 (2010).
[CrossRef]

Cheng, J.

F. Yang and J. Cheng, “Coherent free-space optical communications in lognormal-Rician turbulence,” IEEE Commun. Lett. 16, 1872–1875 (2012).
[CrossRef]

Cheng, W.

Coles, W. A.

da Cruz, A. R.

G. K. Rodrigues, V. G. A. Carneiro, A. R. da Cruz, and M. T. M. R. Giraldi, “Evaluation of the strong turbulence impact over free-space optical links,” Opt. Commun. 305, 42–47 (2013).
[CrossRef]

Dang, A.

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 284, 1491–1495 (2011).
[CrossRef]

Davidson, F. M.

Erkmen, B. I.

B. I. Erkmen and J. H. Shapiro, “Performance analysis for near-field atmospheric optical communications,” in Proceedings of Global Telecommunications Conference (GLOBECOM) (IEEE, 2004), pp. 318–324.

Eyyuboglu, H. T.

H. T. Eyyuboğlu, “Estimation of aperture averaged scintillations in weak turbulence regime for annular, sinusoidal and hyperbolic Gaussian beams using random phase screen,” Opt. Laser Technol. 52, 96–102 (2013).
[CrossRef]

H. T. Eyyuboğlu, “Annular cosh and cos Gaussian beams in strong turbulence,” Appl. Phys. B 103, 763–769 (2011).
[CrossRef]

S. A. Arpali, H. T. Eyyuboğlu, and Y. Baykal, “Bit error rates for general beams,” Appl. Opt. 47, 5971–5975 (2008).
[CrossRef]

Filice, J. P.

Frehlich, R. G.

Garcia-Zambrana, A.

Ghassemlooy, Z.

A. Chaman-Motlagh, V. Ahmadi, and Z. Ghassemlooy, “A modified model of the atmospheric effects on the performance of FSO links employing single and multiple receivers,” J. Mod. Opt. 57, 37–42 (2010).
[CrossRef]

Giraldi, M. T. M. R.

G. K. Rodrigues, V. G. A. Carneiro, A. R. da Cruz, and M. T. M. R. Giraldi, “Evaluation of the strong turbulence impact over free-space optical links,” Opt. Commun. 305, 42–47 (2013).
[CrossRef]

Guo, H.

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 284, 1491–1495 (2011).
[CrossRef]

Haus, J. H.

Jeruchim, M. C.

M. C. Jeruchim, “Techniques for estimating the bit error rate in the simulation of digital communication systems,” IEEE J. Sel. Areas Commun. 2, 153–170 (1984).
[CrossRef]

Kumar, D. S.

K. Prabu, S. Bose, and D. S. Kumar, “BPSK based subcarrier intensity modulated free space optical system in combined strong atmospheric turbulence,” Opt. Commun. 305, 185–189 (2013).
[CrossRef]

Liu, X.

MacKerrow, E. P.

Nelson, D. H.

Petrin, R. R.

Phillips, R. L.

L. C. Andrews and R. L. Phillips, “Free space optical communication link and atmospheric effects: single aperture and arrays,” Proc. SPIE 5338, 265–275 (2005).
[CrossRef]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005), Chap. 5.

Porch, W. M.

Prabu, K.

K. Prabu, S. Bose, and D. S. Kumar, “BPSK based subcarrier intensity modulated free space optical system in combined strong atmospheric turbulence,” Opt. Commun. 305, 185–189 (2013).
[CrossRef]

Proakis, J. G.

J. G. Proakis and M. Salehi, Fundamentals of Communication Systems (Pearson, 2005), Chaps. 8, 9.

Pu, J.

Qian, X.

Quick, C. R.

Rao, R.

Ren, Y.

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 284, 1491–1495 (2011).
[CrossRef]

Ricklin, J. C.

Rodrigues, G. K.

G. K. Rodrigues, V. G. A. Carneiro, A. R. da Cruz, and M. T. M. R. Giraldi, “Evaluation of the strong turbulence impact over free-space optical links,” Opt. Commun. 305, 42–47 (2013).
[CrossRef]

Salehi, M.

J. G. Proakis and M. Salehi, Fundamentals of Communication Systems (Pearson, 2005), Chaps. 8, 9.

Schmidt, J. D.

J. D. Schmidt, “Propagation through atmospheric turbulence,” in Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE, 2010), Chap. 9, pp. 149–184.

Schmitt, M. J.

Shapiro, J. H.

B. I. Erkmen and J. H. Shapiro, “Performance analysis for near-field atmospheric optical communications,” in Proceedings of Global Telecommunications Conference (GLOBECOM) (IEEE, 2004), pp. 318–324.

Sklar, B.

B. Sklar, Digital Communications Fundamentals and Applications (Prentice-Hall, 2002), Chap. 5.

Tharp, J. S.

R. K. Tyson, D. E. Canning, and J. S. Tharp, “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 1: tip-tilt configuration, diagnostics, and closed-loop results,” Opt. Eng. 44, 096002 (2005).
[CrossRef]

Tyson, R. K.

R. K. Tyson, D. E. Canning, and J. S. Tharp, “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 1: tip-tilt configuration, diagnostics, and closed-loop results,” Opt. Eng. 44, 096002 (2005).
[CrossRef]

R. K. Tyson, “Bit-error rate for free-space adaptive optics laser communications,” J. Opt. Soc. Am. A 19, 753–758 (2002).
[CrossRef]

Walters, D. L.

Yadlowsky, M.

Yang, F.

F. Yang and J. Cheng, “Coherent free-space optical communications in lognormal-Rician turbulence,” IEEE Commun. Lett. 16, 1872–1875 (2012).
[CrossRef]

Zhan, Q.

Zhu, W.

Zuo, L.

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 284, 1491–1495 (2011).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

H. T. Eyyuboğlu, “Annular cosh and cos Gaussian beams in strong turbulence,” Appl. Phys. B 103, 763–769 (2011).
[CrossRef]

IEEE Commun. Lett. (1)

F. Yang and J. Cheng, “Coherent free-space optical communications in lognormal-Rician turbulence,” IEEE Commun. Lett. 16, 1872–1875 (2012).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

M. C. Jeruchim, “Techniques for estimating the bit error rate in the simulation of digital communication systems,” IEEE J. Sel. Areas Commun. 2, 153–170 (1984).
[CrossRef]

J. Mod. Opt. (1)

A. Chaman-Motlagh, V. Ahmadi, and Z. Ghassemlooy, “A modified model of the atmospheric effects on the performance of FSO links employing single and multiple receivers,” J. Mod. Opt. 57, 37–42 (2010).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Commun. (3)

G. K. Rodrigues, V. G. A. Carneiro, A. R. da Cruz, and M. T. M. R. Giraldi, “Evaluation of the strong turbulence impact over free-space optical links,” Opt. Commun. 305, 42–47 (2013).
[CrossRef]

K. Prabu, S. Bose, and D. S. Kumar, “BPSK based subcarrier intensity modulated free space optical system in combined strong atmospheric turbulence,” Opt. Commun. 305, 185–189 (2013).
[CrossRef]

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 284, 1491–1495 (2011).
[CrossRef]

Opt. Eng. (1)

R. K. Tyson, D. E. Canning, and J. S. Tharp, “Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 1: tip-tilt configuration, diagnostics, and closed-loop results,” Opt. Eng. 44, 096002 (2005).
[CrossRef]

Opt. Express (4)

Opt. Laser Technol. (1)

H. T. Eyyuboğlu, “Estimation of aperture averaged scintillations in weak turbulence regime for annular, sinusoidal and hyperbolic Gaussian beams using random phase screen,” Opt. Laser Technol. 52, 96–102 (2013).
[CrossRef]

PIERS Online (1)

S. A. Arpali and Y. Baykal, “Bit error rates for focused general-type beams,” PIERS Online 5, 633–636 (2009).
[CrossRef]

Proc. SPIE (1)

L. C. Andrews and R. L. Phillips, “Free space optical communication link and atmospheric effects: single aperture and arrays,” Proc. SPIE 5338, 265–275 (2005).
[CrossRef]

Other (6)

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE, 2005), Chap. 5.

B. I. Erkmen and J. H. Shapiro, “Performance analysis for near-field atmospheric optical communications,” in Proceedings of Global Telecommunications Conference (GLOBECOM) (IEEE, 2004), pp. 318–324.

J. D. Schmidt, “Propagation through atmospheric turbulence,” in Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (SPIE, 2010), Chap. 9, pp. 149–184.

B. Sklar, Digital Communications Fundamentals and Applications (Prentice-Hall, 2002), Chap. 5.

J. G. Proakis and M. Salehi, Fundamentals of Communication Systems (Pearson, 2005), Chaps. 8, 9.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Pictorial representation of the simulation environment.

Fig. 2.
Fig. 2.

BER plots of equal-source-power Gaussian, annular Gaussian, cos Gaussian, and cosh Gaussian beams against variations in structure constant.

Fig. 3.
Fig. 3.

SNR plots of equal-source-power Gaussian, annular Gaussian, cos Gaussian, and cosh Gaussian beams against variations in structure constant.

Fig. 4.
Fig. 4.

Aperture-averaged scintillation plots of equal-source-power Gaussian, annular Gaussian, cos Gaussian, and cosh Gaussian beams against variations in structure constant.

Fig. 5.
Fig. 5.

Received power plots of equal-source-power Gaussian, annular Gaussian, cos Gaussian, and cosh Gaussian beams against variations in structure constant.

Fig. 6.
Fig. 6.

BER plots of equal-source-power Gaussian, annular Gaussian, cos Gaussian, and cosh Gaussian beams against variations in receiver aperture radius.

Tables (1)

Tables Icon

Table 1. Parameter Settings of Gaussian, Annular Gaussian, Cos Gaussian, and Cosh Gaussian Beams for Equal Source Power Condition

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ir=RPr,
σSN2=2q(Ir+Id)Bw,σTN2=4kBTKBwFN/RL,
SNRIr2q(Ir+IdBw+4kBTKBwFN/RL)=IrσSN2+σTN2.
SNR=Ir2q(Ir+Id)Bw+4kBTKBwFN/RL=IrσSN2+σTN2.
u(s,θ)=i=12Aiexp(s2/αsi2)exp[(cosθ+sinθ)Dis],

Metrics