Abstract

A hybrid circular subwavelength grating mirror is proposed and fabricated as a rear mirror in a fast axial flow CO2 laser system to generate azimuthally polarized beams (APBs). This grating mirror, with particular gold-covered ridges and nanopillar-stuffed grooves, performs wideband TE wave reflectivity and high polarization selectivity. It shows that the polarization selectivity mechanism lies in the gold ridge’s high reflectivity to the TE wave and the lower TM wave reflectivity, which are the result of the mode leaking into substrate through the dielectric-like nanopillar layer. Finally, a high-quality 550 W APB is obtained in subsequent experiments, which provides potential applications in drilling and welding.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Scheuer, “Ultra-high enhancement of the field concentration in split ring resonators by azimuthally polarized excitation,” Opt. Express 19, 25454–25464 (2011).
    [CrossRef]
  2. F. K. Fatemi, M. Bashkansky, E. Oh, and D. Park, “Efficient excitation of the TE01 hollow metal waveguide mode for atom guiding,” Opt. Express 18, 323–332 (2010).
    [CrossRef]
  3. K. Luo, S. Qian, X. Wang, Y. Li, B. Gu, C. Tu, and H. Wang, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express 20, 120–127 (2012).
    [CrossRef]
  4. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
    [CrossRef]
  5. R. Weber, A. Michalowski, M. A. Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011).
    [CrossRef]
  6. I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28, 807–809 (2003).
    [CrossRef]
  7. J. Li, K. Ueda, L. Zhong, M. Musha, A. Shirakawa, and T. Sato, “Efficient excitations of radially and azimuthally polarized Nd3+: YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5/SiO2,” Opt. Express 16, 10841–10848 (2008).
    [CrossRef]
  8. T. Kämpfe, S. Tonchev, A. V. Tishchenko, D. Gergov, and O. Parriaux, “Azimuthally polarized laser mode generation by multilayer mirror with wideband grating-induced TM leakage in the TE stopband,” Opt. Express 20, 5392–5401 (2012).
    [CrossRef]
  9. M. Rumpel, M. Hefner, T. Schoder, C. Pruss, A. Voss, W. Osten, M. A. Ahmed, and T. Graf, “Circular grating waveguide structures for intracavity generation of azimuthal polarization in a thin-disk laser,” Opt. Lett. 37, 1763–1765 (2012).
    [CrossRef]
  10. V. G. Niziev, V. P. Yakunim, and N. G. Turkin, “Generation of polarisation-nonuniform modes in a high-power CO2 laser,” Quantum Electronics 39, 505–514 (2009).
    [CrossRef]
  11. M. Endo, “Azimuthally polarized 1  kW CO2 laser with a triple-axicon retroreflector optical resonator,” Opt. Lett. 33, 1771–1773 (2008).
    [CrossRef]
  12. E. Hecht and A. Zajac, Optics (Addison-Wesley, 1974).
  13. X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93, 4407–4412 (2003).
    [CrossRef]
  14. G. A. Niklasson, C. G. Granqvist, and O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,” Appl. Opt. 20, 26–30 (1981).
    [CrossRef]
  15. S. Bosch, J. Ferré-Borrull, N. Leinfellner, and A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453, 9–17 (2000).
    [CrossRef]
  16. M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modeling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi C 4, 1986–1990 (2007).
    [CrossRef]
  17. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optial properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1120 (1983).
    [CrossRef]
  18. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
    [CrossRef]
  19. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  20. M. Xu, H. P. Urbach, D. K. G. de Boer, and H. J. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13, 2303–2320 (2005).
    [CrossRef]
  21. S. Park, S. J. Di. Giacomo, R. Anisha, P. R. Berger, P. E. Thompson, and I. Adesida, “Fabrication of nanowires with high aspect ratios utilized by dry etching with SF6: C4F8 and self-limiting thermal oxidation on Si substrate,” J. Vac. Sci. Technol. B 28, 763–768 (2010).
    [CrossRef]
  22. G. Sun, T. Gao, X. Zhao, and H. Zhang, “Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching,” J. Micromech. Microeng. 20, 075028 (2010).
    [CrossRef]
  23. M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J. Pommier, and T. Graf, “Radially polarized 3  kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32, 1824–1826 (2007).
    [CrossRef]
  24. T. Moser, J. Balmer, D. Delbeke, P. Muys, S. Verstuyft, and R. Baets, “Intracavity generation of radially polarized CO2 laser beams based on a simple binary dielectric diffraction grating,” Appl. Opt. 45, 8517–8522 (2006).
    [CrossRef]

2012 (3)

2011 (2)

J. Scheuer, “Ultra-high enhancement of the field concentration in split ring resonators by azimuthally polarized excitation,” Opt. Express 19, 25454–25464 (2011).
[CrossRef]

R. Weber, A. Michalowski, M. A. Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011).
[CrossRef]

2010 (3)

F. K. Fatemi, M. Bashkansky, E. Oh, and D. Park, “Efficient excitation of the TE01 hollow metal waveguide mode for atom guiding,” Opt. Express 18, 323–332 (2010).
[CrossRef]

S. Park, S. J. Di. Giacomo, R. Anisha, P. R. Berger, P. E. Thompson, and I. Adesida, “Fabrication of nanowires with high aspect ratios utilized by dry etching with SF6: C4F8 and self-limiting thermal oxidation on Si substrate,” J. Vac. Sci. Technol. B 28, 763–768 (2010).
[CrossRef]

G. Sun, T. Gao, X. Zhao, and H. Zhang, “Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching,” J. Micromech. Microeng. 20, 075028 (2010).
[CrossRef]

2009 (1)

V. G. Niziev, V. P. Yakunim, and N. G. Turkin, “Generation of polarisation-nonuniform modes in a high-power CO2 laser,” Quantum Electronics 39, 505–514 (2009).
[CrossRef]

2008 (2)

2007 (3)

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modeling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi C 4, 1986–1990 (2007).
[CrossRef]

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[CrossRef]

M. A. Ahmed, J. Schulz, A. Voss, O. Parriaux, J. Pommier, and T. Graf, “Radially polarized 3  kW beam from a CO2 laser with an intracavity resonant grating mirror,” Opt. Lett. 32, 1824–1826 (2007).
[CrossRef]

2006 (1)

2005 (1)

2003 (2)

2000 (1)

S. Bosch, J. Ferré-Borrull, N. Leinfellner, and A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453, 9–17 (2000).
[CrossRef]

1986 (1)

1983 (1)

1982 (1)

1981 (1)

Adesida, I.

S. Park, S. J. Di. Giacomo, R. Anisha, P. R. Berger, P. E. Thompson, and I. Adesida, “Fabrication of nanowires with high aspect ratios utilized by dry etching with SF6: C4F8 and self-limiting thermal oxidation on Si substrate,” J. Vac. Sci. Technol. B 28, 763–768 (2010).
[CrossRef]

Ahmed, M. A.

Alexander, R. W.

Anisha, R.

S. Park, S. J. Di. Giacomo, R. Anisha, P. R. Berger, P. E. Thompson, and I. Adesida, “Fabrication of nanowires with high aspect ratios utilized by dry etching with SF6: C4F8 and self-limiting thermal oxidation on Si substrate,” J. Vac. Sci. Technol. B 28, 763–768 (2010).
[CrossRef]

Baets, R.

Balmer, J.

Bashkansky, M.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Berger, P. R.

S. Park, S. J. Di. Giacomo, R. Anisha, P. R. Berger, P. E. Thompson, and I. Adesida, “Fabrication of nanowires with high aspect ratios utilized by dry etching with SF6: C4F8 and self-limiting thermal oxidation on Si substrate,” J. Vac. Sci. Technol. B 28, 763–768 (2010).
[CrossRef]

Bessaïs, B.

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modeling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi C 4, 1986–1990 (2007).
[CrossRef]

Bosch, S.

S. Bosch, J. Ferré-Borrull, N. Leinfellner, and A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453, 9–17 (2000).
[CrossRef]

Bouaïcha, M.

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modeling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi C 4, 1986–1990 (2007).
[CrossRef]

Canillas, A.

S. Bosch, J. Ferré-Borrull, N. Leinfellner, and A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453, 9–17 (2000).
[CrossRef]

Cornelissen, H. J.

de Boer, D. K. G.

Delbeke, D.

Endo, M.

Fatemi, F. K.

Ferré-Borrull, J.

S. Bosch, J. Ferré-Borrull, N. Leinfellner, and A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453, 9–17 (2000).
[CrossRef]

Feurer, T.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[CrossRef]

Gao, T.

G. Sun, T. Gao, X. Zhao, and H. Zhang, “Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching,” J. Micromech. Microeng. 20, 075028 (2010).
[CrossRef]

Gaylord, T. K.

Gergov, D.

Giacomo, S. J. Di.

S. Park, S. J. Di. Giacomo, R. Anisha, P. R. Berger, P. E. Thompson, and I. Adesida, “Fabrication of nanowires with high aspect ratios utilized by dry etching with SF6: C4F8 and self-limiting thermal oxidation on Si substrate,” J. Vac. Sci. Technol. B 28, 763–768 (2010).
[CrossRef]

Graf, T.

Granqvist, C. G.

Gu, B.

Hecht, E.

E. Hecht and A. Zajac, Optics (Addison-Wesley, 1974).

Hefner, M.

Hunderi, O.

Jackel, S.

Kämpfe, T.

Khardani, M.

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modeling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi C 4, 1986–1990 (2007).
[CrossRef]

Kraus, M.

R. Weber, A. Michalowski, M. A. Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011).
[CrossRef]

Kwok, H. S.

X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93, 4407–4412 (2003).
[CrossRef]

Leinfellner, N.

S. Bosch, J. Ferré-Borrull, N. Leinfellner, and A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453, 9–17 (2000).
[CrossRef]

Li, J.

Li, Y.

Long, L. L.

Luo, K.

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[CrossRef]

Meir, A.

Michalowski, A.

R. Weber, A. Michalowski, M. A. Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011).
[CrossRef]

Moharam, M. G.

Moser, T.

Moshe, I.

Musha, M.

Muys, P.

Niklasson, G. A.

Niziev, V. G.

V. G. Niziev, V. P. Yakunim, and N. G. Turkin, “Generation of polarisation-nonuniform modes in a high-power CO2 laser,” Quantum Electronics 39, 505–514 (2009).
[CrossRef]

Oh, E.

Onuseit, V.

R. Weber, A. Michalowski, M. A. Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011).
[CrossRef]

Ordal, A.

Osten, W.

Park, D.

Park, S.

S. Park, S. J. Di. Giacomo, R. Anisha, P. R. Berger, P. E. Thompson, and I. Adesida, “Fabrication of nanowires with high aspect ratios utilized by dry etching with SF6: C4F8 and self-limiting thermal oxidation on Si substrate,” J. Vac. Sci. Technol. B 28, 763–768 (2010).
[CrossRef]

Parriaux, O.

Pommier, J.

Pruss, C.

Qian, S.

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[CrossRef]

Rominger, V.

R. Weber, A. Michalowski, M. A. Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011).
[CrossRef]

Rumpel, M.

Sato, T.

Scheuer, J.

Schoder, T.

Schulz, J.

Shirakawa, A.

Sun, G.

G. Sun, T. Gao, X. Zhao, and H. Zhang, “Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching,” J. Micromech. Microeng. 20, 075028 (2010).
[CrossRef]

Thompson, P. E.

S. Park, S. J. Di. Giacomo, R. Anisha, P. R. Berger, P. E. Thompson, and I. Adesida, “Fabrication of nanowires with high aspect ratios utilized by dry etching with SF6: C4F8 and self-limiting thermal oxidation on Si substrate,” J. Vac. Sci. Technol. B 28, 763–768 (2010).
[CrossRef]

Tishchenko, A. V.

Tonchev, S.

Tu, C.

Turkin, N. G.

V. G. Niziev, V. P. Yakunim, and N. G. Turkin, “Generation of polarisation-nonuniform modes in a high-power CO2 laser,” Quantum Electronics 39, 505–514 (2009).
[CrossRef]

Ueda, K.

Urbach, H. P.

Verstuyft, S.

Voss, A.

Wang, H.

Wang, X.

Ward, C. A.

Weber, R.

R. Weber, A. Michalowski, M. A. Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011).
[CrossRef]

Xu, M.

Yakunim, V. P.

V. G. Niziev, V. P. Yakunim, and N. G. Turkin, “Generation of polarisation-nonuniform modes in a high-power CO2 laser,” Quantum Electronics 39, 505–514 (2009).
[CrossRef]

Yu, X. J.

X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93, 4407–4412 (2003).
[CrossRef]

Zajac, A.

E. Hecht and A. Zajac, Optics (Addison-Wesley, 1974).

Zhang, H.

G. Sun, T. Gao, X. Zhao, and H. Zhang, “Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching,” J. Micromech. Microeng. 20, 075028 (2010).
[CrossRef]

Zhao, X.

G. Sun, T. Gao, X. Zhao, and H. Zhang, “Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching,” J. Micromech. Microeng. 20, 075028 (2010).
[CrossRef]

Zhong, L.

Appl. Opt. (3)

Appl. Phys. A (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[CrossRef]

J. Appl. Phys. (1)

X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93, 4407–4412 (2003).
[CrossRef]

J. Micromech. Microeng. (1)

G. Sun, T. Gao, X. Zhao, and H. Zhang, “Fabrication of micro/nano dual-scale structures by improved deep reactive ion etching,” J. Micromech. Microeng. 20, 075028 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

S. Park, S. J. Di. Giacomo, R. Anisha, P. R. Berger, P. E. Thompson, and I. Adesida, “Fabrication of nanowires with high aspect ratios utilized by dry etching with SF6: C4F8 and self-limiting thermal oxidation on Si substrate,” J. Vac. Sci. Technol. B 28, 763–768 (2010).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Phys. Procedia (1)

R. Weber, A. Michalowski, M. A. Ahmed, V. Onuseit, V. Rominger, M. Kraus, and T. Graf, “Effects of radial and tangential polarization in laser material processing,” Phys. Procedia 12, 21–30 (2011).
[CrossRef]

Phys. Status Solidi C (1)

M. Khardani, M. Bouaïcha, and B. Bessaïs, “Bruggeman effective medium approach for modeling optical properties of porous silicon: comparison with experiment,” Phys. Status Solidi C 4, 1986–1990 (2007).
[CrossRef]

Quantum Electronics (1)

V. G. Niziev, V. P. Yakunim, and N. G. Turkin, “Generation of polarisation-nonuniform modes in a high-power CO2 laser,” Quantum Electronics 39, 505–514 (2009).
[CrossRef]

Surf. Sci. (1)

S. Bosch, J. Ferré-Borrull, N. Leinfellner, and A. Canillas, “Effective dielectric function of mixtures of three or more materials: a numerical procedure for computations,” Surf. Sci. 453, 9–17 (2000).
[CrossRef]

Other (1)

E. Hecht and A. Zajac, Optics (Addison-Wesley, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Top view of the HCSG. (b) Scheme of the HCSG.

Fig. 2.
Fig. 2.

Volume ratio of air to Ge α versus the effective refractive index.

Fig. 3.
Fig. 3.

Reflective spectra of the HCSG, where T=4μm, d=2.2μm, d0=0.4μm, d1=1.8μm, f=0.5, t0=0.125μm, t1=0.125μm, t2=0.08μm, and α=1.

Fig. 4.
Fig. 4.

(a) z component magnetic field distribution for TM wave. (b) z component electric field distribution for TE wave at 10.6 μm, where T=4μm, d=2.2μm, d0=0.4μm, d1=1.8μm, f=0.5, t0=0.125μm, t1=0.125μm, t2=0.08μm, and α=1.

Fig. 5.
Fig. 5.

(a) Reflectivity versus the duty cycle f. (b) Reflectivity versus the etching depth d1 with different duty cycle at the wavelength of 10.6 μm, where T=4μm, d=2.2μm, d0=0.4μm, d1=1.8μm, t0=0.125μm, t1=0.125μm, t2=0.08μm, and α=1.

Fig. 6.
Fig. 6.

SEM profile images of (a) the test Ge grating mirror with the same etching recipe except for the etching time and (b) the HCSG.

Fig. 7.
Fig. 7.

Measured and theoretical reflective spectra, where T=4μm, d=2.2μm, d0=0.4μm, d1=1.8μm, f=0.43, t0=0.125μm, t1=0.125μm, t2=0.08μm, and α=1.

Fig. 8.
Fig. 8.

(a) HCSG mirror in mount. (b) Scheme of laser resonator.

Fig. 9.
Fig. 9.

Burned acrylic patterns for (a) the grating resonator and (b) the ordinary symmetrical sphere resonator without polarizer; the doughnut mode through a polarizer oriented (c) vertically, (d) horizontally, (e) at 135° direction, and (f) at 45° direction.

Fig. 10.
Fig. 10.

Pump power versus the output power of the grating resonator and the ordinary symmetrical sphere resonator.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ivini2neff2ni2+2neff2=0,
vi=tiT(1f)2(d1d0)+T(1f)1d0.

Metrics