Abstract

A new linearized photonic mixer structure, which can fully eliminate the third-order intermodulation distortion, is presented. It is based on an integrated dual-parallel Mach–Zehnder modulator to which an optimized RF split and an optimized optical phase shift are applied, in series with a Mach–Zehnder modulator driven by the LO. The mixer achieves a very high spurious-free dynamic range performance, it enables essentially infinite isolation between the RF and LO ports, and it has the ability to function over a multioctave frequency range. Experimental results demonstrate a record measured spurious free dynamic range performance of 127dB·Hz4/5, which is over 22 dB higher than that of the conventional dual-series Mach–Zehnder modulator-based microwave photonic mixer.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Minasian, E. H. W. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21, 22918–22936 (2013).
    [CrossRef]
  2. G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
    [CrossRef]
  3. K. I. Kitayama and R. A. Griffin, “Optical down-conversion from millimeter wave to IF-band over 50-km-long optical link using an electroabsorption modulator,” IEEE Photon. Technol. Lett. 11, 287–289 (1999).
    [CrossRef]
  4. Y. Shi, W. Wang, and J. H. Bechtel, “High-isolation photonic microwave mixer/link for wideband signal processing and transmission,” J. Lightwave Technol. 21, 1224–1232 (2003).
    [CrossRef]
  5. C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech. 45, 1375–1383 (1997).
    [CrossRef]
  6. R. Helkey, C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15, 956–961 (1997).
    [CrossRef]
  7. E. H. W. Chan and R. A. Minasian, “Microwave photonic downconverter with high conversion efficiency,” J. Lightwave Technol. 30, 3580–3585 (2012).
    [CrossRef]
  8. B. Haas and T. E. Murphy, “A carrier-suppressed phase-modulated fiber optic link with IF downconversion of 30 GHz 64-QAM signals,” International Topical Meeting on Microwave Photonics, Valencia, Spain, 14–16 October2009.
  9. C. Bohemond, P. Morel, A. Sharaiha, T. Rampone, and B. Pucel, “Experimental and simulation analysis of the third-order input interception point in an all-optical RF mixer based on a semiconductor optical amplifier,” J. Lightwave Technol. 29, 91–96 (2011).
    [CrossRef]
  10. C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8, 1166–1168 (1996).
    [CrossRef]
  11. A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver applications,” IEEE Trans. Microwave Theory Tech. 43, 2311–2317 (1995).
    [CrossRef]
  12. B. Masella, B. Hraimel, and X. Zhang, “Enhanced spurious-free dynamic range using mixed polarization in optical single sideband Mach–Zehnder modulator,” J. Lightwave Technol. 27, 3034–3041 (2009).
    [CrossRef]
  13. G. Jaro and T. Berceli, “A new high-efficiency optical-microwave mixing approach,” J. Lightwave Technol. 21, 3078–3084 (2003).
    [CrossRef]
  14. B. M. Haas and T. E. Murphy, “Linearized downconverting microwave photonic link using dual-wavelength phase modulation and optical filtering,” IEEE Photon. J. 3, 1–12 (2011).
    [CrossRef]
  15. E. W. H. Chan, K. E. Alameh, and R. A. Minasian, “A photonics-based wideband linearized mixer,” Microwave Opt. Technol. Lett. 39, 500–502 (2003).
  16. A. Karim and J. Devenport, “High dynamic range microwave photonic links for RF signal transport and RF-IF conversion,” J. Lightwave Technol. 26, 2718–2724 (2008).
    [CrossRef]
  17. P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” International Topical Meeting on Microwave Photonics, Noordwijk, The Netherlands, 11–14 September2012.
  18. S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear millimeter-wave over fiber transmitter with subcarrier upconversion,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (Optical Society of America, 2011), paper JWA3.
  19. H. Roussell and R. Helkey, “Optical frequency conversion using a linearized LiNbO3 modulator,” IEEE Microwave Guided Wave Lett. 8, 408–410 (1998).
    [CrossRef]
  20. S. K. Korotky and R. M. Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Commun. 8, 1377–1381 (1990).
    [CrossRef]
  21. G. Zhu, W. Liu, and H. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 21, 1627–1629 (2009).
    [CrossRef]
  22. N. Yang, C. Caloz, and K. Wu, “Broadband compact 180° hybrid derived from the Wilkinson divider,” IEEE Trans. Microwave Theory Tech. 58, 1030–1037 (2010).
    [CrossRef]
  23. A. Moscoso-Martir, J. G. Wanguemert-Perez, I. Molina-Fernandez, and E. Marquez-Segura, “Slot-coupled multisection quadrature hybrid for UWB applications,” IEEE Microw. Wirel. Compon. Lett. 19, 143–145 (2009).
    [CrossRef]
  24. Aeroflex Weinschel., “1534 broadband resistive power splitter,” http://www.aeroflex.com/ams/weinschel/pdfiles/wmod1534.pdf .

2013

2012

2011

2010

N. Yang, C. Caloz, and K. Wu, “Broadband compact 180° hybrid derived from the Wilkinson divider,” IEEE Trans. Microwave Theory Tech. 58, 1030–1037 (2010).
[CrossRef]

2009

A. Moscoso-Martir, J. G. Wanguemert-Perez, I. Molina-Fernandez, and E. Marquez-Segura, “Slot-coupled multisection quadrature hybrid for UWB applications,” IEEE Microw. Wirel. Compon. Lett. 19, 143–145 (2009).
[CrossRef]

B. Masella, B. Hraimel, and X. Zhang, “Enhanced spurious-free dynamic range using mixed polarization in optical single sideband Mach–Zehnder modulator,” J. Lightwave Technol. 27, 3034–3041 (2009).
[CrossRef]

G. Zhu, W. Liu, and H. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 21, 1627–1629 (2009).
[CrossRef]

2008

2003

1999

K. I. Kitayama and R. A. Griffin, “Optical down-conversion from millimeter wave to IF-band over 50-km-long optical link using an electroabsorption modulator,” IEEE Photon. Technol. Lett. 11, 287–289 (1999).
[CrossRef]

1998

H. Roussell and R. Helkey, “Optical frequency conversion using a linearized LiNbO3 modulator,” IEEE Microwave Guided Wave Lett. 8, 408–410 (1998).
[CrossRef]

1997

C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech. 45, 1375–1383 (1997).
[CrossRef]

R. Helkey, C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15, 956–961 (1997).
[CrossRef]

1996

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8, 1166–1168 (1996).
[CrossRef]

1995

A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver applications,” IEEE Trans. Microwave Theory Tech. 43, 2311–2317 (1995).
[CrossRef]

1993

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[CrossRef]

1990

S. K. Korotky and R. M. Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Commun. 8, 1377–1381 (1990).
[CrossRef]

Ackerman, E.

C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech. 45, 1375–1383 (1997).
[CrossRef]

Alameh, K. E.

E. W. H. Chan, K. E. Alameh, and R. A. Minasian, “A photonics-based wideband linearized mixer,” Microwave Opt. Technol. Lett. 39, 500–502 (2003).

Bechtel, J. H.

Berceli, T.

Betts, G. E.

C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech. 45, 1375–1383 (1997).
[CrossRef]

Bohemond, C.

Bulmer, C. H.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[CrossRef]

Burns, W. K.

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8, 1166–1168 (1996).
[CrossRef]

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[CrossRef]

Caloz, C.

N. Yang, C. Caloz, and K. Wu, “Broadband compact 180° hybrid derived from the Wilkinson divider,” IEEE Trans. Microwave Theory Tech. 58, 1030–1037 (2010).
[CrossRef]

Chan, E. H. W.

Chan, E. W. H.

E. W. H. Chan, K. E. Alameh, and R. A. Minasian, “A photonics-based wideband linearized mixer,” Microwave Opt. Technol. Lett. 39, 500–502 (2003).

Chen, H.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” International Topical Meeting on Microwave Photonics, Noordwijk, The Netherlands, 11–14 September2012.

Chen, M.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” International Topical Meeting on Microwave Photonics, Noordwijk, The Netherlands, 11–14 September2012.

Cox, C.

R. Helkey, C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15, 956–961 (1997).
[CrossRef]

C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech. 45, 1375–1383 (1997).
[CrossRef]

Devenport, J.

Fetterman, H.

G. Zhu, W. Liu, and H. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 21, 1627–1629 (2009).
[CrossRef]

Gopalakrishnan, G. K.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[CrossRef]

Griffin, R. A.

K. I. Kitayama and R. A. Griffin, “Optical down-conversion from millimeter wave to IF-band over 50-km-long optical link using an electroabsorption modulator,” IEEE Photon. Technol. Lett. 11, 287–289 (1999).
[CrossRef]

Haas, B.

B. Haas and T. E. Murphy, “A carrier-suppressed phase-modulated fiber optic link with IF downconversion of 30 GHz 64-QAM signals,” International Topical Meeting on Microwave Photonics, Valencia, Spain, 14–16 October2009.

Haas, B. M.

B. M. Haas and T. E. Murphy, “Linearized downconverting microwave photonic link using dual-wavelength phase modulation and optical filtering,” IEEE Photon. J. 3, 1–12 (2011).
[CrossRef]

Helkey, R.

H. Roussell and R. Helkey, “Optical frequency conversion using a linearized LiNbO3 modulator,” IEEE Microwave Guided Wave Lett. 8, 408–410 (1998).
[CrossRef]

C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech. 45, 1375–1383 (1997).
[CrossRef]

R. Helkey, C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15, 956–961 (1997).
[CrossRef]

Hraimel, B.

Jaro, G.

Karim, A.

Kitayama, K. I.

K. I. Kitayama and R. A. Griffin, “Optical down-conversion from millimeter wave to IF-band over 50-km-long optical link using an electroabsorption modulator,” IEEE Photon. Technol. Lett. 11, 287–289 (1999).
[CrossRef]

Knight, G. A.

A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver applications,” IEEE Trans. Microwave Theory Tech. 43, 2311–2317 (1995).
[CrossRef]

Korotky, S. K.

S. K. Korotky and R. M. Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Commun. 8, 1377–1381 (1990).
[CrossRef]

Li, P.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” International Topical Meeting on Microwave Photonics, Noordwijk, The Netherlands, 11–14 September2012.

Li, S.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear millimeter-wave over fiber transmitter with subcarrier upconversion,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (Optical Society of America, 2011), paper JWA3.

Lindsay, A. C.

A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver applications,” IEEE Trans. Microwave Theory Tech. 43, 2311–2317 (1995).
[CrossRef]

Liu, W.

G. Zhu, W. Liu, and H. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 21, 1627–1629 (2009).
[CrossRef]

Marquez-Segura, E.

A. Moscoso-Martir, J. G. Wanguemert-Perez, I. Molina-Fernandez, and E. Marquez-Segura, “Slot-coupled multisection quadrature hybrid for UWB applications,” IEEE Microw. Wirel. Compon. Lett. 19, 143–145 (2009).
[CrossRef]

Masella, B.

Minasian, R. A.

Molina-Fernandez, I.

A. Moscoso-Martir, J. G. Wanguemert-Perez, I. Molina-Fernandez, and E. Marquez-Segura, “Slot-coupled multisection quadrature hybrid for UWB applications,” IEEE Microw. Wirel. Compon. Lett. 19, 143–145 (2009).
[CrossRef]

Morel, P.

Moscoso-Martir, A.

A. Moscoso-Martir, J. G. Wanguemert-Perez, I. Molina-Fernandez, and E. Marquez-Segura, “Slot-coupled multisection quadrature hybrid for UWB applications,” IEEE Microw. Wirel. Compon. Lett. 19, 143–145 (2009).
[CrossRef]

Murphy, T. E.

B. M. Haas and T. E. Murphy, “Linearized downconverting microwave photonic link using dual-wavelength phase modulation and optical filtering,” IEEE Photon. J. 3, 1–12 (2011).
[CrossRef]

B. Haas and T. E. Murphy, “A carrier-suppressed phase-modulated fiber optic link with IF downconversion of 30 GHz 64-QAM signals,” International Topical Meeting on Microwave Photonics, Valencia, Spain, 14–16 October2009.

Orazi, R. J.

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8, 1166–1168 (1996).
[CrossRef]

Pappert, S. A.

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8, 1166–1168 (1996).
[CrossRef]

Pucel, B.

Rampone, T.

Ridder, R. M.

S. K. Korotky and R. M. Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Commun. 8, 1377–1381 (1990).
[CrossRef]

Roussell, H.

H. Roussell and R. Helkey, “Optical frequency conversion using a linearized LiNbO3 modulator,” IEEE Microwave Guided Wave Lett. 8, 408–410 (1998).
[CrossRef]

Sharaiha, A.

Shi, R.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” International Topical Meeting on Microwave Photonics, Noordwijk, The Netherlands, 11–14 September2012.

Shi, Y.

Sun, C. K.

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8, 1166–1168 (1996).
[CrossRef]

Twichell, C.

R. Helkey, C. Twichell, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15, 956–961 (1997).
[CrossRef]

Wang, W.

Wanguemert-Perez, J. G.

A. Moscoso-Martir, J. G. Wanguemert-Perez, I. Molina-Fernandez, and E. Marquez-Segura, “Slot-coupled multisection quadrature hybrid for UWB applications,” IEEE Microw. Wirel. Compon. Lett. 19, 143–145 (2009).
[CrossRef]

Winnall, S. T.

A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver applications,” IEEE Trans. Microwave Theory Tech. 43, 2311–2317 (1995).
[CrossRef]

Wu, K.

N. Yang, C. Caloz, and K. Wu, “Broadband compact 180° hybrid derived from the Wilkinson divider,” IEEE Trans. Microwave Theory Tech. 58, 1030–1037 (2010).
[CrossRef]

Xie, S.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” International Topical Meeting on Microwave Photonics, Noordwijk, The Netherlands, 11–14 September2012.

Yang, N.

N. Yang, C. Caloz, and K. Wu, “Broadband compact 180° hybrid derived from the Wilkinson divider,” IEEE Trans. Microwave Theory Tech. 58, 1030–1037 (2010).
[CrossRef]

Yang, S.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” International Topical Meeting on Microwave Photonics, Noordwijk, The Netherlands, 11–14 September2012.

Yi, X.

Zhang, H.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear millimeter-wave over fiber transmitter with subcarrier upconversion,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (Optical Society of America, 2011), paper JWA3.

Zhang, X.

Zheng, X.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear millimeter-wave over fiber transmitter with subcarrier upconversion,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (Optical Society of America, 2011), paper JWA3.

Zhou, B.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear millimeter-wave over fiber transmitter with subcarrier upconversion,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (Optical Society of America, 2011), paper JWA3.

Zhu, G.

G. Zhu, W. Liu, and H. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 21, 1627–1629 (2009).
[CrossRef]

IEEE J. Sel. Areas Commun.

S. K. Korotky and R. M. Ridder, “Dual parallel modulation schemes for low-distortion analog optical transmission,” IEEE J. Sel. Areas Commun. 8, 1377–1381 (1990).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett.

A. Moscoso-Martir, J. G. Wanguemert-Perez, I. Molina-Fernandez, and E. Marquez-Segura, “Slot-coupled multisection quadrature hybrid for UWB applications,” IEEE Microw. Wirel. Compon. Lett. 19, 143–145 (2009).
[CrossRef]

IEEE Microwave Guided Wave Lett.

H. Roussell and R. Helkey, “Optical frequency conversion using a linearized LiNbO3 modulator,” IEEE Microwave Guided Wave Lett. 8, 408–410 (1998).
[CrossRef]

IEEE Photon. J.

B. M. Haas and T. E. Murphy, “Linearized downconverting microwave photonic link using dual-wavelength phase modulation and optical filtering,” IEEE Photon. J. 3, 1–12 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

C. K. Sun, R. J. Orazi, S. A. Pappert, and W. K. Burns, “A photonic-link millimeter-wave mixer using cascaded optical modulators and harmonic carrier generation,” IEEE Photon. Technol. Lett. 8, 1166–1168 (1996).
[CrossRef]

K. I. Kitayama and R. A. Griffin, “Optical down-conversion from millimeter wave to IF-band over 50-km-long optical link using an electroabsorption modulator,” IEEE Photon. Technol. Lett. 11, 287–289 (1999).
[CrossRef]

G. Zhu, W. Liu, and H. Fetterman, “A broadband linearized coherent analog fiber-optic link employing dual parallel Mach–Zehnder modulator,” IEEE Photon. Technol. Lett. 21, 1627–1629 (2009).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

N. Yang, C. Caloz, and K. Wu, “Broadband compact 180° hybrid derived from the Wilkinson divider,” IEEE Trans. Microwave Theory Tech. 58, 1030–1037 (2010).
[CrossRef]

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, “Microwave optical mixing in LiNbO3 modulators,” IEEE Trans. Microwave Theory Tech. 41, 2383–2391 (1993).
[CrossRef]

C. Cox, E. Ackerman, R. Helkey, and G. E. Betts, “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech. 45, 1375–1383 (1997).
[CrossRef]

A. C. Lindsay, G. A. Knight, and S. T. Winnall, “Photonic mixers for wide bandwidth RF receiver applications,” IEEE Trans. Microwave Theory Tech. 43, 2311–2317 (1995).
[CrossRef]

J. Lightwave Technol.

Microwave Opt. Technol. Lett.

E. W. H. Chan, K. E. Alameh, and R. A. Minasian, “A photonics-based wideband linearized mixer,” Microwave Opt. Technol. Lett. 39, 500–502 (2003).

Opt. Express

Other

B. Haas and T. E. Murphy, “A carrier-suppressed phase-modulated fiber optic link with IF downconversion of 30 GHz 64-QAM signals,” International Topical Meeting on Microwave Photonics, Valencia, Spain, 14–16 October2009.

P. Li, R. Shi, M. Chen, H. Chen, S. Yang, and S. Xie, “Linearized photonic IF downconversion of analog microwave signals based on balanced detection and digital signal post-processing,” International Topical Meeting on Microwave Photonics, Noordwijk, The Netherlands, 11–14 September2012.

S. Li, X. Zheng, H. Zhang, and B. Zhou, “Highly linear millimeter-wave over fiber transmitter with subcarrier upconversion,” in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (Optical Society of America, 2011), paper JWA3.

Aeroflex Weinschel., “1534 broadband resistive power splitter,” http://www.aeroflex.com/ams/weinschel/pdfiles/wmod1534.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Structure of the DPMZM-based linearized photonic mixer. VRF(t) is the RF signal; VLO(t) is the LO; Vb1, Vb2, and Vb3 are the DPMZM bias voltages; and Vb,LO is the MZM bias voltage.

Fig. 2.
Fig. 2.

Illustration of the linearization process in the integrated DPMZM.

Fig. 3.
Fig. 3.

Output power spectrum at different RF splitting ratios. The simulation parameters are as follows: Laser power Pin=20dBm, PMZM insertion loss tff1=5dB, ZM insertion loss tff2=5dB, photodiode responsivity R=1A/W, and photodiode load resistance RL=50Ω.

Fig. 4.
Fig. 4.

DPMZM-based linearized photonic mixer SFDR performance with respect to the input laser power.

Fig. 5.
Fig. 5.

DPMZM-based photonic mixer SFDR performance for the high-tolerance approach with respect to (a) phase variation and (b) amplitude variation. The solid lines show the optimum bias approach, and the dashed lines show the high-tolerance approach. The simulation parameters are as follows: laser power into DPMZM Pin=20dBm, photodiode responsivity R=1A/W, and system noise floor 160dBm/Hz.

Fig. 6.
Fig. 6.

Experimental setup of the DPMZM-based linearized photonic mixer.

Fig. 7.
Fig. 7.

Output electrical power of the DPMZM-based photonic mixer operated (a) in the optimum bias condition (Vb1=1.36V, Vb2=5.32V), and (b) away from the optimum bias condition (Vb1=0V, Vb2=5.32V, Vb3=0.15V).

Fig. 8.
Fig. 8.

Measured output electrical power of the linearized DPMZM-based photonic mixer at the second-order distortion frequencies.

Fig. 9.
Fig. 9.

DPMZM-based linearized photonic mixer output electrical power versus input RF signal power. Measured IF signal power (▾), measured IMD3 (•), and measured noise floor (−).

Fig. 10.
Fig. 10.

Measured SFDR response for the linearized DPMZM-based photonic mixer using the high tolerance approach (▪).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Ex(t)=Eitff12[cosm1(t)2ejmb32+cosm2(t)2ejmb32],
Eo(t)=Ex(t)2tff2[1+ejmLO(t)],
IPD=|Eo(t)|2R=tff1·tff2·Ei216[1+cosmLO(t)][2+cosm1(t)+cosm2(t)+4cos(m1(t)2)cos(m2(t)2)cos(mb3)]R,
IMD=J1(mLo)[aJ1(mRF)J2(mRF)+bJ1(·mRF)J2(·mRF)+cJ1(mRF2)J2(mRF2)+dJ1(mRF2)J2(mRF2)+cJ1(·mRF2)J2(mRF2)+cJ1(mRF2)J1(mRF2)2+dJ1(mRF2)J2(mRF2)+dJ1(mRF2)J1(mRF2)2],
IMD=mRF364·J1(mLO)·[(8b+c)3+3d2+3c+(8a+d)]mRF53686·J1(mLO)·[(32b+c)5+5d4+10c3+10d2+5c·+(32a+d)]+higher order terms.
SFDR=(PIF,TOINtotal)23,
PIF,TOI=tff12·tff22·Pin2·κTOI·J1(mLO)2R2RL32·[(2b+c)+(2a+d)]2,
κTOI=32·(2b+c)+(2a+d)(8b+c)3+3d2+3c+(8a+d).
SFDR=(PIF,FOINtotal)45,
PIF,FOI=tff12·tff22·Pin2·κFOI2·J1(mLO)2R2RL32[(2b+c)·+(2a+d)]2,
κFOI=[1843·[(2b+c)+(2a+d)](32b+c)·5+5d·4+10c·3+10d2+5c·+32a+d]12.
Pavg=tff1·tff2·Pin16·[2+cos(mb1)+cos(mb2)+4cos(mb12)cos(mb22)cos(mb3)].

Metrics