Abstract

We have substantiated a simple yet efficient, competitive, and practical method to automatically fabricate liquid crystalline grating cells with homogeneous or twisted nematic (TN) structures by one-step ultraviolet holographic exposure on an empty glass cell coated with a photocrosslinkable polymer liquid crystal with 4-(4-methoxycinnamoyloxy)biphenyl side group (P6CB) films. The polarization diffraction properties in the resultant liquid crystalline grating cells have also been investigated extensively by varying the grating pitch. The theoretical considerations on the basis of elastic continuum theory revealed that accumulation of elastic free-energy density due to the TN structure affected the diffraction properties, although the strong anchoring of our photoalignment material contributed effectively to form the expected spatial distribution of liquid crystalline directors in the grating cells.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings,” Appl. Phys. Lett. 83, 1918–1920 (2003).
    [Crossref]
  2. C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Design of binary diffraction gratings of liquid crystals in a linearly graded phase model,” Appl. Opt. 43, 1783–1788 (2004).
    [Crossref]
  3. C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng., C 24, 247–250 (2004).
    [Crossref]
  4. L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure ‘photosensitive polymer-liquid crystal’,” Appl. Phys. Lett. 87, 061105 (2005).
    [Crossref]
  5. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
    [Crossref]
  6. T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid-crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystal,” Appl. Phys. Lett. 87, 161112 (2005).
    [Crossref]
  7. C.-J. Yu, D.-W. Kim, J. Kim, and S.-D. Lee, “Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration,” Opt. Lett. 30, 1995–1997 (2005).
    [Crossref]
  8. V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
    [Crossref]
  9. V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14, 10558–10564 (2006).
    [Crossref]
  10. R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76, 021701 (2007).
    [Crossref]
  11. H. Ono, S. Oikawa, and N. Kawatsuki, “Effects of anchoring strength on diffraction properties of liquid crystal phase gratings formed on photoalignment polymer films,” J. Appl. Phys. 101, 123523 (2007).
    [Crossref]
  12. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography,” Opt. Express 15, 5872–5878 (2007).
    [Crossref]
  13. T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Diffraction properties of nematic phase gratings with photoregulated liquid crystal cells,” Jpn. J. Appl. Phys. 46, 698–702 (2007).
    [Crossref]
  14. W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103, 083119 (2008).
    [Crossref]
  15. R. K. Komanduri and M. J. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95, 091106 (2009).
    [Crossref]
  16. H. Ono, M. Hishida, A. Emoto, T. Shioda, and N. Kawatsuki, “Elastic continuum analysis and diffraction properties of two-dimensional liquid crystalline grating cells,” Appl. Opt. 26, 1151–1156 (2009).
  17. M. Honma, Y. Akagawa, M. Ogasawara, and T. Nose, “Diffraction efficiency improvement in liquid crystal blazed gratings with spatially distributed hybrid orientation domains,” Jpn. J. Appl. Phys. 49, 051702 (2010).
    [Crossref]
  18. M. Honma and T. Nose, “Twisted nematic liquid crystal polarization grating with the handedness conservation of a circularly polarized state,” Opt. Express 20, 18449–18458 (2012).
    [Crossref]
  19. J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114, 153104 (2013).
    [Crossref]
  20. J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38, 2342–2344 (2013).
    [Crossref]
  21. M. Kuzuwata, T. Sasaki, N. Kawatsuki, and H. Ono, “Fabrication of twisted nematic structure and vector grating cells by one-step exposure on photocrosslinkable polymer liquid crystals,” Opt. Lett. 37, 1115–1117 (2012).
    [Crossref]
  22. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
    [Crossref]
  23. D. D. Huang, V. Kozenkov, V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Novel photoaligned twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys. 44, 5117–5118 (2005).
    [Crossref]
  24. V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).
  25. N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30, 6680–6682 (1997).
    [Crossref]
  26. N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystal films,” Macromolecules 35, 706–713 (2002).
    [Crossref]
  27. S. Chandrasekhar, Liquid Crystals (Cambridge University, 1977).
  28. P. Yeh and C. Gu, Optics of Liquid Crystal Display (Wiley, 1999).

2013 (2)

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114, 153104 (2013).
[Crossref]

J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38, 2342–2344 (2013).
[Crossref]

2012 (2)

2010 (1)

M. Honma, Y. Akagawa, M. Ogasawara, and T. Nose, “Diffraction efficiency improvement in liquid crystal blazed gratings with spatially distributed hybrid orientation domains,” Jpn. J. Appl. Phys. 49, 051702 (2010).
[Crossref]

2009 (2)

2008 (1)

W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103, 083119 (2008).
[Crossref]

2007 (4)

R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76, 021701 (2007).
[Crossref]

H. Ono, S. Oikawa, and N. Kawatsuki, “Effects of anchoring strength on diffraction properties of liquid crystal phase gratings formed on photoalignment polymer films,” J. Appl. Phys. 101, 123523 (2007).
[Crossref]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography,” Opt. Express 15, 5872–5878 (2007).
[Crossref]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Diffraction properties of nematic phase gratings with photoregulated liquid crystal cells,” Jpn. J. Appl. Phys. 46, 698–702 (2007).
[Crossref]

2006 (2)

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
[Crossref]

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14, 10558–10564 (2006).
[Crossref]

2005 (5)

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure ‘photosensitive polymer-liquid crystal’,” Appl. Phys. Lett. 87, 061105 (2005).
[Crossref]

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid-crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystal,” Appl. Phys. Lett. 87, 161112 (2005).
[Crossref]

C.-J. Yu, D.-W. Kim, J. Kim, and S.-D. Lee, “Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration,” Opt. Lett. 30, 1995–1997 (2005).
[Crossref]

D. D. Huang, V. Kozenkov, V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Novel photoaligned twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys. 44, 5117–5118 (2005).
[Crossref]

2004 (2)

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Design of binary diffraction gratings of liquid crystals in a linearly graded phase model,” Appl. Opt. 43, 1783–1788 (2004).
[Crossref]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng., C 24, 247–250 (2004).
[Crossref]

2003 (1)

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings,” Appl. Phys. Lett. 83, 1918–1920 (2003).
[Crossref]

2002 (1)

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystal films,” Macromolecules 35, 706–713 (2002).
[Crossref]

1997 (1)

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30, 6680–6682 (1997).
[Crossref]

1992 (1)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[Crossref]

Akagawa, Y.

M. Honma, Y. Akagawa, M. Ogasawara, and T. Nose, “Diffraction efficiency improvement in liquid crystal blazed gratings with spatially distributed hybrid orientation domains,” Jpn. J. Appl. Phys. 49, 051702 (2010).
[Crossref]

Arbuzov, A. V.

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure ‘photosensitive polymer-liquid crystal’,” Appl. Phys. Lett. 87, 061105 (2005).
[Crossref]

Asatryan, K.

Barnik, M. I.

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure ‘photosensitive polymer-liquid crystal’,” Appl. Phys. Lett. 87, 061105 (2005).
[Crossref]

Blinov, L. M.

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure ‘photosensitive polymer-liquid crystal’,” Appl. Phys. Lett. 87, 061105 (2005).
[Crossref]

Callan-Jones, A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

Chandrasekhar, S.

S. Chandrasekhar, Liquid Crystals (Cambridge University, 1977).

Chigrinov, V.

V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14, 10558–10564 (2006).
[Crossref]

D. D. Huang, V. Kozenkov, V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Novel photoaligned twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys. 44, 5117–5118 (2005).
[Crossref]

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[Crossref]

Chigrinov, V. G.

J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38, 2342–2344 (2013).
[Crossref]

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).

Chung, S.-Y.

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings,” Appl. Phys. Lett. 83, 1918–1920 (2003).
[Crossref]

Cipparrone, G.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography,” Opt. Express 15, 5872–5878 (2007).
[Crossref]

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure ‘photosensitive polymer-liquid crystal’,” Appl. Phys. Lett. 87, 061105 (2005).
[Crossref]

Crawford, G. P.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

Eakin, J. N.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

Emoto, A.

Escuti, M. J.

R. K. Komanduri and M. J. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95, 091106 (2009).
[Crossref]

R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76, 021701 (2007).
[Crossref]

Fuh, A. Y.-G.

W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103, 083119 (2008).
[Crossref]

Galstian, T.

Goto, K.

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystal films,” Macromolecules 35, 706–713 (2002).
[Crossref]

Gu, C.

P. Yeh and C. Gu, Optics of Liquid Crystal Display (Wiley, 1999).

Hishida, M.

Honma, M.

M. Honma and T. Nose, “Twisted nematic liquid crystal polarization grating with the handedness conservation of a circularly polarized state,” Opt. Express 20, 18449–18458 (2012).
[Crossref]

M. Honma, Y. Akagawa, M. Ogasawara, and T. Nose, “Diffraction efficiency improvement in liquid crystal blazed gratings with spatially distributed hybrid orientation domains,” Jpn. J. Appl. Phys. 49, 051702 (2010).
[Crossref]

Hu, K.

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114, 153104 (2013).
[Crossref]

Huang, D. D.

D. D. Huang, V. Kozenkov, V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Novel photoaligned twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys. 44, 5117–5118 (2005).
[Crossref]

Jung, M.-S.

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng., C 24, 247–250 (2004).
[Crossref]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Design of binary diffraction gratings of liquid crystals in a linearly graded phase model,” Appl. Opt. 43, 1783–1788 (2004).
[Crossref]

Kapoustine, V.

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
[Crossref]

Kawakami, T.

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystal films,” Macromolecules 35, 706–713 (2002).
[Crossref]

Kawatsuki, N.

M. Kuzuwata, T. Sasaki, N. Kawatsuki, and H. Ono, “Fabrication of twisted nematic structure and vector grating cells by one-step exposure on photocrosslinkable polymer liquid crystals,” Opt. Lett. 37, 1115–1117 (2012).
[Crossref]

H. Ono, M. Hishida, A. Emoto, T. Shioda, and N. Kawatsuki, “Elastic continuum analysis and diffraction properties of two-dimensional liquid crystalline grating cells,” Appl. Opt. 26, 1151–1156 (2009).

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Diffraction properties of nematic phase gratings with photoregulated liquid crystal cells,” Jpn. J. Appl. Phys. 46, 698–702 (2007).
[Crossref]

H. Ono, S. Oikawa, and N. Kawatsuki, “Effects of anchoring strength on diffraction properties of liquid crystal phase gratings formed on photoalignment polymer films,” J. Appl. Phys. 101, 123523 (2007).
[Crossref]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid-crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystal,” Appl. Phys. Lett. 87, 161112 (2005).
[Crossref]

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystal films,” Macromolecules 35, 706–713 (2002).
[Crossref]

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30, 6680–6682 (1997).
[Crossref]

Kazakevitch, A.

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
[Crossref]

Kim, D.-W.

Kim, J.

C.-J. Yu, D.-W. Kim, J. Kim, and S.-D. Lee, “Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration,” Opt. Lett. 30, 1995–1997 (2005).
[Crossref]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng., C 24, 247–250 (2004).
[Crossref]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Design of binary diffraction gratings of liquid crystals in a linearly graded phase model,” Appl. Opt. 43, 1783–1788 (2004).
[Crossref]

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings,” Appl. Phys. Lett. 83, 1918–1920 (2003).
[Crossref]

Komanduri, R. K.

R. K. Komanduri and M. J. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95, 091106 (2009).
[Crossref]

R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76, 021701 (2007).
[Crossref]

Kozenkov, V.

D. D. Huang, V. Kozenkov, V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Novel photoaligned twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys. 44, 5117–5118 (2005).
[Crossref]

Kozenkov, V. M.

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).

Kozinkov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[Crossref]

Kuwabara, M.

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Diffraction properties of nematic phase gratings with photoregulated liquid crystal cells,” Jpn. J. Appl. Phys. 46, 698–702 (2007).
[Crossref]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid-crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystal,” Appl. Phys. Lett. 87, 161112 (2005).
[Crossref]

Kuzuwata, M.

Kwok, H. S.

J. Sun, A. K. Srivastava, L. Wang, V. G. Chigrinov, and H. S. Kwok, “Optically tunable and rewritable diffraction grating with photoaligned liquid crystals,” Opt. Lett. 38, 2342–2344 (2013).
[Crossref]

D. D. Huang, V. Kozenkov, V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Novel photoaligned twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys. 44, 5117–5118 (2005).
[Crossref]

Kwok, H.-S.

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).

Lee, S.-D.

C.-J. Yu, D.-W. Kim, J. Kim, and S.-D. Lee, “Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration,” Opt. Lett. 30, 1995–1997 (2005).
[Crossref]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Design of binary diffraction gratings of liquid crystals in a linearly graded phase model,” Appl. Opt. 43, 1783–1788 (2004).
[Crossref]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng., C 24, 247–250 (2004).
[Crossref]

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings,” Appl. Phys. Lett. 83, 1918–1920 (2003).
[Crossref]

Li, M. S.

W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103, 083119 (2008).
[Crossref]

Li, Q.

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114, 153104 (2013).
[Crossref]

Lin, H. C.

W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103, 083119 (2008).
[Crossref]

Mazzulla, A.

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure ‘photosensitive polymer-liquid crystal’,” Appl. Phys. Lett. 87, 061105 (2005).
[Crossref]

Nose, T.

M. Honma and T. Nose, “Twisted nematic liquid crystal polarization grating with the handedness conservation of a circularly polarized state,” Opt. Express 20, 18449–18458 (2012).
[Crossref]

M. Honma, Y. Akagawa, M. Ogasawara, and T. Nose, “Diffraction efficiency improvement in liquid crystal blazed gratings with spatially distributed hybrid orientation domains,” Jpn. J. Appl. Phys. 49, 051702 (2010).
[Crossref]

Ogasawara, M.

M. Honma, Y. Akagawa, M. Ogasawara, and T. Nose, “Diffraction efficiency improvement in liquid crystal blazed gratings with spatially distributed hybrid orientation domains,” Jpn. J. Appl. Phys. 49, 051702 (2010).
[Crossref]

Oikawa, S.

H. Ono, S. Oikawa, and N. Kawatsuki, “Effects of anchoring strength on diffraction properties of liquid crystal phase gratings formed on photoalignment polymer films,” J. Appl. Phys. 101, 123523 (2007).
[Crossref]

Ono, H.

M. Kuzuwata, T. Sasaki, N. Kawatsuki, and H. Ono, “Fabrication of twisted nematic structure and vector grating cells by one-step exposure on photocrosslinkable polymer liquid crystals,” Opt. Lett. 37, 1115–1117 (2012).
[Crossref]

H. Ono, M. Hishida, A. Emoto, T. Shioda, and N. Kawatsuki, “Elastic continuum analysis and diffraction properties of two-dimensional liquid crystalline grating cells,” Appl. Opt. 26, 1151–1156 (2009).

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Diffraction properties of nematic phase gratings with photoregulated liquid crystal cells,” Jpn. J. Appl. Phys. 46, 698–702 (2007).
[Crossref]

H. Ono, S. Oikawa, and N. Kawatsuki, “Effects of anchoring strength on diffraction properties of liquid crystal phase gratings formed on photoalignment polymer films,” J. Appl. Phys. 101, 123523 (2007).
[Crossref]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid-crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystal,” Appl. Phys. Lett. 87, 161112 (2005).
[Crossref]

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30, 6680–6682 (1997).
[Crossref]

Pagliusi, P.

Palto, S. P.

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure ‘photosensitive polymer-liquid crystal’,” Appl. Phys. Lett. 87, 061105 (2005).
[Crossref]

Park, J.-H.

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng., C 24, 247–250 (2004).
[Crossref]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Design of binary diffraction gratings of liquid crystals in a linearly graded phase model,” Appl. Opt. 43, 1783–1788 (2004).
[Crossref]

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings,” Appl. Phys. Lett. 83, 1918–1920 (2003).
[Crossref]

Pelcovits, R. A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

Presnyakov, V.

Provenzano, C.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography,” Opt. Express 15, 5872–5878 (2007).
[Crossref]

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure ‘photosensitive polymer-liquid crystal’,” Appl. Phys. Lett. 87, 061105 (2005).
[Crossref]

Radcliffe, M. D.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

Sangen, O.

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30, 6680–6682 (1997).
[Crossref]

Sasaki, T.

M. Kuzuwata, T. Sasaki, N. Kawatsuki, and H. Ono, “Fabrication of twisted nematic structure and vector grating cells by one-step exposure on photocrosslinkable polymer liquid crystals,” Opt. Lett. 37, 1115–1117 (2012).
[Crossref]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Diffraction properties of nematic phase gratings with photoregulated liquid crystal cells,” Jpn. J. Appl. Phys. 46, 698–702 (2007).
[Crossref]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid-crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystal,” Appl. Phys. Lett. 87, 161112 (2005).
[Crossref]

Schadt, M.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[Crossref]

Schmitt, K.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[Crossref]

Shioda, T.

So, V.

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
[Crossref]

Srivastava, A. K.

Sun, J.

Takada, H.

D. D. Huang, V. Kozenkov, V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Novel photoaligned twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys. 44, 5117–5118 (2005).
[Crossref]

Takatsu, H.

D. D. Huang, V. Kozenkov, V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Novel photoaligned twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys. 44, 5117–5118 (2005).
[Crossref]

Takatsuka, H.

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30, 6680–6682 (1997).
[Crossref]

Tam, R.

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
[Crossref]

Umanskii, B. A.

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure ‘photosensitive polymer-liquid crystal’,” Appl. Phys. Lett. 87, 061105 (2005).
[Crossref]

Wang, L.

Wu, W. Y.

W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103, 083119 (2008).
[Crossref]

Yamamoto, T.

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystal films,” Macromolecules 35, 706–713 (2002).
[Crossref]

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30, 6680–6682 (1997).
[Crossref]

Yan, J.

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114, 153104 (2013).
[Crossref]

Yeh, P.

P. Yeh and C. Gu, Optics of Liquid Crystal Display (Wiley, 1999).

Yu, C.-J.

C.-J. Yu, D.-W. Kim, J. Kim, and S.-D. Lee, “Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration,” Opt. Lett. 30, 1995–1997 (2005).
[Crossref]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Design of binary diffraction gratings of liquid crystals in a linearly graded phase model,” Appl. Opt. 43, 1783–1788 (2004).
[Crossref]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng., C 24, 247–250 (2004).
[Crossref]

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings,” Appl. Phys. Lett. 83, 1918–1920 (2003).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

R. K. Komanduri and M. J. Escuti, “High efficiency reflective liquid crystal polarization gratings,” Appl. Phys. Lett. 95, 091106 (2009).
[Crossref]

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beamsplitter based on binary phase gratings,” Appl. Phys. Lett. 83, 1918–1920 (2003).
[Crossref]

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure ‘photosensitive polymer-liquid crystal’,” Appl. Phys. Lett. 87, 061105 (2005).
[Crossref]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid-crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystal,” Appl. Phys. Lett. 87, 161112 (2005).
[Crossref]

J. Appl. Phys. (4)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[Crossref]

H. Ono, S. Oikawa, and N. Kawatsuki, “Effects of anchoring strength on diffraction properties of liquid crystal phase gratings formed on photoalignment polymer films,” J. Appl. Phys. 101, 123523 (2007).
[Crossref]

W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103, 083119 (2008).
[Crossref]

J. Yan, Q. Li, and K. Hu, “Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure,” J. Appl. Phys. 114, 153104 (2013).
[Crossref]

Jpn. J. Appl. Phys. (4)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[Crossref]

D. D. Huang, V. Kozenkov, V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Novel photoaligned twisted nematic liquid crystal cell,” Jpn. J. Appl. Phys. 44, 5117–5118 (2005).
[Crossref]

M. Honma, Y. Akagawa, M. Ogasawara, and T. Nose, “Diffraction efficiency improvement in liquid crystal blazed gratings with spatially distributed hybrid orientation domains,” Jpn. J. Appl. Phys. 49, 051702 (2010).
[Crossref]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Diffraction properties of nematic phase gratings with photoregulated liquid crystal cells,” Jpn. J. Appl. Phys. 46, 698–702 (2007).
[Crossref]

Macromolecules (2)

N. Kawatsuki, H. Ono, H. Takatsuka, T. Yamamoto, and O. Sangen, “Liquid crystal alignment on photoreactive side-chain liquid-crystalline polymer generated by linearly polarized UV light,” Macromolecules 30, 6680–6682 (1997).
[Crossref]

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photo-cross-linkable polymer liquid crystal films,” Macromolecules 35, 706–713 (2002).
[Crossref]

Mater. Sci. Eng., C (1)

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng., C 24, 247–250 (2004).
[Crossref]

Opt. Commun. (1)

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1–5 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. E (1)

R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76, 021701 (2007).
[Crossref]

Other (3)

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008).

S. Chandrasekhar, Liquid Crystals (Cambridge University, 1977).

P. Yeh and C. Gu, Optics of Liquid Crystal Display (Wiley, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematics for explaining the experimental procedure of one-step holographic exposure for fabricating the HOMO and TN grating cells.

Fig. 2.
Fig. 2.

POM images of [(a)–(c)] HOMO and [(d)–(f)] TN grating cells on varying the grating pitch. (a), (d): 60 μm; (b), (e): 30 μm; and (c), (f): 10 μm.

Fig. 3.
Fig. 3.

Polar plots for the +1st-order diffraction in [(a)–(c)] HOMO and [(d)–(f)] TN grating cells on varying the grating pitch. (a), (d): 60 μm; (b), (e): 30 μm; and (c), (f): 10 μm. The probe beam is LP or RCP.

Fig. 4.
Fig. 4.

Dependence of grating pitch on ellipticity (open and filled circles) and diffraction efficiency (open and filled squares). The open circles and squares represent data for the HOMO grating cells, whereas the filled symbols represent data for the TN grating cells.

Fig. 5.
Fig. 5.

Cross-sectional view of the spatial distribution of liquid crystalline directors calculated using elastic continuum theory. (a) HOMO and (b) TN grating cells.

Fig. 6.
Fig. 6.

Dependence of grating pitch on elastic free-energy density in the HOMO (dotted curve) and TN (solid curve) grating cells.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

W=R(ξ2)·T·R(ξ2),
THOMO=[exp(iΓ2)00exp(iΓ2)]
TTN=[cosΦsinΦsinΦcosΦ][cosXiΓsinX2XΦsinXXΦsinXXcosX+iΓsinX2X],
WHOMO=W0+W+1+W1,
W0=cosΓ2[1001],
W±1=i2sinΓ2[1±i±i1]e±iξ,
WTN=WTN0+WTN+1+WTN1,
WTN0=[πsinX2XcosXcosXπsinX2X],
WTN±1=iΓsinX4X[i11±i]e±iξ.
Ein=[(sinΨ)exp(iδ)cosΨ],
EHOMO±1=WHOMO±1·Ein=i2sin(Γ2)e±iξ(sinΨcosδ+isinΨsinδ±icosΨ)[1i]
ETN±1=WTN±1·Ein=iΓsinX4Xe±iξ(cosΨ±sinΨsinδisinΨcosδ)[1i].
felas=12K11(·n)2+12K22(n·(×n))2+12K33(n×(×n))2,
n=(cosϕ,sinϕ,0),
felas=12(K11sin2ϕ+K33cos2ϕ)(ϕx)2+12K22(ϕz)2.
F=felasdxdz.
Fϕ=0.

Metrics