Abstract

In this paper the development of a side-hole photonic-crystal fiber (SH-PCF) pressure sensor for dual environment monitoring is reported. SH-PCF properties (phase and group birefringence, sensitivity to pressure variations) are measured and compared to simulated data. In order to probe two environments, two sections of the SH-PCF with different lengths are spliced and set in a Solc filter-like configuration. This setup allows obtaining the individual responses of the first and second fiber independently, which is useful for a space-multiplexed measurement. As the employed fiber is sensitive to pressure variations, we report the use of this configuration for dual environment pressure sensing.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russel, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [CrossRef]
  2. G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241, 339–348 (2004).
    [CrossRef]
  3. X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
    [CrossRef]
  4. H. Martins, M. B. Marques, P. Jorge, C. M. B. Cordeiro, and O. Frazão, “Intensity curvature sensor based on photonic crystal fiber with three coupled cores,” Opt. Commun. 285, 5128–5131 (2012).
    [CrossRef]
  5. M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group modal birefringence in microstructurated holey fibers,” Appl. Opt. 43, 4739–4744 (2004).
    [CrossRef]
  6. F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors 10, 9698–9711 (2010).
    [CrossRef]
  7. T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
    [CrossRef]
  8. H. M. Xie, P. Dabkiewicz, R. Ulrich, and K. Okamoto, “Side-hole fiber for fiber-optic pressure sensing,” Opt. Lett. 11, 333–335 (1986).
    [CrossRef]
  9. J. H. Osório and C. M. B. Cordeiro, “Optical sensor based on two in-series birefringent optical fibers,” Appl. Opt. 52, 4915–4921 (2013).
    [CrossRef]
  10. G. Chesini, V. A. Serrão, M. A. R. Franco, and C. M. B. Cordeiro, “Analysis and optimization of an all-fiber device based on photonic crystal fiber with integrated electrodes,” Opt. Express 18, 2842–2848 (2010).
    [CrossRef]
  11. M. Szpulak, T. Martynkien, and W. Urbanczyk, “Highly birefringent photonic crystal fibre with enhanced sensitivity to hydrostatic pressure,” in Proceedings of 2006 8th International Conference on Transparent Optical Networks and 5th Conference on Photonic Crystals (IEEE, 2006) Vol. 4, pp. 174–177.
  12. C. M. Jewart, S. M. Quintero, A. M. B. Braga, and K. P. Chen, “Design of a highly birefringent microstructured photonic crystal fiber for pressure monitoring,” Opt. Express 18, 25657–25664 (2010).
    [CrossRef]
  13. T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructures fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18, 15113–15121 (2010).
    [CrossRef]
  14. A. Anuszkienwicz, G. Statkiewicz-Barabach, T. Borsukowski, J. Olszewski, T. Martynkien, W. Urbanczyk, P. Mergo, M. Makara, K. Poturaj, T. Geernaert, F. Berghmans, and H. Thienpont, “Sensing characteristics of the rocking filters in microstructured fibers optimized for hydrostatic pressure measurements,” Opt. Express 20, 23320–23330(2012).
  15. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujta, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680 (2001).
    [CrossRef]

2013 (1)

2012 (2)

2010 (4)

2007 (1)

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

2005 (1)

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

2004 (2)

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241, 339–348 (2004).
[CrossRef]

M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group modal birefringence in microstructurated holey fibers,” Appl. Opt. 43, 4739–4744 (2004).
[CrossRef]

2003 (1)

P. Russel, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef]

2001 (1)

1986 (1)

Anuszkienwicz, A.

Anuszkiewicz, A.

Berghmans, F.

Borsukowski, T.

Braga, A. M. B.

C. M. Jewart, S. M. Quintero, A. M. B. Braga, and K. P. Chen, “Design of a highly birefringent microstructured photonic crystal fiber for pressure monitoring,” Opt. Express 18, 25657–25664 (2010).
[CrossRef]

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors 10, 9698–9711 (2010).
[CrossRef]

Carvalho, I. C. S.

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors 10, 9698–9711 (2010).
[CrossRef]

Chen, K. P.

Chesini, G.

Cordeiro, C. M. B.

Dabkiewicz, P.

Dong, X.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Fávero, F. C.

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors 10, 9698–9711 (2010).
[CrossRef]

Franco, M. A. R.

Frazão, O.

H. Martins, M. B. Marques, P. Jorge, C. M. B. Cordeiro, and O. Frazão, “Intensity curvature sensor based on photonic crystal fiber with three coupled cores,” Opt. Commun. 285, 5128–5131 (2012).
[CrossRef]

Fujta, M.

Geernaert, T.

Golojuch, G.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

Jewart, C. M.

Jorge, P.

H. Martins, M. B. Marques, P. Jorge, C. M. B. Cordeiro, and O. Frazão, “Intensity curvature sensor based on photonic crystal fiber with three coupled cores,” Opt. Commun. 285, 5128–5131 (2012).
[CrossRef]

Kawanishi, S.

Klimek, J.

Kubota, H.

Llerena, R. W. A.

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors 10, 9698–9711 (2010).
[CrossRef]

Makara, M.

Marques, M. B.

H. Martins, M. B. Marques, P. Jorge, C. M. B. Cordeiro, and O. Frazão, “Intensity curvature sensor based on photonic crystal fiber with three coupled cores,” Opt. Commun. 285, 5128–5131 (2012).
[CrossRef]

Martelli, C.

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors 10, 9698–9711 (2010).
[CrossRef]

Martins, H.

H. Martins, M. B. Marques, P. Jorge, C. M. B. Cordeiro, and O. Frazão, “Intensity curvature sensor based on photonic crystal fiber with three coupled cores,” Opt. Commun. 285, 5128–5131 (2012).
[CrossRef]

Martynkien, T.

A. Anuszkienwicz, G. Statkiewicz-Barabach, T. Borsukowski, J. Olszewski, T. Martynkien, W. Urbanczyk, P. Mergo, M. Makara, K. Poturaj, T. Geernaert, F. Berghmans, and H. Thienpont, “Sensing characteristics of the rocking filters in microstructured fibers optimized for hydrostatic pressure measurements,” Opt. Express 20, 23320–23330(2012).

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructures fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18, 15113–15121 (2010).
[CrossRef]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group modal birefringence in microstructurated holey fibers,” Appl. Opt. 43, 4739–4744 (2004).
[CrossRef]

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241, 339–348 (2004).
[CrossRef]

M. Szpulak, T. Martynkien, and W. Urbanczyk, “Highly birefringent photonic crystal fibre with enhanced sensitivity to hydrostatic pressure,” in Proceedings of 2006 8th International Conference on Transparent Optical Networks and 5th Conference on Photonic Crystals (IEEE, 2006) Vol. 4, pp. 174–177.

Mergo, P.

Nasilowski, T.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructures fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18, 15113–15121 (2010).
[CrossRef]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

Okamoto, K.

Olszewski, J.

Osório, J. H.

Poturaj, K.

Quintero, S. M.

Quintero, S. M. M.

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors 10, 9698–9711 (2010).
[CrossRef]

Russel, P.

P. Russel, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef]

Serrão, V. A.

Shum, P.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Silva, V. V.

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors 10, 9698–9711 (2010).
[CrossRef]

Skorupski, K.

Sonnenfeld, C.

Statkiewicz, G.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241, 339–348 (2004).
[CrossRef]

Statkiewicz-Barabach, G.

Suzuki, K.

Szczurowski, M. K.

Szpulak, M.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group modal birefringence in microstructurated holey fibers,” Appl. Opt. 43, 4739–4744 (2004).
[CrossRef]

M. Szpulak, T. Martynkien, and W. Urbanczyk, “Highly birefringent photonic crystal fibre with enhanced sensitivity to hydrostatic pressure,” in Proceedings of 2006 8th International Conference on Transparent Optical Networks and 5th Conference on Photonic Crystals (IEEE, 2006) Vol. 4, pp. 174–177.

Tam, H. Y.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Tanaka, M.

Tarnowski, K.

Thienpont, H.

Ulrich, R.

Urbanczyk, W.

A. Anuszkienwicz, G. Statkiewicz-Barabach, T. Borsukowski, J. Olszewski, T. Martynkien, W. Urbanczyk, P. Mergo, M. Makara, K. Poturaj, T. Geernaert, F. Berghmans, and H. Thienpont, “Sensing characteristics of the rocking filters in microstructured fibers optimized for hydrostatic pressure measurements,” Opt. Express 20, 23320–23330(2012).

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructures fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18, 15113–15121 (2010).
[CrossRef]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group modal birefringence in microstructurated holey fibers,” Appl. Opt. 43, 4739–4744 (2004).
[CrossRef]

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241, 339–348 (2004).
[CrossRef]

M. Szpulak, T. Martynkien, and W. Urbanczyk, “Highly birefringent photonic crystal fibre with enhanced sensitivity to hydrostatic pressure,” in Proceedings of 2006 8th International Conference on Transparent Optical Networks and 5th Conference on Photonic Crystals (IEEE, 2006) Vol. 4, pp. 174–177.

Valente, L. C. G.

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors 10, 9698–9711 (2010).
[CrossRef]

Wojcik, J.

T. Martynkien, G. Statkiewicz-Barabach, J. Olszewski, J. Wojcik, P. Mergo, T. Geernaert, C. Sonnenfeld, A. Anuszkiewicz, M. K. Szczurowski, K. Tarnowski, M. Makara, K. Skorupski, J. Klimek, K. Poturaj, W. Urbanczyk, T. Nasilowski, F. Berghmans, and H. Thienpont, “Highly birefringent microstructures fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express 18, 15113–15121 (2010).
[CrossRef]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

Xie, H. M.

Appl. Opt. (2)

Appl. Phys. B (1)

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B 81, 325–331 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Opt. Commun. (2)

H. Martins, M. B. Marques, P. Jorge, C. M. B. Cordeiro, and O. Frazão, “Intensity curvature sensor based on photonic crystal fiber with three coupled cores,” Opt. Commun. 285, 5128–5131 (2012).
[CrossRef]

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, “Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain,” Opt. Commun. 241, 339–348 (2004).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Science (1)

P. Russel, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef]

Sensors (1)

F. C. Fávero, S. M. M. Quintero, C. Martelli, A. M. B. Braga, V. V. Silva, I. C. S. Carvalho, R. W. A. Llerena, and L. C. G. Valente, “Hydrostatic pressure sensing with high birefringence photonic crystal fibers,” Sensors 10, 9698–9711 (2010).
[CrossRef]

Other (1)

M. Szpulak, T. Martynkien, and W. Urbanczyk, “Highly birefringent photonic crystal fibre with enhanced sensitivity to hydrostatic pressure,” in Proceedings of 2006 8th International Conference on Transparent Optical Networks and 5th Conference on Photonic Crystals (IEEE, 2006) Vol. 4, pp. 174–177.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Cross-section of the SH-PCF used in the experiments. Inset exposes the microstructured region. Hole diameter (d=1.7μm) and separation (Λ=2.8μm) are shown. (b) Experimental setup for SH-PCF pressure sensitivity characterization. BLS, broadband light source; P1 and P2, polarizers; SMF, standard single mode fiber; SH-PCF: side-hole photonic-crystal fiber; PDT, photodetector; OSA, optical spectrum analyzer.

Fig. 2.
Fig. 2.

Voltage signal from photodetector, which is related to the transmitted power, measured as the pressure was varied from 0.69 MPa to zero. (b) Polarization cycle plot as a function of the pressure applied on the fiber. Measurements taken at λ=663nm.

Fig. 3.
Fig. 3.

(a) Typical spectrum for the transmittance as a function of the wavelength. Experimental and simulation results for (b) group birefringence, (c) phase birefringence, and (d) sensitivity coefficient Cs as a function of the wavelength.

Fig. 4.
Fig. 4.

Schematic diagram for the experimental setup for dual environment monitoring.

Fig. 5.
Fig. 5.

(a) First and second fibers spectral response as the applied pressure is varied. (b) Wavelength shift as a function of the applied pressure on the fiber.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

BP=λTLp.
ΔλΔPCSλGBP,
Δφ=2πBLλ.
G(λ)=λ2SL.
B(λ)=λ2L[(1+Sλ)γ11]1
B(λ)=Aλγ.
RCS1CS2=Lp1Lp2L2L1.

Metrics