Abstract

We report on a light-dispersing device consisting of two transmission gratings and a waveplate. The gratings separate two orthogonal polarization components of light incident at the Bragg angle. The waveplate, which is sandwiched between the gratings, functions as a polarization converter for oblique light incidence. With these optical parts suitably integrated, the resulting device efficiently diffracts unpolarized light with high spectral resolution. Using coupled-wave theories and Mueller matrix analysis, we constructed a device for a wavelength range of 680±50nm with a 400 nm grating period. From the characterization of this optical device, we validated the proposed polarization-independent, light-dispersing concept.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (Marcel Dekker, 2001).
  2. R. Petit, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-verlag, 1980).
  3. K. Yokomori, “Dielectric surface-relief gratings with high diffraction efficiency,” Appl. Opt. 23, 2303–2310 (1984).
    [CrossRef]
  4. M. G. Moharam, T. K. Gaylord, G. T. Sincerbox, H. Werlich, and B. Yung, “Diffraction characteristics of photoresist surface-relief gratings,” Appl. Opt. 23, 3214–3220 (1984).
    [CrossRef]
  5. H. T. Nguyen, B. W. Shore, S. J. Bryan, J. A. Britten, R. D. Boyd, and M. D. Perry, “High-efficiency fused-silica transmission gratings,” Opt. Lett. 22, 142–144 (1997).
    [CrossRef]
  6. H. J. Gerritsen and M. L. Jepsen, “Rectangular surface-relief transmission gratings with a very large first-order diffraction efficiency (95%) for unpolarized light,” Appl. Opt 37, 5823–5829 (1998).
    [CrossRef]
  7. H. Cao, C. Zhou, J. Feng, P. Lu, and J. Ma, “Design and fabrication of a polarization-independent wideband transmission fused-silica gratings,” Appl. Opt. 49, 4108–4112 (2010).
    [CrossRef]
  8. R. C. Enger and S. K. Case, “High-frequency holographic transmission gratings in photoresist,” J. Opt. Soc. Am. 73, 1113–1118 (1983).
    [CrossRef]
  9. M. C. Gupta and S. T. Peng, “Diffraction characteristics of surface-relief gratings,” Appl. Opt. 32, 2911–2917 (1993).
    [CrossRef]
  10. S. Habraken, O. Michaux, Y. Renotte, and Y. Lion, “Polarization holographic beam splitter on a photoresist,” Opt. Lett. 20, 2348–2350 (1995).
    [CrossRef]
  11. M. Shiozaki and M. Shigehara, “Novel design of polarization independent multi-layer diffraction grating with high angular dispersion,” SEI Tech. Rev. 59, 27–31 (2005).
  12. A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron. 37, 309–330 (2005).
    [CrossRef]
  13. T. Clausnitzer, T. Kampfe, E. B. Kley, A. Tunnermann, A. Tishchenko, and O. Parriaux, “Investigation of the polarization-dependent transmission gratings illuminated in Littrow mounting,” Appl. Opt. 46, 819–826 (2007).
    [CrossRef]
  14. M. G. Moharam and T. K. Gayload, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
    [CrossRef]
  15. J. Amako and D. Sawaki, “Subwavelength resist-patterning using interference exposure with a deep-UV grating mask: Bragg angle incidence versus normal incidence,” Appl. Opt. 51, 3526–3532 (2012).
    [CrossRef]
  16. E. Collett, “The Stokes polarization parameters” and “The Mueller matrices for polarizing components,” in Polarized Light in Fiber Optics (Pola Wave Group, 2003), pp. 55–114.
  17. See, for example, “Image Sensors,” Hamamatsu Photonics, http://www.hamamatsu.com/jp/en/product/new/3100/4005/index.html .
  18. H. J. Gerritsen, D. K. Thornton, and S. R. Bolton, “Application of Kogelnik’s two-wave theory to deep, slanted, highly efficient, relief transmission gratings,” Appl. Opt. 30, 807–814 (1991).
    [CrossRef]
  19. P. Hariharan and D. Malacara, “A simple achromatic half-wave retarder,” J. Mod. Opt. 41, 15–18 (1994).
    [CrossRef]
  20. H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36, 1566–1572 (1997).
    [CrossRef]

2012 (1)

2010 (1)

2007 (1)

2005 (2)

M. Shiozaki and M. Shigehara, “Novel design of polarization independent multi-layer diffraction grating with high angular dispersion,” SEI Tech. Rev. 59, 27–31 (2005).

A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron. 37, 309–330 (2005).
[CrossRef]

1998 (1)

H. J. Gerritsen and M. L. Jepsen, “Rectangular surface-relief transmission gratings with a very large first-order diffraction efficiency (95%) for unpolarized light,” Appl. Opt 37, 5823–5829 (1998).
[CrossRef]

1997 (2)

1995 (1)

1994 (1)

P. Hariharan and D. Malacara, “A simple achromatic half-wave retarder,” J. Mod. Opt. 41, 15–18 (1994).
[CrossRef]

1993 (1)

1991 (1)

1984 (2)

1983 (1)

1982 (1)

Amako, J.

Bolton, S. R.

Boyd, R. D.

Britten, J. A.

Bryan, S. J.

Cao, H.

Case, S. K.

Clausnitzer, T.

Collett, E.

E. Collett, “The Stokes polarization parameters” and “The Mueller matrices for polarizing components,” in Polarized Light in Fiber Optics (Pola Wave Group, 2003), pp. 55–114.

Edwards, H. G. M.

I. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (Marcel Dekker, 2001).

Enger, R. C.

Feng, J.

Gayload, T. K.

Gaylord, T. K.

Gerritsen, H. J.

H. J. Gerritsen and M. L. Jepsen, “Rectangular surface-relief transmission gratings with a very large first-order diffraction efficiency (95%) for unpolarized light,” Appl. Opt 37, 5823–5829 (1998).
[CrossRef]

H. J. Gerritsen, D. K. Thornton, and S. R. Bolton, “Application of Kogelnik’s two-wave theory to deep, slanted, highly efficient, relief transmission gratings,” Appl. Opt. 30, 807–814 (1991).
[CrossRef]

Gupta, M. C.

Habraken, S.

Hariharan, P.

P. Hariharan and D. Malacara, “A simple achromatic half-wave retarder,” J. Mod. Opt. 41, 15–18 (1994).
[CrossRef]

Iwata, K.

Jepsen, M. L.

H. J. Gerritsen and M. L. Jepsen, “Rectangular surface-relief transmission gratings with a very large first-order diffraction efficiency (95%) for unpolarized light,” Appl. Opt 37, 5823–5829 (1998).
[CrossRef]

Kampfe, T.

Kikuta, H.

Kley, E. B.

Lewis, I. R.

I. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (Marcel Dekker, 2001).

Lion, Y.

Lu, P.

Ma, J.

Malacara, D.

P. Hariharan and D. Malacara, “A simple achromatic half-wave retarder,” J. Mod. Opt. 41, 15–18 (1994).
[CrossRef]

Michaux, O.

Moharam, M. G.

Nguyen, H. T.

Ohira, Y.

Parriaux, O.

Peng, S. T.

Perry, M. D.

Petit, R.

R. Petit, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-verlag, 1980).

Renotte, Y.

Sawaki, D.

Shigehara, M.

M. Shiozaki and M. Shigehara, “Novel design of polarization independent multi-layer diffraction grating with high angular dispersion,” SEI Tech. Rev. 59, 27–31 (2005).

Shiozaki, M.

M. Shiozaki and M. Shigehara, “Novel design of polarization independent multi-layer diffraction grating with high angular dispersion,” SEI Tech. Rev. 59, 27–31 (2005).

Shore, B. W.

Sincerbox, G. T.

Thornton, D. K.

Tishchenko, A.

Tishchenko, A. V.

A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron. 37, 309–330 (2005).
[CrossRef]

Tunnermann, A.

Werlich, H.

Yokomori, K.

Yung, B.

Zhou, C.

Appl. Opt (1)

H. J. Gerritsen and M. L. Jepsen, “Rectangular surface-relief transmission gratings with a very large first-order diffraction efficiency (95%) for unpolarized light,” Appl. Opt 37, 5823–5829 (1998).
[CrossRef]

Appl. Opt. (8)

J. Mod. Opt. (1)

P. Hariharan and D. Malacara, “A simple achromatic half-wave retarder,” J. Mod. Opt. 41, 15–18 (1994).
[CrossRef]

J. Opt. Soc. Am. (2)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron. 37, 309–330 (2005).
[CrossRef]

SEI Tech. Rev. (1)

M. Shiozaki and M. Shigehara, “Novel design of polarization independent multi-layer diffraction grating with high angular dispersion,” SEI Tech. Rev. 59, 27–31 (2005).

Other (4)

I. R. Lewis and H. G. M. Edwards, Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line (Marcel Dekker, 2001).

R. Petit, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-verlag, 1980).

E. Collett, “The Stokes polarization parameters” and “The Mueller matrices for polarizing components,” in Polarized Light in Fiber Optics (Pola Wave Group, 2003), pp. 55–114.

See, for example, “Image Sensors,” Hamamatsu Photonics, http://www.hamamatsu.com/jp/en/product/new/3100/4005/index.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic drawing of the proposed polarization-independent, light-dispersing device.

Fig. 2.
Fig. 2.

Diffraction efficiencies as a function of wavelength (coupled wave analysis).

Fig. 3.
Fig. 3.

SEM image of a sample fused silica grating.

Fig. 4.
Fig. 4.

Polarization conversion efficiency as a function of wavelength (Mueller matrix analysis).

Fig. 5.
Fig. 5.

Measured retardation of a sample waveplate.

Fig. 6.
Fig. 6.

Optical setting for the grating alignment.

Fig. 7.
Fig. 7.

Measured diffraction efficiency as a function of incident polarization angle: (a) after-assembled device and (b) before-assembled grating.

Fig. 8.
Fig. 8.

Transmittance spectra: (a) after-assembled device and (b) before-assembled grating.

Fig. 9.
Fig. 9.

Diffraction efficiencies as a function of incident polarization angle (computer simulation).

Fig. 10.
Fig. 10.

Inter-beam distance as a function of grating misalignment (computer simulation).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

η=α(1β)C1cos(δ)2+α(1β)C0sin(δ)2,
f=[λ/2p(1.0neff2)1/2]/[(n2neff2)1/2(1.0neff2)1/2],
ϕ=arctan[cos(θ)tan45°],
η=α(1β)sin(2ϕ)2cos(δ)2+a(1β)sin(Δ/2)2sin(δ)2,
D=Fsin(y)=F[1(uu+vv+ww)2]1/2,
M11=[1(1cos(R2))sin(2ϕ)2]×[1(1cos(R1))sin(2ϕ)2](1cos(R2))×(1cos(R1))sin(2ϕ)2cos(2ϕ)2+sin(R2)sin(R1)sin(2ϕ)2.

Metrics