Abstract

In this paper, we propose a novel multilayer insulation structure in a metal–insulator–metal (MIM) plasmonic waveguide to explore the possibility of increasing surface plasmon polariton (SPP) mode excitation. Numerical investigations show that the effective refractive index of the multilayer insulation structure affects symmetric SPP mode excitation. The significant enhancement of electric field intensity in horizontal and vertical profiles with a dipole in SiO2 compared with in Al2O3 is observed in the proposed MIM plasmonic waveguides due to a combination of the improved optical density and dipole radiation intensities under a low refractive index. The Au/SiO2/Al2O3/SiO2/Au geometry shows the best enhancement performances, which can serve as an excellent guideline for designing and optimizing a high-performance SPP source using a multilayer insulation structure.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).
  2. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
    [CrossRef]
  3. A. Hosseini, H. Nejati, and Y. Massoud, “Triangular lattice plasmonic photonic band gaps in subwavelength metal–insulator–metal waveguide structures,” Appl. Phys. Lett. 92, 013116 (2008).
    [CrossRef]
  4. J.-Q. Liu, L.-L. Wang, M.-D. He, W.-Q. Huang, D. Wang, B. Zou, and S. Wen, “A wide bandgap plasmonic bragg reflector,” Opt. Express 16, 4888–4894 (2008).
    [CrossRef]
  5. L. Zhou, X.-q. Yu, and Y.-y. Zhu, “Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide,” Appl. Phys. Lett. 89, 051901 (2006).
    [CrossRef]
  6. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
    [CrossRef]
  7. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  8. E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides,” Nano Lett. 8, 2925–2929 (2008).
    [CrossRef]
  9. D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
    [CrossRef]
  10. R. J. Walters, R. V. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9, 21–25 (2009).
    [CrossRef]
  11. E. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
    [CrossRef]
  12. S. Collin, F. Pardo, and J.-L. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express 15, 4310–4320 (2007).
    [CrossRef]
  13. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  14. S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
    [CrossRef]
  15. F. Kou and T. Tamir, “Range extension of surface plasmons by dielectric layers,” Opt. Lett. 12, 367–369 (1987).
    [CrossRef]
  16. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [CrossRef]

2009 (1)

R. J. Walters, R. V. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9, 21–25 (2009).
[CrossRef]

2008 (4)

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides,” Nano Lett. 8, 2925–2929 (2008).
[CrossRef]

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

A. Hosseini, H. Nejati, and Y. Massoud, “Triangular lattice plasmonic photonic band gaps in subwavelength metal–insulator–metal waveguide structures,” Appl. Phys. Lett. 92, 013116 (2008).
[CrossRef]

J.-Q. Liu, L.-L. Wang, M.-D. He, W.-Q. Huang, D. Wang, B. Zou, and S. Wen, “A wide bandgap plasmonic bragg reflector,” Opt. Express 16, 4888–4894 (2008).
[CrossRef]

2007 (1)

2006 (2)

L. Zhou, X.-q. Yu, and Y.-y. Zhu, “Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide,” Appl. Phys. Lett. 89, 051901 (2006).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

2005 (1)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
[CrossRef]

2004 (1)

2003 (1)

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

1987 (1)

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1969 (1)

E. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Almeida, V. R.

Atwater, H. A.

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides,” Nano Lett. 8, 2925–2929 (2008).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Aussenegg, F.

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Barrios, C. A.

Brunets, I.

R. J. Walters, R. V. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9, 21–25 (2009).
[CrossRef]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Collin, S.

Dionne, J. A.

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides,” Nano Lett. 8, 2925–2929 (2008).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Ditlbacher, H.

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Economou, E.

E. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Galler, N.

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

He, M.-D.

Hohenau, A.

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Hosseini, A.

A. Hosseini, H. Nejati, and Y. Massoud, “Triangular lattice plasmonic photonic band gaps in subwavelength metal–insulator–metal waveguide structures,” Appl. Phys. Lett. 92, 013116 (2008).
[CrossRef]

Huang, W.-Q.

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Koller, D.

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Kou, F.

Krenn, J.

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Kuipers, L.

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides,” Nano Lett. 8, 2925–2929 (2008).
[CrossRef]

Leitner, A.

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Lipson, M.

List, E.

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Liu, J.-Q.

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Massoud, Y.

A. Hosseini, H. Nejati, and Y. Massoud, “Triangular lattice plasmonic photonic band gaps in subwavelength metal–insulator–metal waveguide structures,” Appl. Phys. Lett. 92, 013116 (2008).
[CrossRef]

Nejati, H.

A. Hosseini, H. Nejati, and Y. Massoud, “Triangular lattice plasmonic photonic band gaps in subwavelength metal–insulator–metal waveguide structures,” Appl. Phys. Lett. 92, 013116 (2008).
[CrossRef]

Pardo, F.

Pelouard, J.-L.

Polman, A.

R. J. Walters, R. V. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9, 21–25 (2009).
[CrossRef]

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides,” Nano Lett. 8, 2925–2929 (2008).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).

Ramakrishna, S. A.

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
[CrossRef]

Reil, F.

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Schmitz, J.

R. J. Walters, R. V. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9, 21–25 (2009).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Tamir, T.

Tanaka, K.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

van Loon, R. V.

R. J. Walters, R. V. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9, 21–25 (2009).
[CrossRef]

Verhagen, E.

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides,” Nano Lett. 8, 2925–2929 (2008).
[CrossRef]

Walters, R. J.

R. J. Walters, R. V. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9, 21–25 (2009).
[CrossRef]

Wang, D.

Wang, L.-L.

Wen, S.

Xu, Q.

Yu, X.-q.

L. Zhou, X.-q. Yu, and Y.-y. Zhu, “Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide,” Appl. Phys. Lett. 89, 051901 (2006).
[CrossRef]

Zhou, L.

L. Zhou, X.-q. Yu, and Y.-y. Zhu, “Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide,” Appl. Phys. Lett. 89, 051901 (2006).
[CrossRef]

Zhu, Y.-y.

L. Zhou, X.-q. Yu, and Y.-y. Zhu, “Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide,” Appl. Phys. Lett. 89, 051901 (2006).
[CrossRef]

Zou, B.

Appl. Phys. Lett. (3)

L. Zhou, X.-q. Yu, and Y.-y. Zhu, “Propagation and dual-localization of surface plasmon polaritons in a quasiperiodic metal heterowaveguide,” Appl. Phys. Lett. 89, 051901 (2006).
[CrossRef]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[CrossRef]

A. Hosseini, H. Nejati, and Y. Massoud, “Triangular lattice plasmonic photonic band gaps in subwavelength metal–insulator–metal waveguide structures,” Appl. Phys. Lett. 92, 013116 (2008).
[CrossRef]

Nano Lett. (1)

E. Verhagen, J. A. Dionne, L. Kuipers, H. A. Atwater, and A. Polman, “Near-field visualization of strongly confined surface plasmon polaritons in metal–insulator–metal waveguides,” Nano Lett. 8, 2925–2929 (2008).
[CrossRef]

Nat. Mater. (1)

R. J. Walters, R. V. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9, 21–25 (2009).
[CrossRef]

Nat. Photonics (1)

D. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. Aussenegg, A. Leitner, E. List, and J. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. (1)

E. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Phys. Rev. B (2)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Rep. Prog. Phys. (1)

S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys. 68, 449–521 (2005).
[CrossRef]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics