Abstract

The Norwegian Institute for Air Research ultraviolet (NILU-UV) irradiance meter is a ground-based, multichannel, moderate bandwidth filter instrument that measures irradiances at ultraviolet (UV) and visible wavelengths with five channels in the UV (302, 312, 320, 340, and 380 nm) and one channel in the visible (400–700 nm) part of the spectrum. Minute-by-minute irradiances recorded in these channels are used to infer the total ozone column (TOC) amount, and a radiation modification factor (RMF) designed to have a value close to 100 under cloud-free conditions. The performance of three NILU-UV instruments deployed side-by-side in the New York area (40.74°N, 74.03°E) is assessed, and derived TOC values are compared with those derived from the ozone monitoring instrument (OMI) deployed on NASA’s AURA satellite. Based on about three years of data, it was found that the three instruments yielded similar TOC values that were in close agreement with those derived from the OMI. The relative difference in TOC values derived from the three NILU-UV instruments was generally less than 2.5%. Cloud cover affects the accuracy of the inferred TOC, but reliable values can be obtained in the presence of clouds, although the accuracy deteriorates under heavy overcast conditions with RMF values smaller than 65 (low cloud transmittance).

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lapeta, I. Dyras, and Z. Ustrnu, “Homogenization of the total ozone amount series derived from NOAA/TOVS data,” in Proceedings of International TOVS Study Conference, Maratea, Italy, 4–10 October2006, pp. 599–605.
  2. A. Dahlback, “Measurements of biologically effective UV doses, total ozone abundances, and cloud effects with multichannel, moderate bandwidth filter instrument,” Appl. Opt. 35, 6514–6521 (1996).
    [CrossRef]
  3. A. Dahlback, H. A. Eide, B. A. K. Høiskar, R. O. Olsen, F. J. Schmidlin, S. C. Tsay, and K. Stamnes, “Comparison of data for ozone amounts and ultraviolet doses obtained from simultaneous measurements with various standard ultraviolet instruments,” Opt. Eng. 44, 041010 (2005).
    [CrossRef]
  4. A. Dahlback, N. Gelsor, J. J. Stamnes, and Y. Gjessing, “UV measurements in the 3000–5000  m altitude region in Tibet,” J. Geophys. Res. 112, D09308 (2007).
    [CrossRef]
  5. A. Kazantzidis, A. F. Bais, M. M. Zempila, C. Meleti, K. Eleftheratos, and C. S. Zerefos, “Evaluation of ozone column measurements over Greece with NILU-UV multi-channel radiometers,” Int. J. Remote Sens. 30, 4273–4281 (2009).
    [CrossRef]
  6. G. Norsang, L. Kocbach, W. Tsoja, J. J. Stamnes, A. Dahlbach, and P. Nema, “Ground-based measurements and modelling of solar UV-B radiation in Lhasa, Tibet,” J. Atmos. Env. 43, 1498–1502 (2009).
  7. G. Norsang, L. Kocbach, J. J. Stamnes, W. Tsoja, and N. Pingcuo, “Spatial distribution and temporal variation of solar UV radiation over the Tibetan Plateau,” Appl. Phys. Res. 3, 37–46 (2011).
    [CrossRef]
  8. G. Norsang, Y. Chen, N. Pingcuo, A. Dahlback, Ø. Frette, B. Kjeldstad, B. Hamre, K. Stamnes, and J. J. Stamnes, “Comparison of ground-based measurements of solar UV radiation at four sites on the Tibetan Plateau,” Appl. Opt. 53, 736–747 (2014).
  9. K. Stamnes, J. Slusser, and M. Bowen, “Derivation of total ozone abundance and cloud effects from spectral irradiance measurements,” Appl. Opt. 30, 4418–4426 (1991).
    [CrossRef]
  10. G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University, 1999).
  11. K. Stamnes, S.-C. Tsay, W. J. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
    [CrossRef]
  12. K. Stamnes, S.-C. Tsay, W. J. Wiscombe, and I. Laszlo, “DISORT, a general-purpose Fortran program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: documentation of methodology,” , 2000, available at ftp://climate1.gsfc.nasa.gov/wiscombe/ .
  13. A. Dahlback and K. Stamnes, “A new spherical model for computing the radiation field available for photolysis and heating at twilight,” Planet. Space Sci. 39, 671–683 (1991).
    [CrossRef]
  14. R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Reference, 1996).
  15. C. R. Roy, H. P. Gies, D. J. Lugg, S. Toomey, and D. W. Tomlinson, “The effect of clouds on enhancing UVB irradiance at the Earth’s surface: a one year study,” Geophys. Res. Lett. 27, 3337–3340 (1998).
  16. B. A. K. Høiskar, R. Haugen, T. Danielsen, A. Kylling, K. Edvardsen, A. Dahlback, B. Johnsen, M. Blumthaler, and J. Schreder, “Multichannel moderate-bandwidth filter instrument for measurement of the ozone-column amount, cloud transmittance, and ultraviolet dose rates,” Appl. Opt. 42, 3472–3479 (2003).
    [CrossRef]
  17. A. Lindfors and A. Arola, “On the wavelength-dependent attenuation of UV radiation by clouds,” Geophys. Res. Lett. 35, L05806 (2008).
    [CrossRef]
  18. Z. Ahmad, P. K. Bhartia, and N. Krotkov, “Spectral properties of backscattered UV radiation in cloudy atmospheres,” J. Geophys. Res. 109, D01201 (2003).
  19. P. K. Bhartia and C. W. Wellemeyer, “TOMS-V8 Total O3 algorithm,” in OMI Algorithm Theoretical Baseline Document: OMI Ozone Products, P. K. Bhartia, ed. (NASA Goddard Space Flight Center, 2002), Vol. II, ATBDOMI-02, version 2.0, p. 15.
  20. T. N. Aalerud and B. Johnsen, The Norwegian UV Monitoring Network (Norwegian Radiation Protection Authority, 2006).
  21. J. O. Bennett and W. L. Briggs, Using and Understanding Mathematics: A Quantitative Reasoning Approach (Pearson Addison Wesley, 2008).
  22. E. W. Weisstein, “Statistical correlation,” MathWorld, http://mathworld.wolfram.com .
  23. EOSDIS, “Table-of-Missing-OML1BIRR,” http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/documents/v003/Table-of-Missing-OML1BIRR-Files.docx .

2014 (1)

2011 (1)

G. Norsang, L. Kocbach, J. J. Stamnes, W. Tsoja, and N. Pingcuo, “Spatial distribution and temporal variation of solar UV radiation over the Tibetan Plateau,” Appl. Phys. Res. 3, 37–46 (2011).
[CrossRef]

2009 (2)

A. Kazantzidis, A. F. Bais, M. M. Zempila, C. Meleti, K. Eleftheratos, and C. S. Zerefos, “Evaluation of ozone column measurements over Greece with NILU-UV multi-channel radiometers,” Int. J. Remote Sens. 30, 4273–4281 (2009).
[CrossRef]

G. Norsang, L. Kocbach, W. Tsoja, J. J. Stamnes, A. Dahlbach, and P. Nema, “Ground-based measurements and modelling of solar UV-B radiation in Lhasa, Tibet,” J. Atmos. Env. 43, 1498–1502 (2009).

2008 (1)

A. Lindfors and A. Arola, “On the wavelength-dependent attenuation of UV radiation by clouds,” Geophys. Res. Lett. 35, L05806 (2008).
[CrossRef]

2007 (1)

A. Dahlback, N. Gelsor, J. J. Stamnes, and Y. Gjessing, “UV measurements in the 3000–5000  m altitude region in Tibet,” J. Geophys. Res. 112, D09308 (2007).
[CrossRef]

2005 (1)

A. Dahlback, H. A. Eide, B. A. K. Høiskar, R. O. Olsen, F. J. Schmidlin, S. C. Tsay, and K. Stamnes, “Comparison of data for ozone amounts and ultraviolet doses obtained from simultaneous measurements with various standard ultraviolet instruments,” Opt. Eng. 44, 041010 (2005).
[CrossRef]

2003 (2)

1998 (1)

C. R. Roy, H. P. Gies, D. J. Lugg, S. Toomey, and D. W. Tomlinson, “The effect of clouds on enhancing UVB irradiance at the Earth’s surface: a one year study,” Geophys. Res. Lett. 27, 3337–3340 (1998).

1996 (1)

1991 (2)

K. Stamnes, J. Slusser, and M. Bowen, “Derivation of total ozone abundance and cloud effects from spectral irradiance measurements,” Appl. Opt. 30, 4418–4426 (1991).
[CrossRef]

A. Dahlback and K. Stamnes, “A new spherical model for computing the radiation field available for photolysis and heating at twilight,” Planet. Space Sci. 39, 671–683 (1991).
[CrossRef]

1988 (1)

Aalerud, T. N.

T. N. Aalerud and B. Johnsen, The Norwegian UV Monitoring Network (Norwegian Radiation Protection Authority, 2006).

Ahmad, Z.

Z. Ahmad, P. K. Bhartia, and N. Krotkov, “Spectral properties of backscattered UV radiation in cloudy atmospheres,” J. Geophys. Res. 109, D01201 (2003).

Arola, A.

A. Lindfors and A. Arola, “On the wavelength-dependent attenuation of UV radiation by clouds,” Geophys. Res. Lett. 35, L05806 (2008).
[CrossRef]

Bais, A. F.

A. Kazantzidis, A. F. Bais, M. M. Zempila, C. Meleti, K. Eleftheratos, and C. S. Zerefos, “Evaluation of ozone column measurements over Greece with NILU-UV multi-channel radiometers,” Int. J. Remote Sens. 30, 4273–4281 (2009).
[CrossRef]

Bennett, J. O.

J. O. Bennett and W. L. Briggs, Using and Understanding Mathematics: A Quantitative Reasoning Approach (Pearson Addison Wesley, 2008).

Bhartia, P. K.

Z. Ahmad, P. K. Bhartia, and N. Krotkov, “Spectral properties of backscattered UV radiation in cloudy atmospheres,” J. Geophys. Res. 109, D01201 (2003).

P. K. Bhartia and C. W. Wellemeyer, “TOMS-V8 Total O3 algorithm,” in OMI Algorithm Theoretical Baseline Document: OMI Ozone Products, P. K. Bhartia, ed. (NASA Goddard Space Flight Center, 2002), Vol. II, ATBDOMI-02, version 2.0, p. 15.

R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Reference, 1996).

Blumthaler, M.

Bowen, M.

Briggs, W. L.

J. O. Bennett and W. L. Briggs, Using and Understanding Mathematics: A Quantitative Reasoning Approach (Pearson Addison Wesley, 2008).

Byerly, W.

R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Reference, 1996).

Cebula, R. P.

R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Reference, 1996).

Chen, Y.

Dahlbach, A.

G. Norsang, L. Kocbach, W. Tsoja, J. J. Stamnes, A. Dahlbach, and P. Nema, “Ground-based measurements and modelling of solar UV-B radiation in Lhasa, Tibet,” J. Atmos. Env. 43, 1498–1502 (2009).

Dahlback, A.

G. Norsang, Y. Chen, N. Pingcuo, A. Dahlback, Ø. Frette, B. Kjeldstad, B. Hamre, K. Stamnes, and J. J. Stamnes, “Comparison of ground-based measurements of solar UV radiation at four sites on the Tibetan Plateau,” Appl. Opt. 53, 736–747 (2014).

A. Dahlback, N. Gelsor, J. J. Stamnes, and Y. Gjessing, “UV measurements in the 3000–5000  m altitude region in Tibet,” J. Geophys. Res. 112, D09308 (2007).
[CrossRef]

A. Dahlback, H. A. Eide, B. A. K. Høiskar, R. O. Olsen, F. J. Schmidlin, S. C. Tsay, and K. Stamnes, “Comparison of data for ozone amounts and ultraviolet doses obtained from simultaneous measurements with various standard ultraviolet instruments,” Opt. Eng. 44, 041010 (2005).
[CrossRef]

B. A. K. Høiskar, R. Haugen, T. Danielsen, A. Kylling, K. Edvardsen, A. Dahlback, B. Johnsen, M. Blumthaler, and J. Schreder, “Multichannel moderate-bandwidth filter instrument for measurement of the ozone-column amount, cloud transmittance, and ultraviolet dose rates,” Appl. Opt. 42, 3472–3479 (2003).
[CrossRef]

A. Dahlback, “Measurements of biologically effective UV doses, total ozone abundances, and cloud effects with multichannel, moderate bandwidth filter instrument,” Appl. Opt. 35, 6514–6521 (1996).
[CrossRef]

A. Dahlback and K. Stamnes, “A new spherical model for computing the radiation field available for photolysis and heating at twilight,” Planet. Space Sci. 39, 671–683 (1991).
[CrossRef]

Danielsen, T.

Dyras, I.

B. Lapeta, I. Dyras, and Z. Ustrnu, “Homogenization of the total ozone amount series derived from NOAA/TOVS data,” in Proceedings of International TOVS Study Conference, Maratea, Italy, 4–10 October2006, pp. 599–605.

Edvardsen, K.

Eide, H. A.

A. Dahlback, H. A. Eide, B. A. K. Høiskar, R. O. Olsen, F. J. Schmidlin, S. C. Tsay, and K. Stamnes, “Comparison of data for ozone amounts and ultraviolet doses obtained from simultaneous measurements with various standard ultraviolet instruments,” Opt. Eng. 44, 041010 (2005).
[CrossRef]

Eleftheratos, K.

A. Kazantzidis, A. F. Bais, M. M. Zempila, C. Meleti, K. Eleftheratos, and C. S. Zerefos, “Evaluation of ozone column measurements over Greece with NILU-UV multi-channel radiometers,” Int. J. Remote Sens. 30, 4273–4281 (2009).
[CrossRef]

Frette, Ø.

Gelsor, N.

A. Dahlback, N. Gelsor, J. J. Stamnes, and Y. Gjessing, “UV measurements in the 3000–5000  m altitude region in Tibet,” J. Geophys. Res. 112, D09308 (2007).
[CrossRef]

Gies, H. P.

C. R. Roy, H. P. Gies, D. J. Lugg, S. Toomey, and D. W. Tomlinson, “The effect of clouds on enhancing UVB irradiance at the Earth’s surface: a one year study,” Geophys. Res. Lett. 27, 3337–3340 (1998).

Gjessing, Y.

A. Dahlback, N. Gelsor, J. J. Stamnes, and Y. Gjessing, “UV measurements in the 3000–5000  m altitude region in Tibet,” J. Geophys. Res. 112, D09308 (2007).
[CrossRef]

Hamre, B.

Haugen, R.

Herman, J. R.

R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Reference, 1996).

Høiskar, B. A. K.

A. Dahlback, H. A. Eide, B. A. K. Høiskar, R. O. Olsen, F. J. Schmidlin, S. C. Tsay, and K. Stamnes, “Comparison of data for ozone amounts and ultraviolet doses obtained from simultaneous measurements with various standard ultraviolet instruments,” Opt. Eng. 44, 041010 (2005).
[CrossRef]

B. A. K. Høiskar, R. Haugen, T. Danielsen, A. Kylling, K. Edvardsen, A. Dahlback, B. Johnsen, M. Blumthaler, and J. Schreder, “Multichannel moderate-bandwidth filter instrument for measurement of the ozone-column amount, cloud transmittance, and ultraviolet dose rates,” Appl. Opt. 42, 3472–3479 (2003).
[CrossRef]

Jaross, G.

R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Reference, 1996).

Jayaweera, K.

Johnsen, B.

Kazantzidis, A.

A. Kazantzidis, A. F. Bais, M. M. Zempila, C. Meleti, K. Eleftheratos, and C. S. Zerefos, “Evaluation of ozone column measurements over Greece with NILU-UV multi-channel radiometers,” Int. J. Remote Sens. 30, 4273–4281 (2009).
[CrossRef]

Kjeldstad, B.

Kocbach, L.

G. Norsang, L. Kocbach, J. J. Stamnes, W. Tsoja, and N. Pingcuo, “Spatial distribution and temporal variation of solar UV radiation over the Tibetan Plateau,” Appl. Phys. Res. 3, 37–46 (2011).
[CrossRef]

G. Norsang, L. Kocbach, W. Tsoja, J. J. Stamnes, A. Dahlbach, and P. Nema, “Ground-based measurements and modelling of solar UV-B radiation in Lhasa, Tibet,” J. Atmos. Env. 43, 1498–1502 (2009).

Krotkov, N.

Z. Ahmad, P. K. Bhartia, and N. Krotkov, “Spectral properties of backscattered UV radiation in cloudy atmospheres,” J. Geophys. Res. 109, D01201 (2003).

Krueger, A. J.

R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Reference, 1996).

Kylling, A.

Labow, G.

R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Reference, 1996).

Lapeta, B.

B. Lapeta, I. Dyras, and Z. Ustrnu, “Homogenization of the total ozone amount series derived from NOAA/TOVS data,” in Proceedings of International TOVS Study Conference, Maratea, Italy, 4–10 October2006, pp. 599–605.

Laszlo, I.

K. Stamnes, S.-C. Tsay, W. J. Wiscombe, and I. Laszlo, “DISORT, a general-purpose Fortran program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: documentation of methodology,” , 2000, available at ftp://climate1.gsfc.nasa.gov/wiscombe/ .

Lindfors, A.

A. Lindfors and A. Arola, “On the wavelength-dependent attenuation of UV radiation by clouds,” Geophys. Res. Lett. 35, L05806 (2008).
[CrossRef]

Lugg, D. J.

C. R. Roy, H. P. Gies, D. J. Lugg, S. Toomey, and D. W. Tomlinson, “The effect of clouds on enhancing UVB irradiance at the Earth’s surface: a one year study,” Geophys. Res. Lett. 27, 3337–3340 (1998).

McPeters, R. D.

R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Reference, 1996).

Meleti, C.

A. Kazantzidis, A. F. Bais, M. M. Zempila, C. Meleti, K. Eleftheratos, and C. S. Zerefos, “Evaluation of ozone column measurements over Greece with NILU-UV multi-channel radiometers,” Int. J. Remote Sens. 30, 4273–4281 (2009).
[CrossRef]

Nema, P.

G. Norsang, L. Kocbach, W. Tsoja, J. J. Stamnes, A. Dahlbach, and P. Nema, “Ground-based measurements and modelling of solar UV-B radiation in Lhasa, Tibet,” J. Atmos. Env. 43, 1498–1502 (2009).

Norsang, G.

G. Norsang, Y. Chen, N. Pingcuo, A. Dahlback, Ø. Frette, B. Kjeldstad, B. Hamre, K. Stamnes, and J. J. Stamnes, “Comparison of ground-based measurements of solar UV radiation at four sites on the Tibetan Plateau,” Appl. Opt. 53, 736–747 (2014).

G. Norsang, L. Kocbach, J. J. Stamnes, W. Tsoja, and N. Pingcuo, “Spatial distribution and temporal variation of solar UV radiation over the Tibetan Plateau,” Appl. Phys. Res. 3, 37–46 (2011).
[CrossRef]

G. Norsang, L. Kocbach, W. Tsoja, J. J. Stamnes, A. Dahlbach, and P. Nema, “Ground-based measurements and modelling of solar UV-B radiation in Lhasa, Tibet,” J. Atmos. Env. 43, 1498–1502 (2009).

Olsen, R. O.

A. Dahlback, H. A. Eide, B. A. K. Høiskar, R. O. Olsen, F. J. Schmidlin, S. C. Tsay, and K. Stamnes, “Comparison of data for ozone amounts and ultraviolet doses obtained from simultaneous measurements with various standard ultraviolet instruments,” Opt. Eng. 44, 041010 (2005).
[CrossRef]

Pingcuo, N.

G. Norsang, Y. Chen, N. Pingcuo, A. Dahlback, Ø. Frette, B. Kjeldstad, B. Hamre, K. Stamnes, and J. J. Stamnes, “Comparison of ground-based measurements of solar UV radiation at four sites on the Tibetan Plateau,” Appl. Opt. 53, 736–747 (2014).

G. Norsang, L. Kocbach, J. J. Stamnes, W. Tsoja, and N. Pingcuo, “Spatial distribution and temporal variation of solar UV radiation over the Tibetan Plateau,” Appl. Phys. Res. 3, 37–46 (2011).
[CrossRef]

Roy, C. R.

C. R. Roy, H. P. Gies, D. J. Lugg, S. Toomey, and D. W. Tomlinson, “The effect of clouds on enhancing UVB irradiance at the Earth’s surface: a one year study,” Geophys. Res. Lett. 27, 3337–3340 (1998).

Schlesinger, B. M.

R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Reference, 1996).

Schmidlin, F. J.

A. Dahlback, H. A. Eide, B. A. K. Høiskar, R. O. Olsen, F. J. Schmidlin, S. C. Tsay, and K. Stamnes, “Comparison of data for ozone amounts and ultraviolet doses obtained from simultaneous measurements with various standard ultraviolet instruments,” Opt. Eng. 44, 041010 (2005).
[CrossRef]

Schreder, J.

Seftor, C. J.

R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Reference, 1996).

Slusser, J.

Stamnes, J. J.

G. Norsang, Y. Chen, N. Pingcuo, A. Dahlback, Ø. Frette, B. Kjeldstad, B. Hamre, K. Stamnes, and J. J. Stamnes, “Comparison of ground-based measurements of solar UV radiation at four sites on the Tibetan Plateau,” Appl. Opt. 53, 736–747 (2014).

G. Norsang, L. Kocbach, J. J. Stamnes, W. Tsoja, and N. Pingcuo, “Spatial distribution and temporal variation of solar UV radiation over the Tibetan Plateau,” Appl. Phys. Res. 3, 37–46 (2011).
[CrossRef]

G. Norsang, L. Kocbach, W. Tsoja, J. J. Stamnes, A. Dahlbach, and P. Nema, “Ground-based measurements and modelling of solar UV-B radiation in Lhasa, Tibet,” J. Atmos. Env. 43, 1498–1502 (2009).

A. Dahlback, N. Gelsor, J. J. Stamnes, and Y. Gjessing, “UV measurements in the 3000–5000  m altitude region in Tibet,” J. Geophys. Res. 112, D09308 (2007).
[CrossRef]

Stamnes, K.

G. Norsang, Y. Chen, N. Pingcuo, A. Dahlback, Ø. Frette, B. Kjeldstad, B. Hamre, K. Stamnes, and J. J. Stamnes, “Comparison of ground-based measurements of solar UV radiation at four sites on the Tibetan Plateau,” Appl. Opt. 53, 736–747 (2014).

A. Dahlback, H. A. Eide, B. A. K. Høiskar, R. O. Olsen, F. J. Schmidlin, S. C. Tsay, and K. Stamnes, “Comparison of data for ozone amounts and ultraviolet doses obtained from simultaneous measurements with various standard ultraviolet instruments,” Opt. Eng. 44, 041010 (2005).
[CrossRef]

K. Stamnes, J. Slusser, and M. Bowen, “Derivation of total ozone abundance and cloud effects from spectral irradiance measurements,” Appl. Opt. 30, 4418–4426 (1991).
[CrossRef]

A. Dahlback and K. Stamnes, “A new spherical model for computing the radiation field available for photolysis and heating at twilight,” Planet. Space Sci. 39, 671–683 (1991).
[CrossRef]

K. Stamnes, S.-C. Tsay, W. J. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
[CrossRef]

G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University, 1999).

K. Stamnes, S.-C. Tsay, W. J. Wiscombe, and I. Laszlo, “DISORT, a general-purpose Fortran program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: documentation of methodology,” , 2000, available at ftp://climate1.gsfc.nasa.gov/wiscombe/ .

Swissler, T.

R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Reference, 1996).

Taylor, S. L.

R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Reference, 1996).

Thomas, G. E.

G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University, 1999).

Tomlinson, D. W.

C. R. Roy, H. P. Gies, D. J. Lugg, S. Toomey, and D. W. Tomlinson, “The effect of clouds on enhancing UVB irradiance at the Earth’s surface: a one year study,” Geophys. Res. Lett. 27, 3337–3340 (1998).

Toomey, S.

C. R. Roy, H. P. Gies, D. J. Lugg, S. Toomey, and D. W. Tomlinson, “The effect of clouds on enhancing UVB irradiance at the Earth’s surface: a one year study,” Geophys. Res. Lett. 27, 3337–3340 (1998).

Torres, O.

R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Reference, 1996).

Tsay, S. C.

A. Dahlback, H. A. Eide, B. A. K. Høiskar, R. O. Olsen, F. J. Schmidlin, S. C. Tsay, and K. Stamnes, “Comparison of data for ozone amounts and ultraviolet doses obtained from simultaneous measurements with various standard ultraviolet instruments,” Opt. Eng. 44, 041010 (2005).
[CrossRef]

Tsay, S.-C.

K. Stamnes, S.-C. Tsay, W. J. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
[CrossRef]

K. Stamnes, S.-C. Tsay, W. J. Wiscombe, and I. Laszlo, “DISORT, a general-purpose Fortran program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: documentation of methodology,” , 2000, available at ftp://climate1.gsfc.nasa.gov/wiscombe/ .

Tsoja, W.

G. Norsang, L. Kocbach, J. J. Stamnes, W. Tsoja, and N. Pingcuo, “Spatial distribution and temporal variation of solar UV radiation over the Tibetan Plateau,” Appl. Phys. Res. 3, 37–46 (2011).
[CrossRef]

G. Norsang, L. Kocbach, W. Tsoja, J. J. Stamnes, A. Dahlbach, and P. Nema, “Ground-based measurements and modelling of solar UV-B radiation in Lhasa, Tibet,” J. Atmos. Env. 43, 1498–1502 (2009).

Ustrnu, Z.

B. Lapeta, I. Dyras, and Z. Ustrnu, “Homogenization of the total ozone amount series derived from NOAA/TOVS data,” in Proceedings of International TOVS Study Conference, Maratea, Italy, 4–10 October2006, pp. 599–605.

Wellemeyer, C. G.

R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Reference, 1996).

Wellemeyer, C. W.

P. K. Bhartia and C. W. Wellemeyer, “TOMS-V8 Total O3 algorithm,” in OMI Algorithm Theoretical Baseline Document: OMI Ozone Products, P. K. Bhartia, ed. (NASA Goddard Space Flight Center, 2002), Vol. II, ATBDOMI-02, version 2.0, p. 15.

Wiscombe, W. J.

K. Stamnes, S.-C. Tsay, W. J. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
[CrossRef]

K. Stamnes, S.-C. Tsay, W. J. Wiscombe, and I. Laszlo, “DISORT, a general-purpose Fortran program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: documentation of methodology,” , 2000, available at ftp://climate1.gsfc.nasa.gov/wiscombe/ .

Zempila, M. M.

A. Kazantzidis, A. F. Bais, M. M. Zempila, C. Meleti, K. Eleftheratos, and C. S. Zerefos, “Evaluation of ozone column measurements over Greece with NILU-UV multi-channel radiometers,” Int. J. Remote Sens. 30, 4273–4281 (2009).
[CrossRef]

Zerefos, C. S.

A. Kazantzidis, A. F. Bais, M. M. Zempila, C. Meleti, K. Eleftheratos, and C. S. Zerefos, “Evaluation of ozone column measurements over Greece with NILU-UV multi-channel radiometers,” Int. J. Remote Sens. 30, 4273–4281 (2009).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Res. (1)

G. Norsang, L. Kocbach, J. J. Stamnes, W. Tsoja, and N. Pingcuo, “Spatial distribution and temporal variation of solar UV radiation over the Tibetan Plateau,” Appl. Phys. Res. 3, 37–46 (2011).
[CrossRef]

Geophys. Res. Lett. (2)

C. R. Roy, H. P. Gies, D. J. Lugg, S. Toomey, and D. W. Tomlinson, “The effect of clouds on enhancing UVB irradiance at the Earth’s surface: a one year study,” Geophys. Res. Lett. 27, 3337–3340 (1998).

A. Lindfors and A. Arola, “On the wavelength-dependent attenuation of UV radiation by clouds,” Geophys. Res. Lett. 35, L05806 (2008).
[CrossRef]

Int. J. Remote Sens. (1)

A. Kazantzidis, A. F. Bais, M. M. Zempila, C. Meleti, K. Eleftheratos, and C. S. Zerefos, “Evaluation of ozone column measurements over Greece with NILU-UV multi-channel radiometers,” Int. J. Remote Sens. 30, 4273–4281 (2009).
[CrossRef]

J. Atmos. Env. (1)

G. Norsang, L. Kocbach, W. Tsoja, J. J. Stamnes, A. Dahlbach, and P. Nema, “Ground-based measurements and modelling of solar UV-B radiation in Lhasa, Tibet,” J. Atmos. Env. 43, 1498–1502 (2009).

J. Geophys. Res. (2)

A. Dahlback, N. Gelsor, J. J. Stamnes, and Y. Gjessing, “UV measurements in the 3000–5000  m altitude region in Tibet,” J. Geophys. Res. 112, D09308 (2007).
[CrossRef]

Z. Ahmad, P. K. Bhartia, and N. Krotkov, “Spectral properties of backscattered UV radiation in cloudy atmospheres,” J. Geophys. Res. 109, D01201 (2003).

Opt. Eng. (1)

A. Dahlback, H. A. Eide, B. A. K. Høiskar, R. O. Olsen, F. J. Schmidlin, S. C. Tsay, and K. Stamnes, “Comparison of data for ozone amounts and ultraviolet doses obtained from simultaneous measurements with various standard ultraviolet instruments,” Opt. Eng. 44, 041010 (2005).
[CrossRef]

Planet. Space Sci. (1)

A. Dahlback and K. Stamnes, “A new spherical model for computing the radiation field available for photolysis and heating at twilight,” Planet. Space Sci. 39, 671–683 (1991).
[CrossRef]

Other (9)

R. D. McPeters, P. K. Bhartia, A. J. Krueger, J. R. Herman, B. M. Schlesinger, C. G. Wellemeyer, C. J. Seftor, G. Jaross, S. L. Taylor, T. Swissler, O. Torres, G. Labow, W. Byerly, and R. P. Cebula, Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) Data Products User’s Guide (NASA Reference, 1996).

B. Lapeta, I. Dyras, and Z. Ustrnu, “Homogenization of the total ozone amount series derived from NOAA/TOVS data,” in Proceedings of International TOVS Study Conference, Maratea, Italy, 4–10 October2006, pp. 599–605.

G. E. Thomas and K. Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge University, 1999).

K. Stamnes, S.-C. Tsay, W. J. Wiscombe, and I. Laszlo, “DISORT, a general-purpose Fortran program for discrete-ordinate-method radiative transfer in scattering and emitting layered media: documentation of methodology,” , 2000, available at ftp://climate1.gsfc.nasa.gov/wiscombe/ .

P. K. Bhartia and C. W. Wellemeyer, “TOMS-V8 Total O3 algorithm,” in OMI Algorithm Theoretical Baseline Document: OMI Ozone Products, P. K. Bhartia, ed. (NASA Goddard Space Flight Center, 2002), Vol. II, ATBDOMI-02, version 2.0, p. 15.

T. N. Aalerud and B. Johnsen, The Norwegian UV Monitoring Network (Norwegian Radiation Protection Authority, 2006).

J. O. Bennett and W. L. Briggs, Using and Understanding Mathematics: A Quantitative Reasoning Approach (Pearson Addison Wesley, 2008).

E. W. Weisstein, “Statistical correlation,” MathWorld, http://mathworld.wolfram.com .

EOSDIS, “Table-of-Missing-OML1BIRR,” http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/documents/v003/Table-of-Missing-OML1BIRR-Files.docx .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Drift patterns of the six channels of NILU-UV 15, 27, and 29.

Fig. 2.
Fig. 2.

Comparison of TOC values derived from OMI and NILU-UV 15 in the time period between August 5, 2010, and March 1, 2013.

Fig. 3.
Fig. 3.

Ratio between TOC values derived from NILU-UV 15 and OMI as a function of the RMF in the time period between August 5, 2010, and March 1, 2013.

Fig. 4.
Fig. 4.

Comparison of TOC values derived from the three NILU-UV instruments in 2010. (a) TOC values inferred from NILU-UV 15 and 29. (b) Relative difference between them.

Fig. 5.
Fig. 5.

Relative difference distribution of TOC values derived from NILU-UV 15 and OMI. (a) Distribution in summer. (b) Distribution in winter.

Fig. 6.
Fig. 6.

Correlations between TOC values derived from NILU-UV instruments and OMI in 2010. (a) NILU-UV 15 versus OMI. (b) NILU-UV 29 versus OMI.

Tables (3)

Tables Icon

Table 1. Comparisons of TOC Values Obtained by Three NILU-UV Instruments: Correlations and Mean Relative Differences

Tables Icon

Table 2. Mean Relative Difference between TOC Values Derived from OMI and NILU-UV Data

Tables Icon

Table 3. Correlations between TOC Values Derived from OMI and NILU-UV Data

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

N(θ0,TOC)=λ=0Ri(λ)F(λ,θ0,TOC)λ=0Rj(λ)F(λ,θ0,TOC),
RMF=Fm(θ0)Fc(θ0)×100,
Vi=0kiRi(λ)F(λ)dλ,
ki=Vi0Ri(λ)F(λ)dλ.
RCCi=13(Vmeas1Vi1+Vmeas2Vi2+Vmeas3Vi3),
Vcorr,i=Vmeas,iRCCi,
reldiff(x,xref)xrefxxref×100,
correl(x,y)E[(xE[x])(yE[y])]σxσy,

Metrics