Abstract

An interferometric analysis was performed to investigate the influence of argon (Ar) buffer gas on the characteristics of laser-induced aluminum (Al) plasma at atmospheric pressure. The plasma was produced by focusing a Q-switched Nd:YAG laser pulse (λ=1064nm, pulse duration 5ns, E=6.0mJ) onto an Al target. The interference patterns were constructed using a Nomarski interferometer incorporated with a frequency-doubled, Q-switched Nd:YAG laser (λ=532nm, pulse duration 10ns) that generates an interferometric probe beam. The interferometric measurements were carried out as a function of the elapsed time after the onset of breakdown under the conditions of open air and an Ar gas jet flow (5l/min). With the injection of an Ar buffer gas jet in the ablation process, an increase in electron density and a preferential axial plasma expansion of the plasma plume were observed during the early stages of plasma formation as a consequence of increased inverse-Bremsstrahlung (IB) absorption efficiency.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Watcher and D. A. Cremers, “Determination of uranium in solutions using laser-induced breakdown spectroscopy,” Appl. Spectrosc. 41, 1042–1048 (1987).
    [CrossRef]
  2. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).
  3. S. Weimantel and G. Reie, “Pulsed laser deposition of adherent hexagonal/cubic boron nitride layer systems at high growth rates,” Appl. Surf. Sci. 197–198, 331–337 (2002).
    [CrossRef]
  4. S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, and K. Mima, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87, 241503 (2005).
    [CrossRef]
  5. R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108, 063306 (2010).
    [CrossRef]
  6. Y. Iida, “Effects of atmosphere on laser vaporization and excitation processes of solid samples,” Spectrochim. Acta Part A 45B, 1353–1367 (1990).
    [CrossRef]
  7. D. E. Kim, K. J. Yoo, H. K. Park, K. J. Oh, and D. W. Kim, “Quantitative analysis of aluminum impurities in zinc alloy by laser-induced breakdown spectroscopy,” Appl. Spectrosc. 51, 22–29 (1997).
    [CrossRef]
  8. S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, “Influence of ambient gas on the temperature and density of laser produced carbon plasma,” Appl. Phys. Lett. 72, 167–169 (1998).
    [CrossRef]
  9. W. Sdorra and K. Niemax, “Basic investigations for laser microanalysis: III. Application of different buffer gases for laser-produced sample plumes,” Mikrochim. Acta 107, 319–327 (1992).
    [CrossRef]
  10. J. A. Aguilera and C. Aragon, “A comparison of the temperatures and electron densities of laser-produced plasmas obtained in air, argon, and helium at atmospheric pressure,” Appl. Phys. A 69, S475–S478 (1999).
    [CrossRef]
  11. J. G. Son, S. Choi, M. Oh, H. Kang, H. Suk, and Y. Lee, “Application of pulsed buffer gas jets for the signal enhancement of laser-induced breakdown spectroscopy,” Appl. Spectrosc. 64, 1289–1297 (2010).
    [CrossRef]
  12. H. Schittenhelm, G. Callies, P. Berger, and H. Hügel, “Two-wavelength interferometry on excimer laser induced vapour/plasma plumes during the laser pulse,” Appl. Surf. Sci. 127–129, 922–927 (1998).
    [CrossRef]
  13. J. Lu, X. W. Ni, and A. Z. He, “An interferometric investigation of ignition of a laser-supported detonation wave and its propagation,” Opt. Commun. 120, 144–148 (1995).
    [CrossRef]
  14. R. Benattar, C. Popovics, and R. Sigel, “Polarized light interferometer for laser fusion studies,” Rev. Sci. Instrum. 50, 1583–1585 (1979).
    [CrossRef]
  15. Y. J. Hong, S. Y. Oh, S. Y. Ha, H.-J. Kim, and C. Lim, “Interferometric analysis of 1064-nm nanosecond laser induced copper plasma,” IEEE Trans. Plasma Sci. 42, 820–823 (2014).
    [CrossRef]
  16. L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
    [CrossRef]
  17. National Institute of Standards and Technology, USA, Electronic Database, http://physics.nist.gov/PhysRefData/ASD/lines_form.html .
  18. A. P. Thorne, “Elementary plasma spectroscopy,” in Spectrophysics (Chapman and Hall, 1988), pp. 360–362.
  19. P. Hough, C. McLoughlin, T. J. Kelly, S. S. Harilal, J. P. Mosnier, and J. T. Costello, “Time resolved Nomarski interferometry of laser produced plasma plumes,” Appl. Surf. Sci. 255, 5167–5171 (2009).
    [CrossRef]
  20. H. Zhang, J. Lu, Z. Shen, and X. Ni, “Investigation of 1.06  μm laser induced plasma in air using optical interferometry,” Opt. Commun. 282, 1720–1723 (2009).
    [CrossRef]
  21. Y. Tao, M. S. Tillack, S. S. Harilal, K. L. Sequoia, B. O’Shay, and F. Najambadi, “Effect of shockwave-induced density jump on laser plasma interactions in low-pressure ambient air,” J. Phys. D 39, 4027–4030 (2006).
    [CrossRef]
  22. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  23. D. J. Spence, P. D. Burnett, and S. M. Hooker, “Measurement of the electron-density profile in a discharge-ablated capillary waveguide,” Opt. Lett. 24, 993–995 (1999).
    [CrossRef]
  24. S. S. Harilal, T. Sizyuk, A. Hassanein, D. Campos, P. Hough, and V. Sizyuk, “The effect of excitation wavelength on dynamics of laser-produced tin plasma,” J. Appl. Phys. 109, 063306 (2011).
    [CrossRef]
  25. R. Alvarez, A. Rodero, and M. C. Quintero, “An Abel inversion method for radially resolved measurements in the axial injection torch,” Spectrochim. Acta Part B 57, 1665–1680 (2002).
    [CrossRef]
  26. E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115–1130 (2002).
    [CrossRef]
  27. M. A. Khater, “Influence of laser pulse energy on VUV emission from laser plasmas under various ambient conditions,” Rom. J. Phys. 58, 181–192 (2013).
  28. D. Breitling, H. Schittenhelm, P. Berger, F. Dausinger, and H. Hugel, “Shadowgraphic and interferometric investigations on Nd:YAG laser-induced vapor/plasma plumes for different processing wavelengths,” Appl. Phys. A 69, S505–S508 (1999).
    [CrossRef]
  29. M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
    [CrossRef]

2014 (1)

Y. J. Hong, S. Y. Oh, S. Y. Ha, H.-J. Kim, and C. Lim, “Interferometric analysis of 1064-nm nanosecond laser induced copper plasma,” IEEE Trans. Plasma Sci. 42, 820–823 (2014).
[CrossRef]

2013 (1)

M. A. Khater, “Influence of laser pulse energy on VUV emission from laser plasmas under various ambient conditions,” Rom. J. Phys. 58, 181–192 (2013).

2011 (1)

S. S. Harilal, T. Sizyuk, A. Hassanein, D. Campos, P. Hough, and V. Sizyuk, “The effect of excitation wavelength on dynamics of laser-produced tin plasma,” J. Appl. Phys. 109, 063306 (2011).
[CrossRef]

2010 (2)

R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108, 063306 (2010).
[CrossRef]

J. G. Son, S. Choi, M. Oh, H. Kang, H. Suk, and Y. Lee, “Application of pulsed buffer gas jets for the signal enhancement of laser-induced breakdown spectroscopy,” Appl. Spectrosc. 64, 1289–1297 (2010).
[CrossRef]

2009 (3)

P. Hough, C. McLoughlin, T. J. Kelly, S. S. Harilal, J. P. Mosnier, and J. T. Costello, “Time resolved Nomarski interferometry of laser produced plasma plumes,” Appl. Surf. Sci. 255, 5167–5171 (2009).
[CrossRef]

H. Zhang, J. Lu, Z. Shen, and X. Ni, “Investigation of 1.06  μm laser induced plasma in air using optical interferometry,” Opt. Commun. 282, 1720–1723 (2009).
[CrossRef]

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[CrossRef]

2006 (1)

Y. Tao, M. S. Tillack, S. S. Harilal, K. L. Sequoia, B. O’Shay, and F. Najambadi, “Effect of shockwave-induced density jump on laser plasma interactions in low-pressure ambient air,” J. Phys. D 39, 4027–4030 (2006).
[CrossRef]

2005 (1)

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, and K. Mima, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87, 241503 (2005).
[CrossRef]

2002 (4)

S. Weimantel and G. Reie, “Pulsed laser deposition of adherent hexagonal/cubic boron nitride layer systems at high growth rates,” Appl. Surf. Sci. 197–198, 331–337 (2002).
[CrossRef]

R. Alvarez, A. Rodero, and M. C. Quintero, “An Abel inversion method for radially resolved measurements in the axial injection torch,” Spectrochim. Acta Part B 57, 1665–1680 (2002).
[CrossRef]

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115–1130 (2002).
[CrossRef]

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
[CrossRef]

1999 (3)

J. A. Aguilera and C. Aragon, “A comparison of the temperatures and electron densities of laser-produced plasmas obtained in air, argon, and helium at atmospheric pressure,” Appl. Phys. A 69, S475–S478 (1999).
[CrossRef]

D. J. Spence, P. D. Burnett, and S. M. Hooker, “Measurement of the electron-density profile in a discharge-ablated capillary waveguide,” Opt. Lett. 24, 993–995 (1999).
[CrossRef]

D. Breitling, H. Schittenhelm, P. Berger, F. Dausinger, and H. Hugel, “Shadowgraphic and interferometric investigations on Nd:YAG laser-induced vapor/plasma plumes for different processing wavelengths,” Appl. Phys. A 69, S505–S508 (1999).
[CrossRef]

1998 (2)

S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, “Influence of ambient gas on the temperature and density of laser produced carbon plasma,” Appl. Phys. Lett. 72, 167–169 (1998).
[CrossRef]

H. Schittenhelm, G. Callies, P. Berger, and H. Hügel, “Two-wavelength interferometry on excimer laser induced vapour/plasma plumes during the laser pulse,” Appl. Surf. Sci. 127–129, 922–927 (1998).
[CrossRef]

1997 (1)

1995 (1)

J. Lu, X. W. Ni, and A. Z. He, “An interferometric investigation of ignition of a laser-supported detonation wave and its propagation,” Opt. Commun. 120, 144–148 (1995).
[CrossRef]

1992 (1)

W. Sdorra and K. Niemax, “Basic investigations for laser microanalysis: III. Application of different buffer gases for laser-produced sample plumes,” Mikrochim. Acta 107, 319–327 (1992).
[CrossRef]

1990 (1)

Y. Iida, “Effects of atmosphere on laser vaporization and excitation processes of solid samples,” Spectrochim. Acta Part A 45B, 1353–1367 (1990).
[CrossRef]

1987 (1)

1982 (1)

1979 (1)

R. Benattar, C. Popovics, and R. Sigel, “Polarized light interferometer for laser fusion studies,” Rev. Sci. Instrum. 50, 1583–1585 (1979).
[CrossRef]

Aguilera, J. A.

J. A. Aguilera and C. Aragon, “A comparison of the temperatures and electron densities of laser-produced plasmas obtained in air, argon, and helium at atmospheric pressure,” Appl. Phys. A 69, S475–S478 (1999).
[CrossRef]

Alvarez, R.

R. Alvarez, A. Rodero, and M. C. Quintero, “An Abel inversion method for radially resolved measurements in the axial injection torch,” Spectrochim. Acta Part B 57, 1665–1680 (2002).
[CrossRef]

Aragon, C.

J. A. Aguilera and C. Aragon, “A comparison of the temperatures and electron densities of laser-produced plasmas obtained in air, argon, and helium at atmospheric pressure,” Appl. Phys. A 69, S475–S478 (1999).
[CrossRef]

Baudelet, M.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[CrossRef]

Benattar, R.

R. Benattar, C. Popovics, and R. Sigel, “Polarized light interferometer for laser fusion studies,” Rev. Sci. Instrum. 50, 1583–1585 (1979).
[CrossRef]

Berger, P.

D. Breitling, H. Schittenhelm, P. Berger, F. Dausinger, and H. Hugel, “Shadowgraphic and interferometric investigations on Nd:YAG laser-induced vapor/plasma plumes for different processing wavelengths,” Appl. Phys. A 69, S505–S508 (1999).
[CrossRef]

H. Schittenhelm, G. Callies, P. Berger, and H. Hügel, “Two-wavelength interferometry on excimer laser induced vapour/plasma plumes during the laser pulse,” Appl. Surf. Sci. 127–129, 922–927 (1998).
[CrossRef]

Bindhu, C. V.

S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, “Influence of ambient gas on the temperature and density of laser produced carbon plasma,” Appl. Phys. Lett. 72, 167–169 (1998).
[CrossRef]

Boueri, M.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[CrossRef]

Breitling, D.

D. Breitling, H. Schittenhelm, P. Berger, F. Dausinger, and H. Hugel, “Shadowgraphic and interferometric investigations on Nd:YAG laser-induced vapor/plasma plumes for different processing wavelengths,” Appl. Phys. A 69, S505–S508 (1999).
[CrossRef]

Burnett, P. D.

Callies, G.

H. Schittenhelm, G. Callies, P. Berger, and H. Hügel, “Two-wavelength interferometry on excimer laser induced vapour/plasma plumes during the laser pulse,” Appl. Surf. Sci. 127–129, 922–927 (1998).
[CrossRef]

Campos, D.

S. S. Harilal, T. Sizyuk, A. Hassanein, D. Campos, P. Hough, and V. Sizyuk, “The effect of excitation wavelength on dynamics of laser-produced tin plasma,” J. Appl. Phys. 109, 063306 (2011).
[CrossRef]

R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108, 063306 (2010).
[CrossRef]

Choi, S.

Coons, R. W.

R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108, 063306 (2010).
[CrossRef]

Corsi, M.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115–1130 (2002).
[CrossRef]

Costello, J. T.

P. Hough, C. McLoughlin, T. J. Kelly, S. S. Harilal, J. P. Mosnier, and J. T. Costello, “Time resolved Nomarski interferometry of laser produced plasma plumes,” Appl. Surf. Sci. 255, 5167–5171 (2009).
[CrossRef]

Cremers, D. A.

Cristoforetti, G.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115–1130 (2002).
[CrossRef]

Dausinger, F.

D. Breitling, H. Schittenhelm, P. Berger, F. Dausinger, and H. Hugel, “Shadowgraphic and interferometric investigations on Nd:YAG laser-induced vapor/plasma plumes for different processing wavelengths,” Appl. Phys. A 69, S505–S508 (1999).
[CrossRef]

Fujioka, S.

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, and K. Mima, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87, 241503 (2005).
[CrossRef]

Gu, Q.

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, and K. Mima, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87, 241503 (2005).
[CrossRef]

Ha, S. Y.

Y. J. Hong, S. Y. Oh, S. Y. Ha, H.-J. Kim, and C. Lim, “Interferometric analysis of 1064-nm nanosecond laser induced copper plasma,” IEEE Trans. Plasma Sci. 42, 820–823 (2014).
[CrossRef]

Harilal, S. S.

S. S. Harilal, T. Sizyuk, A. Hassanein, D. Campos, P. Hough, and V. Sizyuk, “The effect of excitation wavelength on dynamics of laser-produced tin plasma,” J. Appl. Phys. 109, 063306 (2011).
[CrossRef]

R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108, 063306 (2010).
[CrossRef]

P. Hough, C. McLoughlin, T. J. Kelly, S. S. Harilal, J. P. Mosnier, and J. T. Costello, “Time resolved Nomarski interferometry of laser produced plasma plumes,” Appl. Surf. Sci. 255, 5167–5171 (2009).
[CrossRef]

Y. Tao, M. S. Tillack, S. S. Harilal, K. L. Sequoia, B. O’Shay, and F. Najambadi, “Effect of shockwave-induced density jump on laser plasma interactions in low-pressure ambient air,” J. Phys. D 39, 4027–4030 (2006).
[CrossRef]

S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, “Influence of ambient gas on the temperature and density of laser produced carbon plasma,” Appl. Phys. Lett. 72, 167–169 (1998).
[CrossRef]

Hassanein, A.

S. S. Harilal, T. Sizyuk, A. Hassanein, D. Campos, P. Hough, and V. Sizyuk, “The effect of excitation wavelength on dynamics of laser-produced tin plasma,” J. Appl. Phys. 109, 063306 (2011).
[CrossRef]

R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108, 063306 (2010).
[CrossRef]

He, A. Z.

J. Lu, X. W. Ni, and A. Z. He, “An interferometric investigation of ignition of a laser-supported detonation wave and its propagation,” Opt. Commun. 120, 144–148 (1995).
[CrossRef]

Hong, Y. J.

Y. J. Hong, S. Y. Oh, S. Y. Ha, H.-J. Kim, and C. Lim, “Interferometric analysis of 1064-nm nanosecond laser induced copper plasma,” IEEE Trans. Plasma Sci. 42, 820–823 (2014).
[CrossRef]

Hooker, S. M.

Hough, P.

S. S. Harilal, T. Sizyuk, A. Hassanein, D. Campos, P. Hough, and V. Sizyuk, “The effect of excitation wavelength on dynamics of laser-produced tin plasma,” J. Appl. Phys. 109, 063306 (2011).
[CrossRef]

P. Hough, C. McLoughlin, T. J. Kelly, S. S. Harilal, J. P. Mosnier, and J. T. Costello, “Time resolved Nomarski interferometry of laser produced plasma plumes,” Appl. Surf. Sci. 255, 5167–5171 (2009).
[CrossRef]

Hugel, H.

D. Breitling, H. Schittenhelm, P. Berger, F. Dausinger, and H. Hugel, “Shadowgraphic and interferometric investigations on Nd:YAG laser-induced vapor/plasma plumes for different processing wavelengths,” Appl. Phys. A 69, S505–S508 (1999).
[CrossRef]

Hügel, H.

H. Schittenhelm, G. Callies, P. Berger, and H. Hügel, “Two-wavelength interferometry on excimer laser induced vapour/plasma plumes during the laser pulse,” Appl. Surf. Sci. 127–129, 922–927 (1998).
[CrossRef]

Iida, Y.

Y. Iida, “Effects of atmosphere on laser vaporization and excitation processes of solid samples,” Spectrochim. Acta Part A 45B, 1353–1367 (1990).
[CrossRef]

Ina, H.

Izawa, Y.

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, and K. Mima, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87, 241503 (2005).
[CrossRef]

Kang, H.

Kang, Y.-G.

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, and K. Mima, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87, 241503 (2005).
[CrossRef]

Kelly, T. J.

P. Hough, C. McLoughlin, T. J. Kelly, S. S. Harilal, J. P. Mosnier, and J. T. Costello, “Time resolved Nomarski interferometry of laser produced plasma plumes,” Appl. Surf. Sci. 255, 5167–5171 (2009).
[CrossRef]

Khater, M. A.

M. A. Khater, “Influence of laser pulse energy on VUV emission from laser plasmas under various ambient conditions,” Rom. J. Phys. 58, 181–192 (2013).

Kim, D. E.

Kim, D. W.

Kim, H.-J.

Y. J. Hong, S. Y. Oh, S. Y. Ha, H.-J. Kim, and C. Lim, “Interferometric analysis of 1064-nm nanosecond laser induced copper plasma,” IEEE Trans. Plasma Sci. 42, 820–823 (2014).
[CrossRef]

Kobayashi, S.

Kwong, E.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
[CrossRef]

Lee, Y.

Lim, C.

Y. J. Hong, S. Y. Oh, S. Y. Ha, H.-J. Kim, and C. Lim, “Interferometric analysis of 1064-nm nanosecond laser induced copper plasma,” IEEE Trans. Plasma Sci. 42, 820–823 (2014).
[CrossRef]

Lu, J.

H. Zhang, J. Lu, Z. Shen, and X. Ni, “Investigation of 1.06  μm laser induced plasma in air using optical interferometry,” Opt. Commun. 282, 1720–1723 (2009).
[CrossRef]

J. Lu, X. W. Ni, and A. Z. He, “An interferometric investigation of ignition of a laser-supported detonation wave and its propagation,” Opt. Commun. 120, 144–148 (1995).
[CrossRef]

Mao, S. S.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[CrossRef]

Mao, X.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[CrossRef]

McLoughlin, C.

P. Hough, C. McLoughlin, T. J. Kelly, S. S. Harilal, J. P. Mosnier, and J. T. Costello, “Time resolved Nomarski interferometry of laser produced plasma plumes,” Appl. Surf. Sci. 255, 5167–5171 (2009).
[CrossRef]

Mima, K.

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, and K. Mima, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87, 241503 (2005).
[CrossRef]

Miyanaga, N.

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, and K. Mima, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87, 241503 (2005).
[CrossRef]

Mosnier, J. P.

P. Hough, C. McLoughlin, T. J. Kelly, S. S. Harilal, J. P. Mosnier, and J. T. Costello, “Time resolved Nomarski interferometry of laser produced plasma plumes,” Appl. Surf. Sci. 255, 5167–5171 (2009).
[CrossRef]

Murakami, M.

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, and K. Mima, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87, 241503 (2005).
[CrossRef]

Nagai, K.

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, and K. Mima, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87, 241503 (2005).
[CrossRef]

Najambadi, F.

Y. Tao, M. S. Tillack, S. S. Harilal, K. L. Sequoia, B. O’Shay, and F. Najambadi, “Effect of shockwave-induced density jump on laser plasma interactions in low-pressure ambient air,” J. Phys. D 39, 4027–4030 (2006).
[CrossRef]

Nampoori, V. P. N.

S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, “Influence of ambient gas on the temperature and density of laser produced carbon plasma,” Appl. Phys. Lett. 72, 167–169 (1998).
[CrossRef]

Ni, X.

H. Zhang, J. Lu, Z. Shen, and X. Ni, “Investigation of 1.06  μm laser induced plasma in air using optical interferometry,” Opt. Commun. 282, 1720–1723 (2009).
[CrossRef]

Ni, X. W.

J. Lu, X. W. Ni, and A. Z. He, “An interferometric investigation of ignition of a laser-supported detonation wave and its propagation,” Opt. Commun. 120, 144–148 (1995).
[CrossRef]

Niemax, K.

W. Sdorra and K. Niemax, “Basic investigations for laser microanalysis: III. Application of different buffer gases for laser-produced sample plumes,” Mikrochim. Acta 107, 319–327 (1992).
[CrossRef]

Nishihara, K.

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, and K. Mima, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87, 241503 (2005).
[CrossRef]

Nishimura, H.

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, and K. Mima, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87, 241503 (2005).
[CrossRef]

Norimatsu, T.

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, and K. Mima, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87, 241503 (2005).
[CrossRef]

O’Shay, B.

Y. Tao, M. S. Tillack, S. S. Harilal, K. L. Sequoia, B. O’Shay, and F. Najambadi, “Effect of shockwave-induced density jump on laser plasma interactions in low-pressure ambient air,” J. Phys. D 39, 4027–4030 (2006).
[CrossRef]

Oh, K. J.

Oh, M.

Oh, S. Y.

Y. J. Hong, S. Y. Oh, S. Y. Ha, H.-J. Kim, and C. Lim, “Interferometric analysis of 1064-nm nanosecond laser induced copper plasma,” IEEE Trans. Plasma Sci. 42, 820–823 (2014).
[CrossRef]

Palleschi, V.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115–1130 (2002).
[CrossRef]

Park, H. K.

Popovics, C.

R. Benattar, C. Popovics, and R. Sigel, “Polarized light interferometer for laser fusion studies,” Rev. Sci. Instrum. 50, 1583–1585 (1979).
[CrossRef]

Quintero, M. C.

R. Alvarez, A. Rodero, and M. C. Quintero, “An Abel inversion method for radially resolved measurements in the axial injection torch,” Spectrochim. Acta Part B 57, 1665–1680 (2002).
[CrossRef]

Reie, G.

S. Weimantel and G. Reie, “Pulsed laser deposition of adherent hexagonal/cubic boron nitride layer systems at high growth rates,” Appl. Surf. Sci. 197–198, 331–337 (2002).
[CrossRef]

Rodero, A.

R. Alvarez, A. Rodero, and M. C. Quintero, “An Abel inversion method for radially resolved measurements in the axial injection torch,” Spectrochim. Acta Part B 57, 1665–1680 (2002).
[CrossRef]

Russo, R.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[CrossRef]

Sabsabi, M.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
[CrossRef]

Schittenhelm, H.

D. Breitling, H. Schittenhelm, P. Berger, F. Dausinger, and H. Hugel, “Shadowgraphic and interferometric investigations on Nd:YAG laser-induced vapor/plasma plumes for different processing wavelengths,” Appl. Phys. A 69, S505–S508 (1999).
[CrossRef]

H. Schittenhelm, G. Callies, P. Berger, and H. Hügel, “Two-wavelength interferometry on excimer laser induced vapour/plasma plumes during the laser pulse,” Appl. Surf. Sci. 127–129, 922–927 (1998).
[CrossRef]

Sdorra, W.

W. Sdorra and K. Niemax, “Basic investigations for laser microanalysis: III. Application of different buffer gases for laser-produced sample plumes,” Mikrochim. Acta 107, 319–327 (1992).
[CrossRef]

Sequoia, K. L.

Y. Tao, M. S. Tillack, S. S. Harilal, K. L. Sequoia, B. O’Shay, and F. Najambadi, “Effect of shockwave-induced density jump on laser plasma interactions in low-pressure ambient air,” J. Phys. D 39, 4027–4030 (2006).
[CrossRef]

Shen, Z.

H. Zhang, J. Lu, Z. Shen, and X. Ni, “Investigation of 1.06  μm laser induced plasma in air using optical interferometry,” Opt. Commun. 282, 1720–1723 (2009).
[CrossRef]

Sigel, R.

R. Benattar, C. Popovics, and R. Sigel, “Polarized light interferometer for laser fusion studies,” Rev. Sci. Instrum. 50, 1583–1585 (1979).
[CrossRef]

Singh, J. P.

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

Sizyuk, T.

S. S. Harilal, T. Sizyuk, A. Hassanein, D. Campos, P. Hough, and V. Sizyuk, “The effect of excitation wavelength on dynamics of laser-produced tin plasma,” J. Appl. Phys. 109, 063306 (2011).
[CrossRef]

Sizyuk, V.

S. S. Harilal, T. Sizyuk, A. Hassanein, D. Campos, P. Hough, and V. Sizyuk, “The effect of excitation wavelength on dynamics of laser-produced tin plasma,” J. Appl. Phys. 109, 063306 (2011).
[CrossRef]

Son, J. G.

Spence, D. J.

St-Onge, L.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
[CrossRef]

Suk, H.

Takeda, M.

Tao, Y.

Y. Tao, M. S. Tillack, S. S. Harilal, K. L. Sequoia, B. O’Shay, and F. Najambadi, “Effect of shockwave-induced density jump on laser plasma interactions in low-pressure ambient air,” J. Phys. D 39, 4027–4030 (2006).
[CrossRef]

Thakur, S. N.

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

Thorne, A. P.

A. P. Thorne, “Elementary plasma spectroscopy,” in Spectrophysics (Chapman and Hall, 1988), pp. 360–362.

Tillack, M. S.

Y. Tao, M. S. Tillack, S. S. Harilal, K. L. Sequoia, B. O’Shay, and F. Najambadi, “Effect of shockwave-induced density jump on laser plasma interactions in low-pressure ambient air,” J. Phys. D 39, 4027–4030 (2006).
[CrossRef]

Tognoni, E.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115–1130 (2002).
[CrossRef]

Vadas, E. B.

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
[CrossRef]

Vallabhan, C. P. G.

S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, “Influence of ambient gas on the temperature and density of laser produced carbon plasma,” Appl. Phys. Lett. 72, 167–169 (1998).
[CrossRef]

Watcher, J. R.

Weimantel, S.

S. Weimantel and G. Reie, “Pulsed laser deposition of adherent hexagonal/cubic boron nitride layer systems at high growth rates,” Appl. Surf. Sci. 197–198, 331–337 (2002).
[CrossRef]

Yoo, K. J.

Yu, J.

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[CrossRef]

Zhang, H.

H. Zhang, J. Lu, Z. Shen, and X. Ni, “Investigation of 1.06  μm laser induced plasma in air using optical interferometry,” Opt. Commun. 282, 1720–1723 (2009).
[CrossRef]

Appl. Phys. A (2)

J. A. Aguilera and C. Aragon, “A comparison of the temperatures and electron densities of laser-produced plasmas obtained in air, argon, and helium at atmospheric pressure,” Appl. Phys. A 69, S475–S478 (1999).
[CrossRef]

D. Breitling, H. Schittenhelm, P. Berger, F. Dausinger, and H. Hugel, “Shadowgraphic and interferometric investigations on Nd:YAG laser-induced vapor/plasma plumes for different processing wavelengths,” Appl. Phys. A 69, S505–S508 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

S. Fujioka, H. Nishimura, K. Nishihara, M. Murakami, Y.-G. Kang, Q. Gu, K. Nagai, T. Norimatsu, N. Miyanaga, Y. Izawa, and K. Mima, “Properties of ion debris emitted from laser-produced mass-limited tin plasmas for extreme ultraviolet light source applications,” Appl. Phys. Lett. 87, 241503 (2005).
[CrossRef]

S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, “Influence of ambient gas on the temperature and density of laser produced carbon plasma,” Appl. Phys. Lett. 72, 167–169 (1998).
[CrossRef]

Appl. Spectrosc. (3)

Appl. Surf. Sci. (4)

H. Schittenhelm, G. Callies, P. Berger, and H. Hügel, “Two-wavelength interferometry on excimer laser induced vapour/plasma plumes during the laser pulse,” Appl. Surf. Sci. 127–129, 922–927 (1998).
[CrossRef]

S. Weimantel and G. Reie, “Pulsed laser deposition of adherent hexagonal/cubic boron nitride layer systems at high growth rates,” Appl. Surf. Sci. 197–198, 331–337 (2002).
[CrossRef]

M. Boueri, M. Baudelet, J. Yu, X. Mao, S. S. Mao, and R. Russo, “Early stage expansion and time-resolved spectral emission of laser-induced plasma from polymer,” Appl. Surf. Sci. 255, 9566–9571 (2009).
[CrossRef]

P. Hough, C. McLoughlin, T. J. Kelly, S. S. Harilal, J. P. Mosnier, and J. T. Costello, “Time resolved Nomarski interferometry of laser produced plasma plumes,” Appl. Surf. Sci. 255, 5167–5171 (2009).
[CrossRef]

IEEE Trans. Plasma Sci. (1)

Y. J. Hong, S. Y. Oh, S. Y. Ha, H.-J. Kim, and C. Lim, “Interferometric analysis of 1064-nm nanosecond laser induced copper plasma,” IEEE Trans. Plasma Sci. 42, 820–823 (2014).
[CrossRef]

J. Appl. Phys. (2)

R. W. Coons, S. S. Harilal, D. Campos, and A. Hassanein, “Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas,” J. Appl. Phys. 108, 063306 (2010).
[CrossRef]

S. S. Harilal, T. Sizyuk, A. Hassanein, D. Campos, P. Hough, and V. Sizyuk, “The effect of excitation wavelength on dynamics of laser-produced tin plasma,” J. Appl. Phys. 109, 063306 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. D (1)

Y. Tao, M. S. Tillack, S. S. Harilal, K. L. Sequoia, B. O’Shay, and F. Najambadi, “Effect of shockwave-induced density jump on laser plasma interactions in low-pressure ambient air,” J. Phys. D 39, 4027–4030 (2006).
[CrossRef]

Mikrochim. Acta (1)

W. Sdorra and K. Niemax, “Basic investigations for laser microanalysis: III. Application of different buffer gases for laser-produced sample plumes,” Mikrochim. Acta 107, 319–327 (1992).
[CrossRef]

Opt. Commun. (2)

J. Lu, X. W. Ni, and A. Z. He, “An interferometric investigation of ignition of a laser-supported detonation wave and its propagation,” Opt. Commun. 120, 144–148 (1995).
[CrossRef]

H. Zhang, J. Lu, Z. Shen, and X. Ni, “Investigation of 1.06  μm laser induced plasma in air using optical interferometry,” Opt. Commun. 282, 1720–1723 (2009).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

R. Benattar, C. Popovics, and R. Sigel, “Polarized light interferometer for laser fusion studies,” Rev. Sci. Instrum. 50, 1583–1585 (1979).
[CrossRef]

Rom. J. Phys. (1)

M. A. Khater, “Influence of laser pulse energy on VUV emission from laser plasmas under various ambient conditions,” Rom. J. Phys. 58, 181–192 (2013).

Spectrochim. Acta Part A (1)

Y. Iida, “Effects of atmosphere on laser vaporization and excitation processes of solid samples,” Spectrochim. Acta Part A 45B, 1353–1367 (1990).
[CrossRef]

Spectrochim. Acta Part B (3)

L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, “Quantitative analysis of pharmaceutical products by laser-induced breakdown spectroscopy,” Spectrochim. Acta Part B 57, 1131–1140 (2002).
[CrossRef]

R. Alvarez, A. Rodero, and M. C. Quintero, “An Abel inversion method for radially resolved measurements in the axial injection torch,” Spectrochim. Acta Part B 57, 1665–1680 (2002).
[CrossRef]

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches,” Spectrochim. Acta Part B 57, 1115–1130 (2002).
[CrossRef]

Other (3)

National Institute of Standards and Technology, USA, Electronic Database, http://physics.nist.gov/PhysRefData/ASD/lines_form.html .

A. P. Thorne, “Elementary plasma spectroscopy,” in Spectrophysics (Chapman and Hall, 1988), pp. 360–362.

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup. (a) Schematic illustration of the Ar gas flow. (b) Coordinate system for a transversal slice of the plasma.

Fig. 2.
Fig. 2.

Optical emission spectra of the laser-induced plasma, collected from an Al target in the presence (red line, 5 l / min ) and in the absence of Ar buffer gas (black line) at atmospheric pressure.

Fig. 3.
Fig. 3.

Interference patterns of the laser-induced plasma in (a) the presence and (b) the absence of Ar buffer gas at atmospheric pressure, recorded at a gate delay of 103 ns. The flow rate of Ar buffer gas was 5 l / min . The probe beam comes out along y axis, that is, out of page, parallel to this page.

Fig. 4.
Fig. 4.

Phase shift maps of the laser-induced plasma (in units of radian) in (a) the presence and (b) the absence of Ar buffer gas at atmospheric pressure, recorded at a gate delay of 103 ns.

Fig. 5.
Fig. 5.

Temporal evolution of the electron density profiles in (a) the presence and (b) the absence of Ar buffer gas at atmospheric pressure. The electron density values have units of 10 19 cm 3 .

Fig. 6.
Fig. 6.

(a) Heights of the plasma plume and (b) electron density as a function of gate delay time in the presence (black dots, 5 l / min ) and absence (red dots) of Ar buffer gas at atmospheric pressure. The values in (b) have units of 10 19 cm 3 .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n e = λ n c r r max d ϕ d x ( x 2 r 2 ) 1 / 2 d x ,

Metrics