Abstract

We design a GaP/Si composite waveguide to achieve efficient terahertz (THz) wave generation under collinear phase-matched difference frequency mixing (DFM) between near-infrared light sources. This waveguide structure provides a strong mode confinement of both near-infrared sources and THz wave, resulting in an efficient mode overlapping. The numerical results show that the waveguide can produce guided THz wave (5.93 THz) with a power conversion efficiency of 6.6×104W1. This value is larger than previously obtained with the bulk GaP crystal: 0.5×109W1 [J. Lightwave Technol. 27, 3057 (2009)]. Our proposed composite waveguide can be achieved by bridging the telecom wavelength and THz frequency region.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [CrossRef]
  2. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [CrossRef]
  3. D. A. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
    [CrossRef]
  4. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
    [CrossRef]
  5. J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32, 1284–1286 (2007).
    [CrossRef]
  6. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
    [CrossRef]
  7. F. De Martini, “Infrared generation by coherent excitation of polaritons,” Phys. Rev. B 4, 4556–4578 (1971).
    [CrossRef]
  8. T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93, 4610–4615 (2003).
    [CrossRef]
  9. K. Kawase, M. Mizuno, S. Sohoma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium–tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24, 1065–1067 (1999).
    [CrossRef]
  10. C. Staus, T. Kuech, and L. McCaughan, “Continuously phase-matched terahertz difference frequency generation in an embedded waveguide structure supporting only fundamental modes,” Opt. Express 16, 13296–13303 (2008).
    [CrossRef]
  11. J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-wave frequency-tunable terahertz-wave generation from GaP,” IEEE Photon. Technol. Lett. 18, 2008–2010 (2006).
    [CrossRef]
  12. I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55  μm pumping,” Appl. Phys. Lett. 88, 071118 (2006).
    [CrossRef]
  13. K. L. Vodopyanov, J. E. Schaar, P. S. Kuo, M. M. Fejer, X. Yu, J. S. Harris, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz wave generation in orientation-patterned GaAs using resonantly enhanced scheme,” Proc. SPIE 6455, 645509 (2007).
    [CrossRef]
  14. K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, “Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Opt. Express 17, 6676–6681 (2009).
    [CrossRef]
  15. T. Tanabe, S. Ragam, Y. Oyama, T. Sasaki, J. Nishizawa, M. Ohkado, and N. Yamada, “Two-directional CW THz wave generation system by pumping with a single fiber amplifier of near-IR lasers,” IEEE Photon. Technol. Lett. 21, 260–262 (2009).
    [CrossRef]
  16. T. Tanabe, S. Ragam, and Y. Oyama, “Continuous wave terahertz wave spectrometer based on diode laser pumping: potential applications in high resolution spectroscopy,” Rev. Sci. Instrum. 80, 113105 (2009).
    [CrossRef]
  17. S. Ragam, T. Tanabe, K. Saito, Y. Oyama, and J. Nishizawa, “Enhancement of CW THz wave power under noncollinear phase-matching conditions in difference frequency generation,” J. Lightwave Technol. 27, 3057–3061 (2009).
    [CrossRef]
  18. K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference-frequency mixing of near-infrared lasers,” J. Appl. Phys. 105, 063102 (2009).
    [CrossRef]
  19. Y. H. Avetisyan, “Terahertz-wave surface-emitted difference-frequency generation without quasi-phase-matching technique,” Opt. Lett. 35, 2508–2510 (2010).
    [CrossRef]
  20. Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13, 705–720 (2007).
    [CrossRef]
  21. L. Ley, R. A. Pollak, F. R. McFeely, S. P. Kowalczyk, and D. A. Shirley, “Total valence-band densities of states of III-V and II-VI compounds from x-ray photoemission spectroscopy,” Phys. Rev. B 9, 600–621 (1974).
    [CrossRef]
  22. H. Cao, R. A. Linke, and A. Nahata, “Broadband generation of terahertz radiation in a waveguide,” Opt. Lett. 29, 1751–1753 (2004).
    [CrossRef]
  23. S. Coleman and D. Grischkowsky, “Parallel plate THz transmitter,” Appl. Phys. Lett. 84, 654–656 (2004).
    [CrossRef]
  24. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14, 2268–2294 (1997).
    [CrossRef]
  25. J. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21, 1379–1386 (2004).
    [CrossRef]
  26. J. Xia, J. Yu, Y. Li, and S. Chen, “Single-mode condition for silicon rib waveguides with large cross sections,” Opt. Eng. 43, 1953–1954 (2004).
    [CrossRef]
  27. K. Saito, T. Tanabe, Y. Oyama, K. Suto, T. Kimura, and J. Nishizawa, “Terahertz wave absorption in GaP crystals with different carrier densities,” J. Phys. Chem. Solids 69, 597–600 (2008).
    [CrossRef]
  28. R. W. Boyd, “Properties of the nonlinear susceptibility,” in Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 1, p. 49.
  29. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26, 1423–1431 (2008).
    [CrossRef]
  30. R. W. Boyd, “Difference-frequency generation and parametric amplification,” in Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 2, pp. 105–108.

2010 (1)

2009 (5)

K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, “Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Opt. Express 17, 6676–6681 (2009).
[CrossRef]

T. Tanabe, S. Ragam, Y. Oyama, T. Sasaki, J. Nishizawa, M. Ohkado, and N. Yamada, “Two-directional CW THz wave generation system by pumping with a single fiber amplifier of near-IR lasers,” IEEE Photon. Technol. Lett. 21, 260–262 (2009).
[CrossRef]

T. Tanabe, S. Ragam, and Y. Oyama, “Continuous wave terahertz wave spectrometer based on diode laser pumping: potential applications in high resolution spectroscopy,” Rev. Sci. Instrum. 80, 113105 (2009).
[CrossRef]

S. Ragam, T. Tanabe, K. Saito, Y. Oyama, and J. Nishizawa, “Enhancement of CW THz wave power under noncollinear phase-matching conditions in difference frequency generation,” J. Lightwave Technol. 27, 3057–3061 (2009).
[CrossRef]

K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference-frequency mixing of near-infrared lasers,” J. Appl. Phys. 105, 063102 (2009).
[CrossRef]

2008 (3)

2007 (4)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32, 1284–1286 (2007).
[CrossRef]

Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13, 705–720 (2007).
[CrossRef]

K. L. Vodopyanov, J. E. Schaar, P. S. Kuo, M. M. Fejer, X. Yu, J. S. Harris, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz wave generation in orientation-patterned GaAs using resonantly enhanced scheme,” Proc. SPIE 6455, 645509 (2007).
[CrossRef]

2006 (2)

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-wave frequency-tunable terahertz-wave generation from GaP,” IEEE Photon. Technol. Lett. 18, 2008–2010 (2006).
[CrossRef]

I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55  μm pumping,” Appl. Phys. Lett. 88, 071118 (2006).
[CrossRef]

2004 (4)

2003 (1)

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93, 4610–4615 (2003).
[CrossRef]

2002 (1)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
[CrossRef]

1999 (1)

1997 (1)

1996 (1)

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

1984 (1)

D. A. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

1974 (1)

L. Ley, R. A. Pollak, F. R. McFeely, S. P. Kowalczyk, and D. A. Shirley, “Total valence-band densities of states of III-V and II-VI compounds from x-ray photoemission spectroscopy,” Phys. Rev. B 9, 600–621 (1974).
[CrossRef]

1971 (1)

F. De Martini, “Infrared generation by coherent excitation of polaritons,” Phys. Rev. B 4, 4556–4578 (1971).
[CrossRef]

Ajito, K.

I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55  μm pumping,” Appl. Phys. Lett. 88, 071118 (2006).
[CrossRef]

Akiba, T.

Auston, D. A.

D. A. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

Avetisyan, Y. H.

Bliss, D.

K. L. Vodopyanov, J. E. Schaar, P. S. Kuo, M. M. Fejer, X. Yu, J. S. Harris, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz wave generation in orientation-patterned GaAs using resonantly enhanced scheme,” Proc. SPIE 6455, 645509 (2007).
[CrossRef]

Boyd, R. W.

R. W. Boyd, “Properties of the nonlinear susceptibility,” in Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 1, p. 49.

R. W. Boyd, “Difference-frequency generation and parametric amplification,” in Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 2, pp. 105–108.

Cao, H.

Capasso, F.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Chen, S.

J. Xia, J. Yu, Y. Li, and S. Chen, “Single-mode condition for silicon rib waveguides with large cross sections,” Opt. Eng. 43, 1953–1954 (2004).
[CrossRef]

Cheung, K. P.

D. A. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Coleman, S.

S. Coleman and D. Grischkowsky, “Parallel plate THz transmitter,” Appl. Phys. Lett. 84, 654–656 (2004).
[CrossRef]

Dai, J.

De Martini, F.

F. De Martini, “Infrared generation by coherent excitation of polaritons,” Phys. Rev. B 4, 4556–4578 (1971).
[CrossRef]

Ding, Y. J.

Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13, 705–720 (2007).
[CrossRef]

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Fallahkhair, A. B.

Fejer, M. M.

J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32, 1284–1286 (2007).
[CrossRef]

K. L. Vodopyanov, J. E. Schaar, P. S. Kuo, M. M. Fejer, X. Yu, J. S. Harris, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz wave generation in orientation-patterned GaAs using resonantly enhanced scheme,” Proc. SPIE 6455, 645509 (2007).
[CrossRef]

Grischkowsky, D.

Harris, J. S.

K. L. Vodopyanov, J. E. Schaar, P. S. Kuo, M. M. Fejer, X. Yu, J. S. Harris, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz wave generation in orientation-patterned GaAs using resonantly enhanced scheme,” Proc. SPIE 6455, 645509 (2007).
[CrossRef]

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Ito, H.

I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55  μm pumping,” Appl. Phys. Lett. 88, 071118 (2006).
[CrossRef]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
[CrossRef]

K. Kawase, M. Mizuno, S. Sohoma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, “Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium–tosylate by use of an electronically tuned Ti:sapphire laser,” Opt. Lett. 24, 1065–1067 (1999).
[CrossRef]

Ito, R.

Kawase, K.

Kimura, T.

K. Saito, T. Tanabe, Y. Oyama, K. Suto, T. Kimura, and J. Nishizawa, “Terahertz wave absorption in GaP crystals with different carrier densities,” J. Phys. Chem. Solids 69, 597–600 (2008).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93, 4610–4615 (2003).
[CrossRef]

Kitamoto, A.

Koketsu, K.

Kondo, T.

Kowalczyk, S. P.

L. Ley, R. A. Pollak, F. R. McFeely, S. P. Kowalczyk, and D. A. Shirley, “Total valence-band densities of states of III-V and II-VI compounds from x-ray photoemission spectroscopy,” Phys. Rev. B 9, 600–621 (1974).
[CrossRef]

Kozlov, V. G.

K. L. Vodopyanov, J. E. Schaar, P. S. Kuo, M. M. Fejer, X. Yu, J. S. Harris, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz wave generation in orientation-patterned GaAs using resonantly enhanced scheme,” Proc. SPIE 6455, 645509 (2007).
[CrossRef]

Kuech, T.

Kuo, P. S.

K. L. Vodopyanov, J. E. Schaar, P. S. Kuo, M. M. Fejer, X. Yu, J. S. Harris, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz wave generation in orientation-patterned GaAs using resonantly enhanced scheme,” Proc. SPIE 6455, 645509 (2007).
[CrossRef]

Ley, L.

L. Ley, R. A. Pollak, F. R. McFeely, S. P. Kowalczyk, and D. A. Shirley, “Total valence-band densities of states of III-V and II-VI compounds from x-ray photoemission spectroscopy,” Phys. Rev. B 9, 600–621 (1974).
[CrossRef]

Li, K. S.

Li, Y.

J. Xia, J. Yu, Y. Li, and S. Chen, “Single-mode condition for silicon rib waveguides with large cross sections,” Opt. Eng. 43, 1953–1954 (2004).
[CrossRef]

Linke, R. A.

Lynch, C.

K. L. Vodopyanov, J. E. Schaar, P. S. Kuo, M. M. Fejer, X. Yu, J. S. Harris, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz wave generation in orientation-patterned GaAs using resonantly enhanced scheme,” Proc. SPIE 6455, 645509 (2007).
[CrossRef]

McCaughan, L.

McFeely, F. R.

L. Ley, R. A. Pollak, F. R. McFeely, S. P. Kowalczyk, and D. A. Shirley, “Total valence-band densities of states of III-V and II-VI compounds from x-ray photoemission spectroscopy,” Phys. Rev. B 9, 600–621 (1974).
[CrossRef]

Mizuno, M.

Murphy, T. E.

Nahata, A.

H. Cao, R. A. Linke, and A. Nahata, “Broadband generation of terahertz radiation in a waveguide,” Opt. Lett. 29, 1751–1753 (2004).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Nishizawa, J.

T. Tanabe, S. Ragam, Y. Oyama, T. Sasaki, J. Nishizawa, M. Ohkado, and N. Yamada, “Two-directional CW THz wave generation system by pumping with a single fiber amplifier of near-IR lasers,” IEEE Photon. Technol. Lett. 21, 260–262 (2009).
[CrossRef]

K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference-frequency mixing of near-infrared lasers,” J. Appl. Phys. 105, 063102 (2009).
[CrossRef]

S. Ragam, T. Tanabe, K. Saito, Y. Oyama, and J. Nishizawa, “Enhancement of CW THz wave power under noncollinear phase-matching conditions in difference frequency generation,” J. Lightwave Technol. 27, 3057–3061 (2009).
[CrossRef]

K. Saito, T. Tanabe, Y. Oyama, K. Suto, T. Kimura, and J. Nishizawa, “Terahertz wave absorption in GaP crystals with different carrier densities,” J. Phys. Chem. Solids 69, 597–600 (2008).
[CrossRef]

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-wave frequency-tunable terahertz-wave generation from GaP,” IEEE Photon. Technol. Lett. 18, 2008–2010 (2006).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93, 4610–4615 (2003).
[CrossRef]

Ohkado, M.

T. Tanabe, S. Ragam, Y. Oyama, T. Sasaki, J. Nishizawa, M. Ohkado, and N. Yamada, “Two-directional CW THz wave generation system by pumping with a single fiber amplifier of near-IR lasers,” IEEE Photon. Technol. Lett. 21, 260–262 (2009).
[CrossRef]

Oyama, Y.

T. Tanabe, S. Ragam, Y. Oyama, T. Sasaki, J. Nishizawa, M. Ohkado, and N. Yamada, “Two-directional CW THz wave generation system by pumping with a single fiber amplifier of near-IR lasers,” IEEE Photon. Technol. Lett. 21, 260–262 (2009).
[CrossRef]

K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference-frequency mixing of near-infrared lasers,” J. Appl. Phys. 105, 063102 (2009).
[CrossRef]

T. Tanabe, S. Ragam, and Y. Oyama, “Continuous wave terahertz wave spectrometer based on diode laser pumping: potential applications in high resolution spectroscopy,” Rev. Sci. Instrum. 80, 113105 (2009).
[CrossRef]

S. Ragam, T. Tanabe, K. Saito, Y. Oyama, and J. Nishizawa, “Enhancement of CW THz wave power under noncollinear phase-matching conditions in difference frequency generation,” J. Lightwave Technol. 27, 3057–3061 (2009).
[CrossRef]

K. Saito, T. Tanabe, Y. Oyama, K. Suto, T. Kimura, and J. Nishizawa, “Terahertz wave absorption in GaP crystals with different carrier densities,” J. Phys. Chem. Solids 69, 597–600 (2008).
[CrossRef]

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-wave frequency-tunable terahertz-wave generation from GaP,” IEEE Photon. Technol. Lett. 18, 2008–2010 (2006).
[CrossRef]

Pollak, R. A.

L. Ley, R. A. Pollak, F. R. McFeely, S. P. Kowalczyk, and D. A. Shirley, “Total valence-band densities of states of III-V and II-VI compounds from x-ray photoemission spectroscopy,” Phys. Rev. B 9, 600–621 (1974).
[CrossRef]

Ragam, S.

S. Ragam, T. Tanabe, K. Saito, Y. Oyama, and J. Nishizawa, “Enhancement of CW THz wave power under noncollinear phase-matching conditions in difference frequency generation,” J. Lightwave Technol. 27, 3057–3061 (2009).
[CrossRef]

T. Tanabe, S. Ragam, Y. Oyama, T. Sasaki, J. Nishizawa, M. Ohkado, and N. Yamada, “Two-directional CW THz wave generation system by pumping with a single fiber amplifier of near-IR lasers,” IEEE Photon. Technol. Lett. 21, 260–262 (2009).
[CrossRef]

T. Tanabe, S. Ragam, and Y. Oyama, “Continuous wave terahertz wave spectrometer based on diode laser pumping: potential applications in high resolution spectroscopy,” Rev. Sci. Instrum. 80, 113105 (2009).
[CrossRef]

Rungsawang, R.

I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55  μm pumping,” Appl. Phys. Lett. 88, 071118 (2006).
[CrossRef]

Saito, K.

S. Ragam, T. Tanabe, K. Saito, Y. Oyama, and J. Nishizawa, “Enhancement of CW THz wave power under noncollinear phase-matching conditions in difference frequency generation,” J. Lightwave Technol. 27, 3057–3061 (2009).
[CrossRef]

K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference-frequency mixing of near-infrared lasers,” J. Appl. Phys. 105, 063102 (2009).
[CrossRef]

K. Saito, T. Tanabe, Y. Oyama, K. Suto, T. Kimura, and J. Nishizawa, “Terahertz wave absorption in GaP crystals with different carrier densities,” J. Phys. Chem. Solids 69, 597–600 (2008).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93, 4610–4615 (2003).
[CrossRef]

Sasaki, T.

T. Tanabe, S. Ragam, Y. Oyama, T. Sasaki, J. Nishizawa, M. Ohkado, and N. Yamada, “Two-directional CW THz wave generation system by pumping with a single fiber amplifier of near-IR lasers,” IEEE Photon. Technol. Lett. 21, 260–262 (2009).
[CrossRef]

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-wave frequency-tunable terahertz-wave generation from GaP,” IEEE Photon. Technol. Lett. 18, 2008–2010 (2006).
[CrossRef]

Schaar, J. E.

K. L. Vodopyanov, J. E. Schaar, P. S. Kuo, M. M. Fejer, X. Yu, J. S. Harris, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz wave generation in orientation-patterned GaAs using resonantly enhanced scheme,” Proc. SPIE 6455, 645509 (2007).
[CrossRef]

J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32, 1284–1286 (2007).
[CrossRef]

Shibuya, T.

Shikata, J.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
[CrossRef]

Shirane, M.

Shirley, D. A.

L. Ley, R. A. Pollak, F. R. McFeely, S. P. Kowalczyk, and D. A. Shirley, “Total valence-band densities of states of III-V and II-VI compounds from x-ray photoemission spectroscopy,” Phys. Rev. B 9, 600–621 (1974).
[CrossRef]

Shoji, I.

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Smith, P. R.

D. A. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

Sohoma, S.

Staus, C.

Suizu, K.

Suto, K.

K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference-frequency mixing of near-infrared lasers,” J. Appl. Phys. 105, 063102 (2009).
[CrossRef]

K. Saito, T. Tanabe, Y. Oyama, K. Suto, T. Kimura, and J. Nishizawa, “Terahertz wave absorption in GaP crystals with different carrier densities,” J. Phys. Chem. Solids 69, 597–600 (2008).
[CrossRef]

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-wave frequency-tunable terahertz-wave generation from GaP,” IEEE Photon. Technol. Lett. 18, 2008–2010 (2006).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93, 4610–4615 (2003).
[CrossRef]

Suzuki, H.

I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55  μm pumping,” Appl. Phys. Lett. 88, 071118 (2006).
[CrossRef]

Takahashi, H.

Takenouchi, H.

I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55  μm pumping,” Appl. Phys. Lett. 88, 071118 (2006).
[CrossRef]

Tanabe, T.

T. Tanabe, S. Ragam, Y. Oyama, T. Sasaki, J. Nishizawa, M. Ohkado, and N. Yamada, “Two-directional CW THz wave generation system by pumping with a single fiber amplifier of near-IR lasers,” IEEE Photon. Technol. Lett. 21, 260–262 (2009).
[CrossRef]

T. Tanabe, S. Ragam, and Y. Oyama, “Continuous wave terahertz wave spectrometer based on diode laser pumping: potential applications in high resolution spectroscopy,” Rev. Sci. Instrum. 80, 113105 (2009).
[CrossRef]

K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference-frequency mixing of near-infrared lasers,” J. Appl. Phys. 105, 063102 (2009).
[CrossRef]

S. Ragam, T. Tanabe, K. Saito, Y. Oyama, and J. Nishizawa, “Enhancement of CW THz wave power under noncollinear phase-matching conditions in difference frequency generation,” J. Lightwave Technol. 27, 3057–3061 (2009).
[CrossRef]

K. Saito, T. Tanabe, Y. Oyama, K. Suto, T. Kimura, and J. Nishizawa, “Terahertz wave absorption in GaP crystals with different carrier densities,” J. Phys. Chem. Solids 69, 597–600 (2008).
[CrossRef]

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-wave frequency-tunable terahertz-wave generation from GaP,” IEEE Photon. Technol. Lett. 18, 2008–2010 (2006).
[CrossRef]

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93, 4610–4615 (2003).
[CrossRef]

Taniuchi, T.

Tashiro, H.

Tomita, I.

I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55  μm pumping,” Appl. Phys. Lett. 88, 071118 (2006).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

Tsutsui, T.

Ueno, Y.

I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55  μm pumping,” Appl. Phys. Lett. 88, 071118 (2006).
[CrossRef]

Urata, Y.

Vodopyanov, K. L.

J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, “Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs,” Opt. Lett. 32, 1284–1286 (2007).
[CrossRef]

K. L. Vodopyanov, J. E. Schaar, P. S. Kuo, M. M. Fejer, X. Yu, J. S. Harris, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz wave generation in orientation-patterned GaAs using resonantly enhanced scheme,” Proc. SPIE 6455, 645509 (2007).
[CrossRef]

Wada, S.

Watanabe, Y.

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-wave frequency-tunable terahertz-wave generation from GaP,” IEEE Photon. Technol. Lett. 18, 2008–2010 (2006).
[CrossRef]

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Xia, J.

J. Xia, J. Yu, Y. Li, and S. Chen, “Single-mode condition for silicon rib waveguides with large cross sections,” Opt. Eng. 43, 1953–1954 (2004).
[CrossRef]

Yamada, N.

T. Tanabe, S. Ragam, Y. Oyama, T. Sasaki, J. Nishizawa, M. Ohkado, and N. Yamada, “Two-directional CW THz wave generation system by pumping with a single fiber amplifier of near-IR lasers,” IEEE Photon. Technol. Lett. 21, 260–262 (2009).
[CrossRef]

Yu, J.

J. Xia, J. Yu, Y. Li, and S. Chen, “Single-mode condition for silicon rib waveguides with large cross sections,” Opt. Eng. 43, 1953–1954 (2004).
[CrossRef]

Yu, X.

K. L. Vodopyanov, J. E. Schaar, P. S. Kuo, M. M. Fejer, X. Yu, J. S. Harris, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz wave generation in orientation-patterned GaAs using resonantly enhanced scheme,” Proc. SPIE 6455, 645509 (2007).
[CrossRef]

Zhang, J.

Zhang, W.

Appl. Phys. Lett. (4)

D. A. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284–286 (1984).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, “Terahertz-wave generation from quasi-phase-matched GaP for 1.55  μm pumping,” Appl. Phys. Lett. 88, 071118 (2006).
[CrossRef]

S. Coleman and D. Grischkowsky, “Parallel plate THz transmitter,” Appl. Phys. Lett. 84, 654–656 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13, 705–720 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki, and Y. Oyama, “Continuous-wave frequency-tunable terahertz-wave generation from GaP,” IEEE Photon. Technol. Lett. 18, 2008–2010 (2006).
[CrossRef]

T. Tanabe, S. Ragam, Y. Oyama, T. Sasaki, J. Nishizawa, M. Ohkado, and N. Yamada, “Two-directional CW THz wave generation system by pumping with a single fiber amplifier of near-IR lasers,” IEEE Photon. Technol. Lett. 21, 260–262 (2009).
[CrossRef]

J. Appl. Phys. (2)

T. Tanabe, K. Suto, J. Nishizawa, T. Kimura, and K. Saito, “Frequency–tunable high-power terahertz wave generation from GaP,” J. Appl. Phys. 93, 4610–4615 (2003).
[CrossRef]

K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference-frequency mixing of near-infrared lasers,” J. Appl. Phys. 105, 063102 (2009).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Solids (1)

K. Saito, T. Tanabe, Y. Oyama, K. Suto, T. Kimura, and J. Nishizawa, “Terahertz wave absorption in GaP crystals with different carrier densities,” J. Phys. Chem. Solids 69, 597–600 (2008).
[CrossRef]

J. Phys. D (1)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
[CrossRef]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

Opt. Eng. (1)

J. Xia, J. Yu, Y. Li, and S. Chen, “Single-mode condition for silicon rib waveguides with large cross sections,” Opt. Eng. 43, 1953–1954 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. B (2)

L. Ley, R. A. Pollak, F. R. McFeely, S. P. Kowalczyk, and D. A. Shirley, “Total valence-band densities of states of III-V and II-VI compounds from x-ray photoemission spectroscopy,” Phys. Rev. B 9, 600–621 (1974).
[CrossRef]

F. De Martini, “Infrared generation by coherent excitation of polaritons,” Phys. Rev. B 4, 4556–4578 (1971).
[CrossRef]

Proc. SPIE (1)

K. L. Vodopyanov, J. E. Schaar, P. S. Kuo, M. M. Fejer, X. Yu, J. S. Harris, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz wave generation in orientation-patterned GaAs using resonantly enhanced scheme,” Proc. SPIE 6455, 645509 (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

T. Tanabe, S. Ragam, and Y. Oyama, “Continuous wave terahertz wave spectrometer based on diode laser pumping: potential applications in high resolution spectroscopy,” Rev. Sci. Instrum. 80, 113105 (2009).
[CrossRef]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Other (2)

R. W. Boyd, “Properties of the nonlinear susceptibility,” in Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 1, p. 49.

R. W. Boyd, “Difference-frequency generation and parametric amplification,” in Nonlinear Optics, 3rd ed. (Academic, 2008), Chap. 2, pp. 105–108.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Geometry of the GaP/Si composite waveguide structure. (a) Channel waveguide for THz wave is defined by the Si layer with dimensions T1, T2, and W, respectively. (b) Rib waveguide for near-infrared source is defined by the GaP layers with dimensions s, t, and w, respectively.

Fig. 2.
Fig. 2.

Mode profile of (a) the TM-like (electric field: Ez) and (b) TE-like (electric field: Ex) fundamental mode of the pump and signal waves in the GaP rib waveguide. The wavelength of the pump and signal sources are 1.55 and 1.559 μm, respectively.

Fig. 3.
Fig. 3.

Dispersion relation for the guided THz wave, where the pump wavelength was fixed at 1.55 μm. The modal index required for phase-matching npm and phase mismatch Δk also represented in this figure.

Fig. 4.
Fig. 4.

TE-like fundamental mode of guided THz wave in the GaP/Si composite waveguide at a THz frequency of 5.93 THz (50.59 μm).

Fig. 5.
Fig. 5.

(a) Calculated THz output power PTHz for the GaP-based hybrid waveguide structure. The waveguide length and incident power were L=10, 20, and 40 mm and Pp=Ps=1W, respectively. (b) Power conversion efficiency for 5.93 THz generation and bandwidth as a function of the waveguide length.

Fig. 6.
Fig. 6.

THz wave tuning characteristics as a function of the pump wavelength.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

wt<0.3+r1r2,r=st,r>0.5.
ωpωs=ωTHz,
kpks=kTHz,
d=(000d14000000d25000000d36),
Δk=kpkskTHz=(npωpnsωsnTHzωTHz)/c,
Ei(x,y,z)=12Ei(y)ei(x,z)exp(ikiy)+c.c.,
dApdy+12αpAp+iωsκAsATHzexp(iΔky),dAsdy+12αsAs+iωpκApATHz*exp(iΔky),dATHzdy=12αTHzATHz+iωTHzκApAsa*exp(iΔky),
κ=d142μ0cnpnsnTHzAeff,
Aeff=|ep|2dxdz|es|2dxdz|eTHz|2dxdz|ep*esepdxdz|2.
Ap(y)Ap(0)exp(iαpy/2),As(y)As(0)exp(iαsy/2),|Ap(y)|,|As(y)||ATHz(y)|.
ATHz(y)iωTHzκApAsexp(iαTHzy/2)×exp(αTHzαpαs2+iΔk)y1αTHzαpαs2+iΔk.
PTHz(L)ωTHz2κ2PpPsL2exp[(αpαsαTHz)L/2]×sin2(ΔkL/2)+sinh2[(αpαsαTHz)L/4](ΔkL/2)2+[(αpαsαTHz)L/4]2,
αTHz=E2(x,y)α(x,y)dxdyE2(x,y)dxdy,

Metrics