Abstract

The image quality and collimation in a multiple-optical-axis pattern-integrated interference lithography system are evaluated for an elementary optical system composed of single-element lenses. Image quality and collimation are individually and jointly optimized for these lenses. Example images for a jointly optimized system are simulated using a combination of ray tracing and Fourier analysis. Even with these nonoptimized components, reasonable fidelity is shown to be possible.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, “Pattern-integrated interference [Invited],” Appl. Opt. 52, 61–72 (2013).
    [CrossRef]
  2. M. C. R. Leibovici and T. K. Gaylord, “Pattern-integrated interference lithography: vector modeling and 1D, 2D, and 3D device structures,” J. Vac. Sci. Technol. B 31, 06F501 (2013).
    [CrossRef]
  3. G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012).
    [CrossRef]
  4. G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012).
    [CrossRef]
  5. M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express 20, 23643–23652 (2012).
    [CrossRef]
  6. D. E. Sedivy and T. K. Gaylord, “Characterization of multiple-optical-axis implementation of pattern-integrated interference lithography,” in Frontiers in Optics, Orlando, Florida, United States (October6–10, 2013), paper FTh3F.2.
  7. G. M. Burrow, “Pattern-intergrated interference lithography: single-exposure formation of photonic-crystal lattices with integrated functional elements,” Ph.D. thesis (Georgia Institute of Technology, 2012).
  8. “ZEMAX,” 2003 ed. (ZEMAX Development Corp., 2003).
  9. J. L. Stay, G. M. Burrow, and T. K. Gaylord, “Three-beam interference lithography methodology,” Rev. Sci. Instrum. 82, 023115 (2011).
    [CrossRef]
  10. M. C. R. Leibovici and T. K. Gaylord, “Simulation of photonic-crystal devices fabricated via pattern-integrated interference lithography,” in Frontiers in OpticsOrlando, Florida, United States (October6–10, 2013), paper FW1F.5.

2013 (2)

T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, “Pattern-integrated interference [Invited],” Appl. Opt. 52, 61–72 (2013).
[CrossRef]

M. C. R. Leibovici and T. K. Gaylord, “Pattern-integrated interference lithography: vector modeling and 1D, 2D, and 3D device structures,” J. Vac. Sci. Technol. B 31, 06F501 (2013).
[CrossRef]

2012 (3)

2011 (1)

J. L. Stay, G. M. Burrow, and T. K. Gaylord, “Three-beam interference lithography methodology,” Rev. Sci. Instrum. 82, 023115 (2011).
[CrossRef]

Burrow, G. M.

T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, “Pattern-integrated interference [Invited],” Appl. Opt. 52, 61–72 (2013).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012).
[CrossRef]

M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express 20, 23643–23652 (2012).
[CrossRef]

J. L. Stay, G. M. Burrow, and T. K. Gaylord, “Three-beam interference lithography methodology,” Rev. Sci. Instrum. 82, 023115 (2011).
[CrossRef]

G. M. Burrow, “Pattern-intergrated interference lithography: single-exposure formation of photonic-crystal lattices with integrated functional elements,” Ph.D. thesis (Georgia Institute of Technology, 2012).

Gaylord, T. K.

M. C. R. Leibovici and T. K. Gaylord, “Pattern-integrated interference lithography: vector modeling and 1D, 2D, and 3D device structures,” J. Vac. Sci. Technol. B 31, 06F501 (2013).
[CrossRef]

T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, “Pattern-integrated interference [Invited],” Appl. Opt. 52, 61–72 (2013).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012).
[CrossRef]

M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express 20, 23643–23652 (2012).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012).
[CrossRef]

J. L. Stay, G. M. Burrow, and T. K. Gaylord, “Three-beam interference lithography methodology,” Rev. Sci. Instrum. 82, 023115 (2011).
[CrossRef]

M. C. R. Leibovici and T. K. Gaylord, “Simulation of photonic-crystal devices fabricated via pattern-integrated interference lithography,” in Frontiers in OpticsOrlando, Florida, United States (October6–10, 2013), paper FW1F.5.

D. E. Sedivy and T. K. Gaylord, “Characterization of multiple-optical-axis implementation of pattern-integrated interference lithography,” in Frontiers in Optics, Orlando, Florida, United States (October6–10, 2013), paper FTh3F.2.

Kummer, J. W.

G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012).
[CrossRef]

Leibovici, M. C. R.

T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, “Pattern-integrated interference [Invited],” Appl. Opt. 52, 61–72 (2013).
[CrossRef]

M. C. R. Leibovici and T. K. Gaylord, “Pattern-integrated interference lithography: vector modeling and 1D, 2D, and 3D device structures,” J. Vac. Sci. Technol. B 31, 06F501 (2013).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012).
[CrossRef]

M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express 20, 23643–23652 (2012).
[CrossRef]

G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012).
[CrossRef]

M. C. R. Leibovici and T. K. Gaylord, “Simulation of photonic-crystal devices fabricated via pattern-integrated interference lithography,” in Frontiers in OpticsOrlando, Florida, United States (October6–10, 2013), paper FW1F.5.

Sedivy, D. E.

D. E. Sedivy and T. K. Gaylord, “Characterization of multiple-optical-axis implementation of pattern-integrated interference lithography,” in Frontiers in Optics, Orlando, Florida, United States (October6–10, 2013), paper FTh3F.2.

Stay, J. L.

J. L. Stay, G. M. Burrow, and T. K. Gaylord, “Three-beam interference lithography methodology,” Rev. Sci. Instrum. 82, 023115 (2011).
[CrossRef]

Appl. Opt. (2)

J. Vac. Sci. Technol. B (1)

M. C. R. Leibovici and T. K. Gaylord, “Pattern-integrated interference lithography: vector modeling and 1D, 2D, and 3D device structures,” J. Vac. Sci. Technol. B 31, 06F501 (2013).
[CrossRef]

Opt. Express (1)

Rev. Sci. Instrum. (2)

G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012).
[CrossRef]

J. L. Stay, G. M. Burrow, and T. K. Gaylord, “Three-beam interference lithography methodology,” Rev. Sci. Instrum. 82, 023115 (2011).
[CrossRef]

Other (4)

M. C. R. Leibovici and T. K. Gaylord, “Simulation of photonic-crystal devices fabricated via pattern-integrated interference lithography,” in Frontiers in OpticsOrlando, Florida, United States (October6–10, 2013), paper FW1F.5.

D. E. Sedivy and T. K. Gaylord, “Characterization of multiple-optical-axis implementation of pattern-integrated interference lithography,” in Frontiers in Optics, Orlando, Florida, United States (October6–10, 2013), paper FTh3F.2.

G. M. Burrow, “Pattern-intergrated interference lithography: single-exposure formation of photonic-crystal lattices with integrated functional elements,” Ph.D. thesis (Georgia Institute of Technology, 2012).

“ZEMAX,” 2003 ed. (ZEMAX Development Corp., 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

MOA PIIL configuration concept diagram.

Fig. 2.
Fig. 2.

Single axis of a MOA PIIL configuration.

Fig. 3.
Fig. 3.

Optimized configuration for 30 deg tilted imaging system that approximates a 4 f optical system with (a) incident collimated beam and (b) incident point source at the center of the mask plane.

Fig. 4.
Fig. 4.

Block diagram of the process to optimize d 1 , d 2 , and d 3 (MF, merit function).

Fig. 5.
Fig. 5.

Plots of (a) beam divergence and (b) maximum spot diagram displacement versus tilt angle, θ , of the lens system.

Fig. 6.
Fig. 6.

Plots of (a) mask plane-objective lens system spacing ( d 1 ), (b) objective lens spacing ( d 2 ), and (c) objective lens-image plane spacing ( d 3B ) versus tilt angle, θ , of the lens system.

Fig. 7.
Fig. 7.

X Z plane view of MOA PIIES implemented with SOA optimized lenses. Inset view is the front of the segmented lens set.

Fig. 8.
Fig. 8.

Block diagram of the process to construct the interference pattern in the image plane (a) without and (b) with a mask. Note that the truncation of the Fourier transform for each beam is offset based on the relative incidence to the segmented lens.

Fig. 9.
Fig. 9.

Block diagram of the process to construct a specific mask pattern from ZEMAX data in MATLAB. This process is repeated for each individual mask in an MOA PIIL system.

Fig. 10.
Fig. 10.

Simulated interference patterns in the center of the image plane with (a) no mask, (b) a 90 deg waveguide bend mask, and (c) separate rectangular masks for each beam.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I T ( r ) = I 0 { 1 + j > i N V i j cos [ ( k j k i ) · r + φ i φ j ] } ,
I = 1 2 i = 1 3 | E i | 2 + Re { E 1 E 2 * } + Re { E 1 E 3 * } + Re { E 2 E 3 * } .

Metrics