Abstract

A dual-wedge scanner has potential applications in laser imaging radar. To realize fast scanning imaging without a blind region, the rotation rates of the wedges have to be controlled to perform beam scanning along appropriate track paths. The first-order paraxial approximation method is employed to investigate the 2D scan patterns and path density for different angular frequency ratios of the wedges rotating steadily in the same and opposite directions. The frame rate of no-blind-region scanning imaging is estimated in terms of the imaging coverage requirement. The internal relations between the rotation rates, the instantaneous field of view (IFOV), and the imaging velocity are revealed. The results show that the spiral scanning trace, resulting from co-rotating wedges, is dense in the center and sparse at the edge of the scanning field. The reverse results can be obtained for the rosette scanning trace, resulting from counter-rotating wedges. The denser the scanning trace is, the longer the scan period is. The faster the wedges rotate and the wider the IFOV is, the higher the frame rate is. When the ratio of the width of IFOV to the angular radius of the scanning field is 0.15, the frame rate of no-blind-region spiral scanning imaging can be up to 18 fps for wedge rotation rate of 12000r/min, and that for rosette scanning imaging can be up to 20 fps.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Error sources and their impact on the performance of dual-wedge beam steering systems

Jing-Shyang Horng and Yajun Li
Appl. Opt. 51(18) 4168-4175 (2012)

Laser scanning by rotating polarization gratings

Yuan Zhou, Dapeng Fan, Shixun Fan, Ying Chen, and Guangcan Liu
Appl. Opt. 55(19) 5149-5157 (2016)

Enhanced scanning agility using a double pair of Risley prisms

Gilles Roy, Xiaoying Cao, Robert Bernier, and Simon Roy
Appl. Opt. 54(34) 10213-10226 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription