Abstract

Based on the Green function method, the nonlinear Schrödinger equation is directly solved in the time domain (without Fourier transform). Because the dispersion and nonlinear effects are calculated simultaneously, it does not bring any spurious effect such as the split-step method in which the step size has to be carefully controlled by an error estimation. By this time domain solution, the pulse fission is analyzed, and we obtain the relationship between the minimum T0 (the half-width at 1/e-intensity point of a pulse) and dispersion coefficients (β2, β3, and β4). Thus the concrete dispersion values, which have an impact on ultrashort pulses (the quantity units is femtosecond or attosecond), are listed. It has been demonstrated that pulse fission occurs in the normal and anomalous dispersion regimes, even though fourth-order dispersion and the fifth-order nonlinear effects are not taken into account.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of numerical methods for modeling laser mode locking with saturable gain

Shaokang Wang, Andrew Docherty, Brian S. Marks, and Curtis R. Menyuk
J. Opt. Soc. Am. B 30(11) 3064-3074 (2013)

Optimized split-step method for modeling nonlinear pulse propagation in fiber Bragg gratings

Zeev Toroker and Moshe Horowitz
J. Opt. Soc. Am. B 25(3) 448-457 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (27)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription