Abstract

An Ag/SiO2/Ag sandwich delta nanostar with three sharp angles (30°) is proposed. The extinction efficiency property with a variation in environment refractive index has been investigated in detail by the finite difference time domain method. The refractive index response sensitivity is 482.67nm/RIU. And the correlations between resonance wavelengths and thickness of the dielectric layer are also established. It reveals that as the thickness increases, the peak wavelength turns to red shift, and a tunable resonance wavelength is achieved through the thickness adjusting of the SiO2 layer. The maximum of the electric field enhancement is 833.776 with the thickness of the dielectric layer h=40nm. Moreover, the influence of the vertex truncation on the extinction spectra and the refractive index sensitivity has also been analyzed.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97, 023113 (2010).
    [CrossRef]
  2. F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett. 7, 729–732 (2007).
    [CrossRef]
  3. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
    [CrossRef]
  4. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  5. K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 1–3 (2006).
  6. M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: an analytical study,” Phys. Rev. B 74, 245422 (2006).
    [CrossRef]
  7. F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ion. 32, 198–205 (1989).
    [CrossRef]
  8. C. L. Haynes and R. P. V. Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticles optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
    [CrossRef]
  9. S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7, 1076–1080 (2007).
    [CrossRef]
  10. J. Fischer, N. Vogel, R. Mohammadi, H. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
    [CrossRef]
  11. S. Yin, Q. Deng, X. Luo, C. Du, and Y. Zhang, “The coupled electric field effects on localized surface plasmon resonance in nanoparticle arrays,” J. Appl. Phys. 104, 1–5 (2008).
  12. I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75, 241402 (2007).
    [CrossRef]
  13. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [CrossRef]
  14. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
    [CrossRef]
  15. W. Y. Ma, H. Yang, J. P. Hilton, Q. Lin, J. Y. Liu, L. X. Huang, and J. Yao, “A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructures,” Opt. Express 18, 843–853 (2010).
    [CrossRef]
  16. Y. Xia and N. J. Halas, “Shaped-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bull. 30, 338–348 (2005).
    [CrossRef]
  17. W. Y. Ma, J. Yao, H. Yang, J. Y. Liu, F. Li, J. P. Hilton, and Q. Lin, “Effects of vertex truncation of polyhedral nanostructures on localized surface plasmon resonance,” Opt. Express 17, 14967–14976 (2009).
    [CrossRef]
  18. B. J. Wiley, Y. Chen, J. M. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7, 1032–1036 (2007).
    [CrossRef]

2011 (1)

J. Fischer, N. Vogel, R. Mohammadi, H. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
[CrossRef]

2010 (2)

N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97, 023113 (2010).
[CrossRef]

W. Y. Ma, H. Yang, J. P. Hilton, Q. Lin, J. Y. Liu, L. X. Huang, and J. Yao, “A numerical investigation of the effect of vertex geometry on localized surface plasmon resonance of nanostructures,” Opt. Express 18, 843–853 (2010).
[CrossRef]

2009 (1)

2008 (1)

S. Yin, Q. Deng, X. Luo, C. Du, and Y. Zhang, “The coupled electric field effects on localized surface plasmon resonance in nanoparticle arrays,” J. Appl. Phys. 104, 1–5 (2008).

2007 (4)

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75, 241402 (2007).
[CrossRef]

B. J. Wiley, Y. Chen, J. M. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7, 1032–1036 (2007).
[CrossRef]

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett. 7, 729–732 (2007).
[CrossRef]

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7, 1076–1080 (2007).
[CrossRef]

2006 (3)

K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 1–3 (2006).

M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: an analytical study,” Phys. Rev. B 74, 245422 (2006).
[CrossRef]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

2005 (1)

Y. Xia and N. J. Halas, “Shaped-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bull. 30, 338–348 (2005).
[CrossRef]

2004 (1)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

2003 (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

2001 (1)

C. L. Haynes and R. P. V. Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticles optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
[CrossRef]

1989 (1)

F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ion. 32, 198–205 (1989).
[CrossRef]

Albaladejo, S.

M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: an analytical study,” Phys. Rev. B 74, 245422 (2006).
[CrossRef]

Avrutsky, I.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75, 241402 (2007).
[CrossRef]

Beaudoin, B.

F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ion. 32, 198–205 (1989).
[CrossRef]

Blin, B.

F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ion. 32, 198–205 (1989).
[CrossRef]

Butt, H.

J. Fischer, N. Vogel, R. Mohammadi, H. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
[CrossRef]

Chen, Y.

B. J. Wiley, Y. Chen, J. M. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7, 1032–1036 (2007).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Deng, Q.

S. Yin, Q. Deng, X. Luo, C. Du, and Y. Zhang, “The coupled electric field effects on localized surface plasmon resonance in nanoparticle arrays,” J. Appl. Phys. 104, 1–5 (2008).

Du, C.

S. Yin, Q. Deng, X. Luo, C. Du, and Y. Zhang, “The coupled electric field effects on localized surface plasmon resonance in nanoparticle arrays,” J. Appl. Phys. 104, 1–5 (2008).

Duyne, R. P. V.

C. L. Haynes and R. P. V. Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticles optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
[CrossRef]

Elser, J.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75, 241402 (2007).
[CrossRef]

Fievet, F.

F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ion. 32, 198–205 (1989).
[CrossRef]

Figlarz, M.

F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ion. 32, 198–205 (1989).
[CrossRef]

Fischer, J.

J. Fischer, N. Vogel, R. Mohammadi, H. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
[CrossRef]

Frémaux, B.

N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97, 023113 (2010).
[CrossRef]

Ginger, D.

B. J. Wiley, Y. Chen, J. M. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7, 1032–1036 (2007).
[CrossRef]

Gómez-Medina, R.

M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: an analytical study,” Phys. Rev. B 74, 245422 (2006).
[CrossRef]

Guillot, N.

N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97, 023113 (2010).
[CrossRef]

Hafner, J. H.

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett. 7, 729–732 (2007).
[CrossRef]

Halas, N. J.

Y. Xia and N. J. Halas, “Shaped-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bull. 30, 338–348 (2005).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Hao, F.

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett. 7, 729–732 (2007).
[CrossRef]

Haynes, C. L.

C. L. Haynes and R. P. V. Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticles optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
[CrossRef]

Hilton, J. P.

Huang, L. X.

Jin, R.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Kreiter, M.

J. Fischer, N. Vogel, R. Mohammadi, H. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
[CrossRef]

Lagier, J. P.

F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ion. 32, 198–205 (1989).
[CrossRef]

Lamy de la Chapelle, M.

N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97, 023113 (2010).
[CrossRef]

Landfester, K.

J. Fischer, N. Vogel, R. Mohammadi, H. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
[CrossRef]

Laroche, M.

M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: an analytical study,” Phys. Rev. B 74, 245422 (2006).
[CrossRef]

Li, F.

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Li, Z. Y.

B. J. Wiley, Y. Chen, J. M. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7, 1032–1036 (2007).
[CrossRef]

Lin, Q.

Liu, J. Y.

Luo, X.

S. Yin, Q. Deng, X. Luo, C. Du, and Y. Zhang, “The coupled electric field effects on localized surface plasmon resonance in nanoparticle arrays,” J. Appl. Phys. 104, 1–5 (2008).

Ma, W. Y.

McLellan, J. M.

B. J. Wiley, Y. Chen, J. M. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7, 1032–1036 (2007).
[CrossRef]

Mirkin, C. A.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

Mohammadi, R.

J. Fischer, N. Vogel, R. Mohammadi, H. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
[CrossRef]

Nehl, C. L.

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett. 7, 729–732 (2007).
[CrossRef]

Nordlander, P.

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett. 7, 729–732 (2007).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Péron, O.

N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97, 023113 (2010).
[CrossRef]

Pile, D. F. P.

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7, 1076–1080 (2007).
[CrossRef]

Podolskiy, V.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75, 241402 (2007).
[CrossRef]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Rinnert, E.

N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97, 023113 (2010).
[CrossRef]

Sáenz, J. J.

M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: an analytical study,” Phys. Rev. B 74, 245422 (2006).
[CrossRef]

Salakhutdinov, I.

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75, 241402 (2007).
[CrossRef]

Schatz, G. C.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Shen, H.

N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97, 023113 (2010).
[CrossRef]

Sherry, L. J.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

Su, K. H.

K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 1–3 (2006).

Sun, C.

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7, 1076–1080 (2007).
[CrossRef]

Toury, T.

N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97, 023113 (2010).
[CrossRef]

Van Duyne, R. P.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

Vogel, N.

J. Fischer, N. Vogel, R. Mohammadi, H. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
[CrossRef]

Wang, S.

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7, 1076–1080 (2007).
[CrossRef]

Wei, Q. H.

K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 1–3 (2006).

Weiss, C. K.

J. Fischer, N. Vogel, R. Mohammadi, H. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
[CrossRef]

Wiley, B. J.

B. J. Wiley, Y. Chen, J. M. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7, 1032–1036 (2007).
[CrossRef]

Xia, Y.

B. J. Wiley, Y. Chen, J. M. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7, 1032–1036 (2007).
[CrossRef]

Y. Xia and N. J. Halas, “Shaped-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bull. 30, 338–348 (2005).
[CrossRef]

Xiong, Y.

B. J. Wiley, Y. Chen, J. M. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7, 1032–1036 (2007).
[CrossRef]

Yang, H.

Yao, J.

Yin, S.

S. Yin, Q. Deng, X. Luo, C. Du, and Y. Zhang, “The coupled electric field effects on localized surface plasmon resonance in nanoparticle arrays,” J. Appl. Phys. 104, 1–5 (2008).

Zhang, X.

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7, 1076–1080 (2007).
[CrossRef]

K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 1–3 (2006).

Zhang, Y.

S. Yin, Q. Deng, X. Luo, C. Du, and Y. Zhang, “The coupled electric field effects on localized surface plasmon resonance in nanoparticle arrays,” J. Appl. Phys. 104, 1–5 (2008).

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett. 97, 023113 (2010).
[CrossRef]

K. H. Su, Q. H. Wei, and X. Zhang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 1–3 (2006).

J. Appl. Phys. (1)

S. Yin, Q. Deng, X. Luo, C. Du, and Y. Zhang, “The coupled electric field effects on localized surface plasmon resonance in nanoparticle arrays,” J. Appl. Phys. 104, 1–5 (2008).

J. Phys. Chem. B (2)

C. L. Haynes and R. P. V. Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticles optics,” J. Phys. Chem. B 105, 5599–5611 (2001).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

MRS Bull. (1)

Y. Xia and N. J. Halas, “Shaped-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bull. 30, 338–348 (2005).
[CrossRef]

Nano Lett. (5)

B. J. Wiley, Y. Chen, J. M. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia, “Synthesis and optical properties of silver nanobars and nanorice,” Nano Lett. 7, 1032–1036 (2007).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004).
[CrossRef]

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7, 1076–1080 (2007).
[CrossRef]

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, “Plasmon resonances of a gold nanostar,” Nano Lett. 7, 729–732 (2007).
[CrossRef]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060–2065 (2006).
[CrossRef]

Nanoscale (1)

J. Fischer, N. Vogel, R. Mohammadi, H. Butt, K. Landfester, C. K. Weiss, and M. Kreiter, “Plasmon hybridization and strong near-field enhancements in opposing nanocrescent dimers with tunable resonances,” Nanoscale 3, 4788–4797 (2011).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (2)

I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metal-dielectric multilayers,” Phys. Rev. B 75, 241402 (2007).
[CrossRef]

M. Laroche, S. Albaladejo, R. Gómez-Medina, and J. J. Sáenz, “Tuning the optical response of nanocylinder arrays: an analytical study,” Phys. Rev. B 74, 245422 (2006).
[CrossRef]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Solid State Ion. (1)

F. Fievet, J. P. Lagier, B. Blin, B. Beaudoin, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ion. 32, 198–205 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Sketch of the sandwich delta nanostar. The cross section of the nanostar is composed of a central equilateral triangle and three isosceles triangles joined at its sides.

Fig. 2.
Fig. 2.

(a) Output spectra of the extinction efficiency under different refractive index with h=20nm. (b) Plot of the peak wavelength versus the refractive index (dot line) and its linear fitting (red line).

Fig. 3.
Fig. 3.

(a) Extinction efficiency with changing thickness of the SiO2 layer. (b) Peak wavelength and extinction efficiency of varying dielectric thickness.

Fig. 4.
Fig. 4.

Electric field distribution of x–y plane with the thickness of the dielectric layer h=40nm.

Fig. 5.
Fig. 5.

Cross section in x–y direction of the vertex truncation (red dot line) and of the idealized angle (black line) (left) and the sandwich delta-star nanoplate with vertex truncation (right).

Fig. 6.
Fig. 6.

(a) Extinction results of the vertex truncated sandwich delta-star nanoplate with the truncation ratio of f=0.0891%, 3.11%, 6.68%, 11.6%, and 17.8%, respectively. (b) Refractive index sensitivity distribution of truncated nanostructure with different truncation ratio.

Fig. 7.
Fig. 7.

Near-field enhancement of sandwich delta nanostar with a truncation of 6.68% (a) and the idealized nanostructure when the thickness of the dielectric layer h=20nm (b).

Tables (1)

Tables Icon

Table 1. Different Truncation Ratios

Metrics