Abstract

We report in this paper terahertz gas sensing using a simple 1D photonic crystal cavity. The resonant frequencies of the cavity depend linearly on the refractive index of the ambient gas, which can then be measured by monitoring the resonance shift. Although quite easy to manufacture, this cavity exhibits high-quality factors, facilitating the realization of high sensitivity in the gas refractive index sensing. In our experiment, 6% of the change of hydrogen concentration in air, which corresponds to a refractive index change of 1.4×105, can be steadily detected, and different gas samples can be easily identified. Our experimental results are consistent with the theoretically calculated spectral responses of the cavity using the transfer matrix method.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
    [CrossRef]
  2. H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87, 241119 (2005).
    [CrossRef]
  3. R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95, 171113 (2009).
    [CrossRef]
  4. T. Chen, P. Liu, J. Liu, and Z. Hong, “A terahertz photonic crystal cavity with high Q-factors,” Appl. Phys. B 115, 105–109 (2014).
    [CrossRef]
  5. F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31, 1118–1120 (2006).
    [CrossRef]
  6. H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
    [CrossRef]
  7. P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988).
    [CrossRef]
  8. C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
    [CrossRef]
  9. S. A. Harmon and R. A. Cheville, “Part-per-million gas detection from long-baseline THz spectroscopy,” Appl. Phys. Lett. 85, 2128–2130 (2004).
    [CrossRef]
  10. J. S. Melinger, Y. Yang, M. Mandehgar, and D. Grischkowsky, “THz detection of small molecule vapors in the atmospheric transmission windows,” Opt. Express 20, 6788–6807 (2012).
    [CrossRef]
  11. E. Gerecht, K. O. Douglass, and D. F. Plusquellic, “Chirped-pulse terahertz spectroscopy for broadband trace gas sensing,” Opt. Express 19, 8973–8984 (2011).
    [CrossRef]
  12. A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors 11, 6003–6014 (2011).
    [CrossRef]
  13. T. Yoshie, L. Tang, and S. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors 11, 1972–1991 (2011).
    [CrossRef]
  14. H. Němec, P. Kužel, L. Duvillaret, A. Pashkin, M. Dressel, and M. T. Sebastian, “Highly tunable photonic crystal filter for the terahertz range,” Opt. Lett. 30, 549–551 (2005).
    [CrossRef]
  15. C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
    [CrossRef]
  16. M. Bernier, F. Garet, E. Perret, L. Duvillaret, and S. Tedjini, “Terahertz encoding approach for secured chipless radio frequency identification,” Appl. Opt. 50, 4648–4655 (2011).
    [CrossRef]
  17. J. Li, “Terahertz wave narrow bandpass filter based on photonic crystal,” Opt. Commun. 283, 2647–2650 (2010).
    [CrossRef]
  18. J. He, P. Liu, Y. He, and Z. Hong, “Narrow bandpass tunable terahertz filter based on photonic crystal cavity,” Appl. Opt. 51, 776–779 (2012).
    [CrossRef]
  19. E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007).
    [CrossRef]
  20. J. Jágerská, H. Zhang, Z. Diao, N. L. Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett. 35, 2523–2525 (2010).
    [CrossRef]
  21. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16, 4296–4301 (2008).
    [CrossRef]
  22. S. Chopra, K. McGuire, N. Gothard, and A. M. Rao, “Selective gas detection using a carbon nanotube sensor,” Appl. Phys. Lett. 83, 2280–2282 (2003).
    [CrossRef]
  23. T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
    [CrossRef]
  24. W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008).
    [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2003).

2014 (1)

T. Chen, P. Liu, J. Liu, and Z. Hong, “A terahertz photonic crystal cavity with high Q-factors,” Appl. Phys. B 115, 105–109 (2014).
[CrossRef]

2012 (2)

2011 (4)

E. Gerecht, K. O. Douglass, and D. F. Plusquellic, “Chirped-pulse terahertz spectroscopy for broadband trace gas sensing,” Opt. Express 19, 8973–8984 (2011).
[CrossRef]

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors 11, 6003–6014 (2011).
[CrossRef]

T. Yoshie, L. Tang, and S. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors 11, 1972–1991 (2011).
[CrossRef]

M. Bernier, F. Garet, E. Perret, L. Duvillaret, and S. Tedjini, “Terahertz encoding approach for secured chipless radio frequency identification,” Appl. Opt. 50, 4648–4655 (2011).
[CrossRef]

2010 (4)

J. Li, “Terahertz wave narrow bandpass filter based on photonic crystal,” Opt. Commun. 283, 2647–2650 (2010).
[CrossRef]

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[CrossRef]

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

J. Jágerská, H. Zhang, Z. Diao, N. L. Thomas, and R. Houdré, “Refractive index sensing with an air-slot photonic crystal nanocavity,” Opt. Lett. 35, 2523–2525 (2010).
[CrossRef]

2009 (1)

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95, 171113 (2009).
[CrossRef]

2008 (3)

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16, 4296–4301 (2008).
[CrossRef]

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008).
[CrossRef]

2007 (1)

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007).
[CrossRef]

2006 (1)

2005 (2)

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87, 241119 (2005).
[CrossRef]

H. Němec, P. Kužel, L. Duvillaret, A. Pashkin, M. Dressel, and M. T. Sebastian, “Highly tunable photonic crystal filter for the terahertz range,” Opt. Lett. 30, 549–551 (2005).
[CrossRef]

2004 (1)

S. A. Harmon and R. A. Cheville, “Part-per-million gas detection from long-baseline THz spectroscopy,” Appl. Phys. Lett. 85, 2128–2130 (2004).
[CrossRef]

2003 (1)

S. Chopra, K. McGuire, N. Gothard, and A. M. Rao, “Selective gas detection using a carbon nanotube sensor,” Appl. Phys. Lett. 83, 2280–2282 (2003).
[CrossRef]

2002 (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

1989 (1)

C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
[CrossRef]

1988 (1)

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988).
[CrossRef]

Abbott, D.

W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008).
[CrossRef]

Andrews, A. M.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors 11, 6003–6014 (2011).
[CrossRef]

Astley, V.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95, 171113 (2009).
[CrossRef]

Auston, D. H.

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988).
[CrossRef]

Averitt, R. D.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Benz, A.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors 11, 6003–6014 (2011).
[CrossRef]

Bernier, M.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2003).

Brandstetter, M.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors 11, 6003–6014 (2011).
[CrossRef]

Chen, L.

Chen, T.

T. Chen, P. Liu, J. Liu, and Z. Hong, “A terahertz photonic crystal cavity with high Q-factors,” Appl. Phys. B 115, 105–109 (2014).
[CrossRef]

Cheville, R. A.

S. A. Harmon and R. A. Cheville, “Part-per-million gas detection from long-baseline THz spectroscopy,” Appl. Phys. Lett. 85, 2128–2130 (2004).
[CrossRef]

Chopra, S.

S. Chopra, K. McGuire, N. Gothard, and A. M. Rao, “Selective gas detection using a carbon nanotube sensor,” Appl. Phys. Lett. 83, 2280–2282 (2003).
[CrossRef]

Citrin, D. S.

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87, 241119 (2005).
[CrossRef]

Descrovi, E.

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007).
[CrossRef]

Detz, H.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors 11, 6003–6014 (2011).
[CrossRef]

Deutsch, C.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors 11, 6003–6014 (2011).
[CrossRef]

Diao, Z.

Dominici, L.

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007).
[CrossRef]

Douglass, K. O.

Dressel, M.

Duvillaret, L.

Ekmekci, E.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Fan, K.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Fattinger, C.

C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
[CrossRef]

Ferguson, B.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Fischer, B. M.

W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008).
[CrossRef]

Forchel, A.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Frascella, F.

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007).
[CrossRef]

Garet, F.

Geobaldo, F.

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007).
[CrossRef]

Gerecht, E.

Gothard, N.

S. Chopra, K. McGuire, N. Gothard, and A. M. Rao, “Selective gas detection using a carbon nanotube sensor,” Appl. Phys. Lett. 83, 2280–2282 (2003).
[CrossRef]

Grischkowsky, D.

Harmon, S. A.

S. A. Harmon and R. A. Cheville, “Part-per-million gas detection from long-baseline THz spectroscopy,” Appl. Phys. Lett. 85, 2128–2130 (2004).
[CrossRef]

Hayashi, S.

He, J.

He, Y.

Höfling, S.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Hong, Z.

T. Chen, P. Liu, J. Liu, and Z. Hong, “A terahertz photonic crystal cavity with high Q-factors,” Appl. Phys. B 115, 105–109 (2014).
[CrossRef]

J. He, P. Liu, Y. He, and Z. Hong, “Narrow bandpass tunable terahertz filter based on photonic crystal cavity,” Appl. Opt. 51, 776–779 (2012).
[CrossRef]

Houdré, R.

Jágerská, J.

Jansen, C.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[CrossRef]

Kamp, M.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Kaplan, D. L.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Kato, E.

Kawase, K.

Klang, P.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors 11, 6003–6014 (2011).
[CrossRef]

Koch, M.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[CrossRef]

Kurt, H.

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87, 241119 (2005).
[CrossRef]

Kužel, P.

Kwon, S.-H.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Li, J.

J. Li, “Terahertz wave narrow bandpass filter based on photonic crystal,” Opt. Commun. 283, 2647–2650 (2010).
[CrossRef]

Lipson, M.

Liu, J.

T. Chen, P. Liu, J. Liu, and Z. Hong, “A terahertz photonic crystal cavity with high Q-factors,” Appl. Phys. B 115, 105–109 (2014).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95, 171113 (2009).
[CrossRef]

Liu, M.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Liu, P.

T. Chen, P. Liu, J. Liu, and Z. Hong, “A terahertz photonic crystal cavity with high Q-factors,” Appl. Phys. B 115, 105–109 (2014).
[CrossRef]

J. He, P. Liu, Y. He, and Z. Hong, “Narrow bandpass tunable terahertz filter based on photonic crystal cavity,” Appl. Opt. 51, 776–779 (2012).
[CrossRef]

Mandehgar, M.

McGuire, K.

S. Chopra, K. McGuire, N. Gothard, and A. M. Rao, “Selective gas detection using a carbon nanotube sensor,” Appl. Phys. Lett. 83, 2280–2282 (2003).
[CrossRef]

Melinger, J. S.

Mendis, R.

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95, 171113 (2009).
[CrossRef]

Michelotti, F.

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007).
[CrossRef]

Mittleman, D. M.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95, 171113 (2009).
[CrossRef]

Miyamaru, F.

Mondia, J. P.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Nemec, H.

Nuss, M. C.

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988).
[CrossRef]

Ogawa, Y.

Omenetto, F. G.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Otani, C.

Padilla, W. J.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Pashkin, A.

Perret, E.

Plusquellic, D. F.

Rao, A. M.

S. Chopra, K. McGuire, N. Gothard, and A. M. Rao, “Selective gas detection using a carbon nanotube sensor,” Appl. Phys. Lett. 83, 2280–2282 (2003).
[CrossRef]

Robinson, J. T.

Schlereth, T. W.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Schrenk, W.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors 11, 6003–6014 (2011).
[CrossRef]

Sciacca, B.

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007).
[CrossRef]

Sebastian, M. T.

Smith, P. R.

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988).
[CrossRef]

Stichel, T.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Strasser, G.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors 11, 6003–6014 (2011).
[CrossRef]

Strikwerda, A. C.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Su, S.

T. Yoshie, L. Tang, and S. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors 11, 1972–1991 (2011).
[CrossRef]

Sünner, T.

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

Tang, L.

T. Yoshie, L. Tang, and S. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors 11, 1972–1991 (2011).
[CrossRef]

Tao, H.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Tedjini, S.

Thomas, N. L.

Unterrainer, K.

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors 11, 6003–6014 (2011).
[CrossRef]

Wietzke, S.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[CrossRef]

Withayachumnankul, W.

W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2003).

Yang, Y.

Yoshida, H.

Yoshie, T.

T. Yoshie, L. Tang, and S. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors 11, 1972–1991 (2011).
[CrossRef]

Zhang, H.

Zhang, X.

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

Zhang, X. C.

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

T. Chen, P. Liu, J. Liu, and Z. Hong, “A terahertz photonic crystal cavity with high Q-factors,” Appl. Phys. B 115, 105–109 (2014).
[CrossRef]

Appl. Phys. Lett. (9)

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87, 241119 (2005).
[CrossRef]

R. Mendis, V. Astley, J. Liu, and D. M. Mittleman, “Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity,” Appl. Phys. Lett. 95, 171113 (2009).
[CrossRef]

C. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett. 54, 490–492 (1989).
[CrossRef]

S. A. Harmon and R. A. Cheville, “Part-per-million gas detection from long-baseline THz spectroscopy,” Appl. Phys. Lett. 85, 2128–2130 (2004).
[CrossRef]

E. Descrovi, F. Frascella, B. Sciacca, F. Geobaldo, L. Dominici, and F. Michelotti, “Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications,” Appl. Phys. Lett. 91, 241109 (2007).
[CrossRef]

H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications,” Appl. Phys. Lett. 97, 261909 (2010).
[CrossRef]

S. Chopra, K. McGuire, N. Gothard, and A. M. Rao, “Selective gas detection using a carbon nanotube sensor,” Appl. Phys. Lett. 83, 2280–2282 (2003).
[CrossRef]

T. Sünner, T. Stichel, S.-H. Kwon, T. W. Schlereth, S. Höfling, M. Kamp, and A. Forchel, “Photonic crystal cavity based gas sensor,” Appl. Phys. Lett. 92, 261112 (2008).
[CrossRef]

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. Quantum Electron. 24, 255–260 (1988).
[CrossRef]

Nat. Mater. (1)

B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Opt. Commun. (2)

J. Li, “Terahertz wave narrow bandpass filter based on photonic crystal,” Opt. Commun. 283, 2647–2650 (2010).
[CrossRef]

W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Sensors (2)

A. Benz, C. Deutsch, M. Brandstetter, A. M. Andrews, P. Klang, H. Detz, W. Schrenk, G. Strasser, and K. Unterrainer, “Terahertz active photonic crystals for condensed gas sensing,” Sensors 11, 6003–6014 (2011).
[CrossRef]

T. Yoshie, L. Tang, and S. Su, “Optical microcavity: sensing down to single molecules and atoms,” Sensors 11, 1972–1991 (2011).
[CrossRef]

Other (1)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of the terahertz (THz) 1D photonic crystal cavity. The 1D photonic crystal cavity consists of two Bragg mirrors, separated by a gas gap. The spacer material we chose is double-sided adhesive made of polyethylene.

Fig. 2.
Fig. 2.

Experimentally obtained transmittance (solid line) and calculated transmittance (dotted line) of the cavity in the frequency range 290–360 GHz (dC=9.1mm). Inset is a magnified image of the measurement results around 328 GHz when the cavity and air gaps are filled with air.

Fig. 3.
Fig. 3.

Calculated linear dependence of the resonant frequency on the refractive index of ambient gas.

Fig. 4.
Fig. 4.

(a) Normalized transmission (dots) of the cavity in hydrogen–air gas mixtures. They are fit to Lorentzian line shapes (solid curves). (b) Clear blueshift of the measurement resonance frequency with increasing concentration of hydrogen in air.

Fig. 5.
Fig. 5.

Normalized transmission (dots) of the cavity in different gases. They are fit to Lorentzian line shapes (solid curves).

Metrics