Abstract

Unique light-trapping structures that improve the efficiency of thin-film solar cells require advanced computational methods that can simulate the propagation of light through the thickness of each material in the solar cell. The simulations community that uses the Lorentz–Drude (LD) model cannot precisely simulate the propagation of light through the entire spectrum of the Sun, due to the difficulty in extrapolating the coefficients of each solar cell material. In this paper, a new technique for modeling dispersive and absorptive material over the Sun’s entire wavelength range (200–1700 nm) using the LD model is suggested. The new numerical models are used for simulating light propagation through various one-dimensional light-trapping structures, including metal backreflectors and distributed Bragg reflectors. All the numerical simulation results show agreement with previously published theoretical and experimental results. The proposed simulation technique will help the simulations community in using the LD model to simulate the propagation of light in solar cells more accurately.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Herzinger, B. Johs, M. A. McGahan, and J. A. Woollam, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3331 (1998).
    [CrossRef]
  2. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  3. A. Deinega and S. John, “Effective optical response of silicon to sunlight in the finite-difference time-domain method,” Opt. Lett. 37, 112–114 (2012).
    [CrossRef]
  4. A. Deinega, I. Valuev, B. Potapkin, and Y. Lozovik, “Minimizing light reflection from dielectric,” J. Opt. Soc. Am. A 28, 770–777 (2011).
    [CrossRef]
  5. M. Mishrikey, “Analysis and design of metamaterials,” Ph. D. thesis (Swiss Federal Institutes of Technology Zurich, 2010).
  6. A. V. Shah, H. Schade, M. Vanecek, I. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
    [CrossRef]
  7. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovoltaics 20, 12–20 (2012).
    [CrossRef]
  8. B. Swatowska, T. Stapinski, K. Drabczyk, and P. Panek, “The role of antireflective coatings in silicon solar cells—the influence on their electrical parameters,” Opt. Appl. XLI, 487–492 (2011).
  9. W. Guang-Hong, Z. Lei, Y. Bao-Jun, C. Jing-Wei, W. Ge, D. Hong-Wei, and W. Wen-Jing, “The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells,” Chin. Phys. B 22, 68–71 (2013).
  10. K. Söderström, J. Escarré, O. Cubero, F. Haug, S. Perregaux, and C. Ballif, “UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photovoltaics 19, 202–210 (2011).
    [CrossRef]
  11. J. Gjessing, “Photonic crystals for light trapping in solar cells,” Ph.D. thesis (University of Oslo, Department of Physics, 2011).
  12. J. Gjessing, A. S. Sudbø, and E. S. Marstein, “A novel back side light trapping structures for thin film solar cells,” J. Eur. Opt. Soc. Rapid Pub. 6, 11020 (2011).
    [CrossRef]
  13. J. Gjessing, A. S. Sudbø, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110, 033104 (2011).
    [CrossRef]
  14. R. Ghannam, N. Moll, and B. Michel, “Light reflecting grating structures for thin film photovoltaic devices,” Patent pending, IBM reference CH820100136.
  15. J. D. Joannopoulos, “MEEP,” Massachusetts Institute of Technology, 2012, http://ab-initio.mit.edu/wiki/index.php/Meep .
  16. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Ermel, J. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  17. “Optical Properties of Silicon,” Virginia Semiconductor, Inc., Fredericksburg, 2009.
  18. E. Hecht, Optics, 4th ed. (Adelphi University, 2002).
  19. Larouche, “Openfilter thin film simulator,” 1March2006, http://www.polymtl.ca/larfis8 .
  20. H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108, 044505 (2010).
    [CrossRef]
  21. C. Jun-Sik, B. Sanghun, P. Sang-Hyun, J. Hyung Park, Y. Jinsu, and Y. Kyung Hoon, “Effect of nanotextured back reflectors on light trapping in flexible silicon thin-film solar cells,” Sol. Energy Mater. Sol. Cells 102, 50–57 (2012).
    [CrossRef]
  22. Y. Guozhen, S. Laura, O. M. Jessica, Y. Baojie, Y. Jeffrey, and G. Subhendu, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
    [CrossRef]
  23. R. Biswasa and D. Zhoua, “Enhancing light-trapping and efficiency of solar cells with photonic crystals,” in Materials Research Society Spring Meeting: Symposium A—Amorphous and Polycrystalline Thin-Film Silicon Science and Technology, Germany, 2007.

2013

W. Guang-Hong, Z. Lei, Y. Bao-Jun, C. Jing-Wei, W. Ge, D. Hong-Wei, and W. Wen-Jing, “The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells,” Chin. Phys. B 22, 68–71 (2013).

2012

C. Jun-Sik, B. Sanghun, P. Sang-Hyun, J. Hyung Park, Y. Jinsu, and Y. Kyung Hoon, “Effect of nanotextured back reflectors on light trapping in flexible silicon thin-film solar cells,” Sol. Energy Mater. Sol. Cells 102, 50–57 (2012).
[CrossRef]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovoltaics 20, 12–20 (2012).
[CrossRef]

A. Deinega and S. John, “Effective optical response of silicon to sunlight in the finite-difference time-domain method,” Opt. Lett. 37, 112–114 (2012).
[CrossRef]

2011

B. Swatowska, T. Stapinski, K. Drabczyk, and P. Panek, “The role of antireflective coatings in silicon solar cells—the influence on their electrical parameters,” Opt. Appl. XLI, 487–492 (2011).

A. Deinega, I. Valuev, B. Potapkin, and Y. Lozovik, “Minimizing light reflection from dielectric,” J. Opt. Soc. Am. A 28, 770–777 (2011).
[CrossRef]

K. Söderström, J. Escarré, O. Cubero, F. Haug, S. Perregaux, and C. Ballif, “UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photovoltaics 19, 202–210 (2011).
[CrossRef]

J. Gjessing, A. S. Sudbø, and E. S. Marstein, “A novel back side light trapping structures for thin film solar cells,” J. Eur. Opt. Soc. Rapid Pub. 6, 11020 (2011).
[CrossRef]

J. Gjessing, A. S. Sudbø, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110, 033104 (2011).
[CrossRef]

2010

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Ermel, J. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108, 044505 (2010).
[CrossRef]

2009

Y. Guozhen, S. Laura, O. M. Jessica, Y. Baojie, Y. Jeffrey, and G. Subhendu, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[CrossRef]

2004

A. V. Shah, H. Schade, M. Vanecek, I. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

1998

C. M. Herzinger, B. Johs, M. A. McGahan, and J. A. Woollam, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3331 (1998).
[CrossRef]

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
[CrossRef]

Bailat, J.

A. V. Shah, H. Schade, M. Vanecek, I. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Ballif, C.

K. Söderström, J. Escarré, O. Cubero, F. Haug, S. Perregaux, and C. Ballif, “UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photovoltaics 19, 202–210 (2011).
[CrossRef]

Baojie, Y.

Y. Guozhen, S. Laura, O. M. Jessica, Y. Baojie, Y. Jeffrey, and G. Subhendu, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[CrossRef]

Bao-Jun, Y.

W. Guang-Hong, Z. Lei, Y. Bao-Jun, C. Jing-Wei, W. Ge, D. Hong-Wei, and W. Wen-Jing, “The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells,” Chin. Phys. B 22, 68–71 (2013).

Biswasa, R.

R. Biswasa and D. Zhoua, “Enhancing light-trapping and efficiency of solar cells with photonic crystals,” in Materials Research Society Spring Meeting: Symposium A—Amorphous and Polycrystalline Thin-Film Silicon Science and Technology, Germany, 2007.

Cubero, O.

K. Söderström, J. Escarré, O. Cubero, F. Haug, S. Perregaux, and C. Ballif, “UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photovoltaics 19, 202–210 (2011).
[CrossRef]

Deinega, A.

Djurišic, A. B.

Drabczyk, K.

B. Swatowska, T. Stapinski, K. Drabczyk, and P. Panek, “The role of antireflective coatings in silicon solar cells—the influence on their electrical parameters,” Opt. Appl. XLI, 487–492 (2011).

Droz, C.

A. V. Shah, H. Schade, M. Vanecek, I. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovoltaics 20, 12–20 (2012).
[CrossRef]

Elazar, J. M.

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovoltaics 20, 12–20 (2012).
[CrossRef]

Ermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Ermel, J. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Escarré, J.

K. Söderström, J. Escarré, O. Cubero, F. Haug, S. Perregaux, and C. Ballif, “UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photovoltaics 19, 202–210 (2011).
[CrossRef]

Ge, W.

W. Guang-Hong, Z. Lei, Y. Bao-Jun, C. Jing-Wei, W. Ge, D. Hong-Wei, and W. Wen-Jing, “The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells,” Chin. Phys. B 22, 68–71 (2013).

Ghannam, R.

R. Ghannam, N. Moll, and B. Michel, “Light reflecting grating structures for thin film photovoltaic devices,” Patent pending, IBM reference CH820100136.

Gjessing, J.

J. Gjessing, A. S. Sudbø, and E. S. Marstein, “A novel back side light trapping structures for thin film solar cells,” J. Eur. Opt. Soc. Rapid Pub. 6, 11020 (2011).
[CrossRef]

J. Gjessing, A. S. Sudbø, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110, 033104 (2011).
[CrossRef]

J. Gjessing, “Photonic crystals for light trapping in solar cells,” Ph.D. thesis (University of Oslo, Department of Physics, 2011).

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovoltaics 20, 12–20 (2012).
[CrossRef]

Guang-Hong, W.

W. Guang-Hong, Z. Lei, Y. Bao-Jun, C. Jing-Wei, W. Ge, D. Hong-Wei, and W. Wen-Jing, “The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells,” Chin. Phys. B 22, 68–71 (2013).

Guozhen, Y.

Y. Guozhen, S. Laura, O. M. Jessica, Y. Baojie, Y. Jeffrey, and G. Subhendu, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[CrossRef]

Haug, F.

K. Söderström, J. Escarré, O. Cubero, F. Haug, S. Perregaux, and C. Ballif, “UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photovoltaics 19, 202–210 (2011).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 4th ed. (Adelphi University, 2002).

Herzinger, C. M.

C. M. Herzinger, B. Johs, M. A. McGahan, and J. A. Woollam, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3331 (1998).
[CrossRef]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovoltaics 20, 12–20 (2012).
[CrossRef]

Hong-Wei, D.

W. Guang-Hong, Z. Lei, Y. Bao-Jun, C. Jing-Wei, W. Ge, D. Hong-Wei, and W. Wen-Jing, “The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells,” Chin. Phys. B 22, 68–71 (2013).

Hyung Park, J.

C. Jun-Sik, B. Sanghun, P. Sang-Hyun, J. Hyung Park, Y. Jinsu, and Y. Kyung Hoon, “Effect of nanotextured back reflectors on light trapping in flexible silicon thin-film solar cells,” Sol. Energy Mater. Sol. Cells 102, 50–57 (2012).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Ermel, J. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Jeffrey, Y.

Y. Guozhen, S. Laura, O. M. Jessica, Y. Baojie, Y. Jeffrey, and G. Subhendu, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[CrossRef]

Jessica, O. M.

Y. Guozhen, S. Laura, O. M. Jessica, Y. Baojie, Y. Jeffrey, and G. Subhendu, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[CrossRef]

Jia, H.

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108, 044505 (2010).
[CrossRef]

Jing-Wei, C.

W. Guang-Hong, Z. Lei, Y. Bao-Jun, C. Jing-Wei, W. Ge, D. Hong-Wei, and W. Wen-Jing, “The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells,” Chin. Phys. B 22, 68–71 (2013).

Jinsu, Y.

C. Jun-Sik, B. Sanghun, P. Sang-Hyun, J. Hyung Park, Y. Jinsu, and Y. Kyung Hoon, “Effect of nanotextured back reflectors on light trapping in flexible silicon thin-film solar cells,” Sol. Energy Mater. Sol. Cells 102, 50–57 (2012).
[CrossRef]

Joannopoulos, J.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Ermel, J. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

John, S.

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Ermel, J. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Johs, B.

C. M. Herzinger, B. Johs, M. A. McGahan, and J. A. Woollam, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3331 (1998).
[CrossRef]

Jun-Sik, C.

C. Jun-Sik, B. Sanghun, P. Sang-Hyun, J. Hyung Park, Y. Jinsu, and Y. Kyung Hoon, “Effect of nanotextured back reflectors on light trapping in flexible silicon thin-film solar cells,” Sol. Energy Mater. Sol. Cells 102, 50–57 (2012).
[CrossRef]

Kondo, M.

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108, 044505 (2010).
[CrossRef]

Kroll, U.

A. V. Shah, H. Schade, M. Vanecek, I. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Kyung Hoon, Y.

C. Jun-Sik, B. Sanghun, P. Sang-Hyun, J. Hyung Park, Y. Jinsu, and Y. Kyung Hoon, “Effect of nanotextured back reflectors on light trapping in flexible silicon thin-film solar cells,” Sol. Energy Mater. Sol. Cells 102, 50–57 (2012).
[CrossRef]

Laura, S.

Y. Guozhen, S. Laura, O. M. Jessica, Y. Baojie, Y. Jeffrey, and G. Subhendu, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[CrossRef]

Lei, Z.

W. Guang-Hong, Z. Lei, Y. Bao-Jun, C. Jing-Wei, W. Ge, D. Hong-Wei, and W. Wen-Jing, “The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells,” Chin. Phys. B 22, 68–71 (2013).

Lozovik, Y.

Majewski, M. L.

Marstein, E. S.

J. Gjessing, A. S. Sudbø, and E. S. Marstein, “A novel back side light trapping structures for thin film solar cells,” J. Eur. Opt. Soc. Rapid Pub. 6, 11020 (2011).
[CrossRef]

J. Gjessing, A. S. Sudbø, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110, 033104 (2011).
[CrossRef]

McGahan, M. A.

C. M. Herzinger, B. Johs, M. A. McGahan, and J. A. Woollam, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3331 (1998).
[CrossRef]

Meier, I.

A. V. Shah, H. Schade, M. Vanecek, I. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Michel, B.

R. Ghannam, N. Moll, and B. Michel, “Light reflecting grating structures for thin film photovoltaic devices,” Patent pending, IBM reference CH820100136.

Mishrikey, M.

M. Mishrikey, “Analysis and design of metamaterials,” Ph. D. thesis (Swiss Federal Institutes of Technology Zurich, 2010).

Moll, N.

R. Ghannam, N. Moll, and B. Michel, “Light reflecting grating structures for thin film photovoltaic devices,” Patent pending, IBM reference CH820100136.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Ermel, J. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Panek, P.

B. Swatowska, T. Stapinski, K. Drabczyk, and P. Panek, “The role of antireflective coatings in silicon solar cells—the influence on their electrical parameters,” Opt. Appl. XLI, 487–492 (2011).

Perregaux, S.

K. Söderström, J. Escarré, O. Cubero, F. Haug, S. Perregaux, and C. Ballif, “UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photovoltaics 19, 202–210 (2011).
[CrossRef]

Potapkin, B.

Rakic, A. D.

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Ermel, J. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Sai, H.

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108, 044505 (2010).
[CrossRef]

Sanghun, B.

C. Jun-Sik, B. Sanghun, P. Sang-Hyun, J. Hyung Park, Y. Jinsu, and Y. Kyung Hoon, “Effect of nanotextured back reflectors on light trapping in flexible silicon thin-film solar cells,” Sol. Energy Mater. Sol. Cells 102, 50–57 (2012).
[CrossRef]

Sang-Hyun, P.

C. Jun-Sik, B. Sanghun, P. Sang-Hyun, J. Hyung Park, Y. Jinsu, and Y. Kyung Hoon, “Effect of nanotextured back reflectors on light trapping in flexible silicon thin-film solar cells,” Sol. Energy Mater. Sol. Cells 102, 50–57 (2012).
[CrossRef]

Schade, H.

A. V. Shah, H. Schade, M. Vanecek, I. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Shah, A. V.

A. V. Shah, H. Schade, M. Vanecek, I. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Söderström, K.

K. Söderström, J. Escarré, O. Cubero, F. Haug, S. Perregaux, and C. Ballif, “UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photovoltaics 19, 202–210 (2011).
[CrossRef]

Stapinski, T.

B. Swatowska, T. Stapinski, K. Drabczyk, and P. Panek, “The role of antireflective coatings in silicon solar cells—the influence on their electrical parameters,” Opt. Appl. XLI, 487–492 (2011).

Subhendu, G.

Y. Guozhen, S. Laura, O. M. Jessica, Y. Baojie, Y. Jeffrey, and G. Subhendu, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[CrossRef]

Sudbø, A. S.

J. Gjessing, A. S. Sudbø, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110, 033104 (2011).
[CrossRef]

J. Gjessing, A. S. Sudbø, and E. S. Marstein, “A novel back side light trapping structures for thin film solar cells,” J. Eur. Opt. Soc. Rapid Pub. 6, 11020 (2011).
[CrossRef]

Swatowska, B.

B. Swatowska, T. Stapinski, K. Drabczyk, and P. Panek, “The role of antireflective coatings in silicon solar cells—the influence on their electrical parameters,” Opt. Appl. XLI, 487–492 (2011).

Vallat-Sauvain, E.

A. V. Shah, H. Schade, M. Vanecek, I. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Valuev, I.

Vanecek, M.

A. V. Shah, H. Schade, M. Vanecek, I. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovoltaics 20, 12–20 (2012).
[CrossRef]

Wen-Jing, W.

W. Guang-Hong, Z. Lei, Y. Bao-Jun, C. Jing-Wei, W. Ge, D. Hong-Wei, and W. Wen-Jing, “The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells,” Chin. Phys. B 22, 68–71 (2013).

Woollam, J. A.

C. M. Herzinger, B. Johs, M. A. McGahan, and J. A. Woollam, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3331 (1998).
[CrossRef]

Wyrsch, N.

A. V. Shah, H. Schade, M. Vanecek, I. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

Zhoua, D.

R. Biswasa and D. Zhoua, “Enhancing light-trapping and efficiency of solar cells with photonic crystals,” in Materials Research Society Spring Meeting: Symposium A—Amorphous and Polycrystalline Thin-Film Silicon Science and Technology, Germany, 2007.

Appl. Opt.

Appl. Phys. Lett.

Y. Guozhen, S. Laura, O. M. Jessica, Y. Baojie, Y. Jeffrey, and G. Subhendu, “Optimization of back reflector for high efficiency hydrogenated nanocrystalline silicon solar cells,” Appl. Phys. Lett. 95, 263501 (2009).
[CrossRef]

Chin. Phys. B

W. Guang-Hong, Z. Lei, Y. Bao-Jun, C. Jing-Wei, W. Ge, D. Hong-Wei, and W. Wen-Jing, “The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells,” Chin. Phys. B 22, 68–71 (2013).

Comput. Phys. Commun.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Ermel, J. Joannopoulos, and S. G. Johnson, “Meep: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

J. Appl. Phys.

H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys. 108, 044505 (2010).
[CrossRef]

J. Gjessing, A. S. Sudbø, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110, 033104 (2011).
[CrossRef]

C. M. Herzinger, B. Johs, M. A. McGahan, and J. A. Woollam, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3331 (1998).
[CrossRef]

J. Eur. Opt. Soc. Rapid Pub.

J. Gjessing, A. S. Sudbø, and E. S. Marstein, “A novel back side light trapping structures for thin film solar cells,” J. Eur. Opt. Soc. Rapid Pub. 6, 11020 (2011).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Appl.

B. Swatowska, T. Stapinski, K. Drabczyk, and P. Panek, “The role of antireflective coatings in silicon solar cells—the influence on their electrical parameters,” Opt. Appl. XLI, 487–492 (2011).

Opt. Lett.

Prog. Photovoltaics

A. V. Shah, H. Schade, M. Vanecek, I. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovoltaics 12, 113–142 (2004).
[CrossRef]

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovoltaics 20, 12–20 (2012).
[CrossRef]

K. Söderström, J. Escarré, O. Cubero, F. Haug, S. Perregaux, and C. Ballif, “UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells,” Prog. Photovoltaics 19, 202–210 (2011).
[CrossRef]

Sol. Energy Mater. Sol. Cells

C. Jun-Sik, B. Sanghun, P. Sang-Hyun, J. Hyung Park, Y. Jinsu, and Y. Kyung Hoon, “Effect of nanotextured back reflectors on light trapping in flexible silicon thin-film solar cells,” Sol. Energy Mater. Sol. Cells 102, 50–57 (2012).
[CrossRef]

Other

R. Biswasa and D. Zhoua, “Enhancing light-trapping and efficiency of solar cells with photonic crystals,” in Materials Research Society Spring Meeting: Symposium A—Amorphous and Polycrystalline Thin-Film Silicon Science and Technology, Germany, 2007.

“Optical Properties of Silicon,” Virginia Semiconductor, Inc., Fredericksburg, 2009.

E. Hecht, Optics, 4th ed. (Adelphi University, 2002).

Larouche, “Openfilter thin film simulator,” 1March2006, http://www.polymtl.ca/larfis8 .

J. Gjessing, “Photonic crystals for light trapping in solar cells,” Ph.D. thesis (University of Oslo, Department of Physics, 2011).

R. Ghannam, N. Moll, and B. Michel, “Light reflecting grating structures for thin film photovoltaic devices,” Patent pending, IBM reference CH820100136.

J. D. Joannopoulos, “MEEP,” Massachusetts Institute of Technology, 2012, http://ab-initio.mit.edu/wiki/index.php/Meep .

M. Mishrikey, “Analysis and design of metamaterials,” Ph. D. thesis (Swiss Federal Institutes of Technology Zurich, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Comparison between experimentally measured real and imaginary parts of the permittivity [17] and its LD fitting curves for monocrystalline Si in the first subband.

Fig. 2.
Fig. 2.

Comparison between experimentally measured real and imaginary parts of the permittivity [17] and its LD fitting curves for monocrystalline Si in the second subband.

Fig. 3.
Fig. 3.

Comparison between experimentally measured real and imaginary parts of the permittivity [17] and its LD fitting curves for monocrystalline Si in the third subband.

Fig. 4.
Fig. 4.

Mean error for the real and imaginary parts of Si permittivity through the entire wavelength of the solar spectrum.

Fig. 5.
Fig. 5.

Comparison between experimentally measured real and imaginary parts of the refractive index [1] and its LD fitting curves for Ge in the first subband.

Fig. 6.
Fig. 6.

Comparison between experimentally measured real and imaginary parts of the refractive index and its LD fitting curves for Ge in the second subband.

Fig. 7.
Fig. 7.

Comparison between experimentally measured real and imaginary parts of the refractive index and its LD fitting curves for GaAs in the first subband.

Fig. 8.
Fig. 8.

Comparison between experimentally measured real and imaginary parts of the refractive index and its LD fitting curves for GaAs in the second subband.

Fig. 9.
Fig. 9.

Comparison between experimentally measured real and imaginary parts of the refractive index and its LD fitting curves for GaAs in the third subband.

Fig. 10.
Fig. 10.

Number of iterations for the three chosen semiconductors using two different approaches.

Fig. 11.
Fig. 11.

Comparison between the numerical and the analytical simulation models for a 125 nm Si thin film.

Fig. 12.
Fig. 12.

Comparison between experimental [22] and numerical simulation results for an Ag/ZnO textured metal backreflector with thin and thick ZnO layer.

Fig. 13.
Fig. 13.

Ag/ZnO metal backreflector under various angles of incidence.

Fig. 14.
Fig. 14.

Effect of the Si ambient on the Ag/ZnO metal backreflector.

Fig. 15.
Fig. 15.

Si/SiO2 six-layer DBR structure with an angle of incidence of (a) 0, (b) 30, and (c) 60.

Fig. 16.
Fig. 16.

10-layer Si/ITO DBR structure.

Tables (1)

Tables Icon

Table 1. LD Fitting Parameters for Si, GaAs, and Ge

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=ε+nσnωn2ωn2ω2iωΓn,
[E1H1]=M[E2H2],
M=[coskohisinkohγ1γ1isinkohcoskoh],
γ1=εoμon1cosθi,
λnull=4n1hn,

Metrics