Abstract

We have demonstrated a method for laser frequency stability transfer using a fiber-based Young’s interferometer. An 858 nm external cavity diode laser is stabilized to within 1e-8 from 10 s to 4000 s, referenced to a Rubidium stabilized 780 nm DBR diode laser using the interferometer as a frequency-stability-transferring link. The system is simple to build and can link any two laser wavelengths within the fiber operating range.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Schmidt, K. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: how to reverse peaks and observe narrow resonances,” Appl. Phys. B 59, 167–178 (1994).
    [CrossRef]
  2. G. R. Hanes and C. E. Dahlstro, “Iodine hyperfine structure observed in saturated absorption at 633-nm,” Appl. Phys. Lett. 14, 362–364 (1969).
    [CrossRef]
  3. K. B. Macadam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
    [CrossRef]
  4. H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramochi, and N. Oura, “Frequency stabilization of AlGaAs semiconductor laser based on the 85Rb-D2 line,” Jpn. J. Appl. Phys. 21, L561–L563 (1982).
    [CrossRef]
  5. S. Kobtsev, S. Kandrushin, and A. Potekhin, “Long-term frequency stabilization of a continuous-wave tunable laser with the help of a precision wavelength meter,” Appl. Opt. 46, 5840–5843 (2007).
    [CrossRef]
  6. J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
    [CrossRef]
  7. S. G. Wang, J. W. Zhang, K. Miao, Z. B. Wang, and L. J. Wang, “High-accuracy measurement of the 113Cd+ ground-state hyperfine splitting at the milli-hertz level,” Opt. Express 21, 12434–12442 (2013).
    [CrossRef]
  8. J. W. Zhang, Z. B. Wang, S. G. Wang, K. Miao, B. Wang, and L. J. Wang, “High-resolution laser microwave double-resonance spectroscopy of hyperfine splitting of trapped 113Cd+ And 111Cd+ ions,” Phys. Rev. A 86, 022523 (2012).
    [CrossRef]
  9. K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295–3298 (1998).
    [CrossRef]
  10. L. S. Ma, Z. Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10−19 level,” Science 303, 1843–1845 (2004).
    [CrossRef]
  11. J. H. T. Burke, O. Garcia, K. J. Hughes, B. Livedalen, and C. A. Sackett, “Compact implementation of a scanning transfer cavity lock,” Rev. Sci. Instrum. 76, 116105 (2005).
    [CrossRef]
  12. S. G. Wang, J. W. Zhang, Z. B. Wang, B. Wang, W. X. Liu, Y. Y. Zhao, and L. J. Wang, “Frequency stabilization of a 214.5-Nm ultraviolet laser,” Chin. Opt. Lett. 11, 031401 (2013).
    [CrossRef]
  13. Y. Surrel, J. García-Márquez, J. Fodor, and P. Juncar, “Spatial phase stepping wavelength meter,” Meas. Sci. Technol. 16, 821–827 (2005).
    [CrossRef]
  14. J. García-Márquez, Y. Surrel, and Y. Millerioux, “Laser wavelength measurement with fibre lambda meter,” Electron. Lett. 39, 1509–1511 (2003).
    [CrossRef]
  15. J. J. Snyder and S. L. Kwiatkowski, “Wavelength measurement with a Young’s interferometer,” Opt. Eng. 44, 083602 (2005).
    [CrossRef]

2013 (3)

2012 (1)

J. W. Zhang, Z. B. Wang, S. G. Wang, K. Miao, B. Wang, and L. J. Wang, “High-resolution laser microwave double-resonance spectroscopy of hyperfine splitting of trapped 113Cd+ And 111Cd+ ions,” Phys. Rev. A 86, 022523 (2012).
[CrossRef]

2007 (1)

2005 (3)

Y. Surrel, J. García-Márquez, J. Fodor, and P. Juncar, “Spatial phase stepping wavelength meter,” Meas. Sci. Technol. 16, 821–827 (2005).
[CrossRef]

J. H. T. Burke, O. Garcia, K. J. Hughes, B. Livedalen, and C. A. Sackett, “Compact implementation of a scanning transfer cavity lock,” Rev. Sci. Instrum. 76, 116105 (2005).
[CrossRef]

J. J. Snyder and S. L. Kwiatkowski, “Wavelength measurement with a Young’s interferometer,” Opt. Eng. 44, 083602 (2005).
[CrossRef]

2004 (1)

L. S. Ma, Z. Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10−19 level,” Science 303, 1843–1845 (2004).
[CrossRef]

2003 (1)

J. García-Márquez, Y. Surrel, and Y. Millerioux, “Laser wavelength measurement with fibre lambda meter,” Electron. Lett. 39, 1509–1511 (2003).
[CrossRef]

1998 (1)

1994 (1)

O. Schmidt, K. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: how to reverse peaks and observe narrow resonances,” Appl. Phys. B 59, 167–178 (1994).
[CrossRef]

1992 (1)

K. B. Macadam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

1982 (1)

H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramochi, and N. Oura, “Frequency stabilization of AlGaAs semiconductor laser based on the 85Rb-D2 line,” Jpn. J. Appl. Phys. 21, L561–L563 (1982).
[CrossRef]

1969 (1)

G. R. Hanes and C. E. Dahlstro, “Iodine hyperfine structure observed in saturated absorption at 633-nm,” Appl. Phys. Lett. 14, 362–364 (1969).
[CrossRef]

Bartels, A.

L. S. Ma, Z. Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10−19 level,” Science 303, 1843–1845 (2004).
[CrossRef]

Bi, Z. Y.

L. S. Ma, Z. Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10−19 level,” Science 303, 1843–1845 (2004).
[CrossRef]

Burke, J. H. T.

J. H. T. Burke, O. Garcia, K. J. Hughes, B. Livedalen, and C. A. Sackett, “Compact implementation of a scanning transfer cavity lock,” Rev. Sci. Instrum. 76, 116105 (2005).
[CrossRef]

Corwin, K. L.

Dahlstro, C. E.

G. R. Hanes and C. E. Dahlstro, “Iodine hyperfine structure observed in saturated absorption at 633-nm,” Appl. Phys. Lett. 14, 362–364 (1969).
[CrossRef]

Deng, A.

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[CrossRef]

Deng, K.

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[CrossRef]

Diddams, S. A.

L. S. Ma, Z. Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10−19 level,” Science 303, 1843–1845 (2004).
[CrossRef]

Epstein, R. J.

Fodor, J.

Y. Surrel, J. García-Márquez, J. Fodor, and P. Juncar, “Spatial phase stepping wavelength meter,” Meas. Sci. Technol. 16, 821–827 (2005).
[CrossRef]

Garcia, O.

J. H. T. Burke, O. Garcia, K. J. Hughes, B. Livedalen, and C. A. Sackett, “Compact implementation of a scanning transfer cavity lock,” Rev. Sci. Instrum. 76, 116105 (2005).
[CrossRef]

García-Márquez, J.

Y. Surrel, J. García-Márquez, J. Fodor, and P. Juncar, “Spatial phase stepping wavelength meter,” Meas. Sci. Technol. 16, 821–827 (2005).
[CrossRef]

J. García-Márquez, Y. Surrel, and Y. Millerioux, “Laser wavelength measurement with fibre lambda meter,” Electron. Lett. 39, 1509–1511 (2003).
[CrossRef]

Hand, C. F.

Hanes, G. R.

G. R. Hanes and C. E. Dahlstro, “Iodine hyperfine structure observed in saturated absorption at 633-nm,” Appl. Phys. Lett. 14, 362–364 (1969).
[CrossRef]

Hollberg, L.

L. S. Ma, Z. Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10−19 level,” Science 303, 1843–1845 (2004).
[CrossRef]

Hughes, K. J.

J. H. T. Burke, O. Garcia, K. J. Hughes, B. Livedalen, and C. A. Sackett, “Compact implementation of a scanning transfer cavity lock,” Rev. Sci. Instrum. 76, 116105 (2005).
[CrossRef]

Juncar, P.

Y. Surrel, J. García-Márquez, J. Fodor, and P. Juncar, “Spatial phase stepping wavelength meter,” Meas. Sci. Technol. 16, 821–827 (2005).
[CrossRef]

Kandrushin, S.

Knaak, K.

O. Schmidt, K. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: how to reverse peaks and observe narrow resonances,” Appl. Phys. B 59, 167–178 (1994).
[CrossRef]

Kobtsev, S.

Kuramochi, N.

H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramochi, and N. Oura, “Frequency stabilization of AlGaAs semiconductor laser based on the 85Rb-D2 line,” Jpn. J. Appl. Phys. 21, L561–L563 (1982).
[CrossRef]

Kwiatkowski, S. L.

J. J. Snyder and S. L. Kwiatkowski, “Wavelength measurement with a Young’s interferometer,” Opt. Eng. 44, 083602 (2005).
[CrossRef]

Liu, W. X.

Livedalen, B.

J. H. T. Burke, O. Garcia, K. J. Hughes, B. Livedalen, and C. A. Sackett, “Compact implementation of a scanning transfer cavity lock,” Rev. Sci. Instrum. 76, 116105 (2005).
[CrossRef]

Lu, Z. H.

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[CrossRef]

Lu, Z. T.

Luo, J.

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[CrossRef]

Ma, L. S.

L. S. Ma, Z. Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10−19 level,” Science 303, 1843–1845 (2004).
[CrossRef]

Macadam, K. B.

K. B. Macadam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Meschede, D.

O. Schmidt, K. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: how to reverse peaks and observe narrow resonances,” Appl. Phys. B 59, 167–178 (1994).
[CrossRef]

Miao, K.

S. G. Wang, J. W. Zhang, K. Miao, Z. B. Wang, and L. J. Wang, “High-accuracy measurement of the 113Cd+ ground-state hyperfine splitting at the milli-hertz level,” Opt. Express 21, 12434–12442 (2013).
[CrossRef]

J. W. Zhang, Z. B. Wang, S. G. Wang, K. Miao, B. Wang, and L. J. Wang, “High-resolution laser microwave double-resonance spectroscopy of hyperfine splitting of trapped 113Cd+ And 111Cd+ ions,” Phys. Rev. A 86, 022523 (2012).
[CrossRef]

Millerioux, Y.

J. García-Márquez, Y. Surrel, and Y. Millerioux, “Laser wavelength measurement with fibre lambda meter,” Electron. Lett. 39, 1509–1511 (2003).
[CrossRef]

Oates, C.

L. S. Ma, Z. Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10−19 level,” Science 303, 1843–1845 (2004).
[CrossRef]

Ohtsu, M.

H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramochi, and N. Oura, “Frequency stabilization of AlGaAs semiconductor laser based on the 85Rb-D2 line,” Jpn. J. Appl. Phys. 21, L561–L563 (1982).
[CrossRef]

Oura, N.

H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramochi, and N. Oura, “Frequency stabilization of AlGaAs semiconductor laser based on the 85Rb-D2 line,” Jpn. J. Appl. Phys. 21, L561–L563 (1982).
[CrossRef]

Potekhin, A.

Qin, C. B.

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[CrossRef]

Robertsson, L.

L. S. Ma, Z. Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10−19 level,” Science 303, 1843–1845 (2004).
[CrossRef]

Sackett, C. A.

J. H. T. Burke, O. Garcia, K. J. Hughes, B. Livedalen, and C. A. Sackett, “Compact implementation of a scanning transfer cavity lock,” Rev. Sci. Instrum. 76, 116105 (2005).
[CrossRef]

Schmidt, O.

O. Schmidt, K. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: how to reverse peaks and observe narrow resonances,” Appl. Phys. B 59, 167–178 (1994).
[CrossRef]

Snyder, J. J.

J. J. Snyder and S. L. Kwiatkowski, “Wavelength measurement with a Young’s interferometer,” Opt. Eng. 44, 083602 (2005).
[CrossRef]

Steinbach, A.

K. B. Macadam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Surrel, Y.

Y. Surrel, J. García-Márquez, J. Fodor, and P. Juncar, “Spatial phase stepping wavelength meter,” Meas. Sci. Technol. 16, 821–827 (2005).
[CrossRef]

J. García-Márquez, Y. Surrel, and Y. Millerioux, “Laser wavelength measurement with fibre lambda meter,” Electron. Lett. 39, 1509–1511 (2003).
[CrossRef]

Tako, T.

H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramochi, and N. Oura, “Frequency stabilization of AlGaAs semiconductor laser based on the 85Rb-D2 line,” Jpn. J. Appl. Phys. 21, L561–L563 (1982).
[CrossRef]

Tsuchida, H.

H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramochi, and N. Oura, “Frequency stabilization of AlGaAs semiconductor laser based on the 85Rb-D2 line,” Jpn. J. Appl. Phys. 21, L561–L563 (1982).
[CrossRef]

Wang, B.

S. G. Wang, J. W. Zhang, Z. B. Wang, B. Wang, W. X. Liu, Y. Y. Zhao, and L. J. Wang, “Frequency stabilization of a 214.5-Nm ultraviolet laser,” Chin. Opt. Lett. 11, 031401 (2013).
[CrossRef]

J. W. Zhang, Z. B. Wang, S. G. Wang, K. Miao, B. Wang, and L. J. Wang, “High-resolution laser microwave double-resonance spectroscopy of hyperfine splitting of trapped 113Cd+ And 111Cd+ ions,” Phys. Rev. A 86, 022523 (2012).
[CrossRef]

Wang, L. J.

Wang, S. G.

Wang, Z. B.

Wieman, C.

K. B. Macadam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Wieman, C. E.

Wilpers, G.

L. S. Ma, Z. Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10−19 level,” Science 303, 1843–1845 (2004).
[CrossRef]

Windeler, R. S.

L. S. Ma, Z. Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10−19 level,” Science 303, 1843–1845 (2004).
[CrossRef]

Wynands, R.

O. Schmidt, K. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: how to reverse peaks and observe narrow resonances,” Appl. Phys. B 59, 167–178 (1994).
[CrossRef]

Xu, Z. T.

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[CrossRef]

Yuan, W. H.

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[CrossRef]

Zhang, J.

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[CrossRef]

Zhang, J. W.

Zhao, Y. Y.

Zucco, M.

L. S. Ma, Z. Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10−19 level,” Science 303, 1843–1845 (2004).
[CrossRef]

Am. J. Phys. (1)

K. B. Macadam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode-laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

O. Schmidt, K. Knaak, R. Wynands, and D. Meschede, “Cesium saturation spectroscopy revisited: how to reverse peaks and observe narrow resonances,” Appl. Phys. B 59, 167–178 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

G. R. Hanes and C. E. Dahlstro, “Iodine hyperfine structure observed in saturated absorption at 633-nm,” Appl. Phys. Lett. 14, 362–364 (1969).
[CrossRef]

Chin. Opt. Lett. (1)

Electron. Lett. (1)

J. García-Márquez, Y. Surrel, and Y. Millerioux, “Laser wavelength measurement with fibre lambda meter,” Electron. Lett. 39, 1509–1511 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Tsuchida, M. Ohtsu, T. Tako, N. Kuramochi, and N. Oura, “Frequency stabilization of AlGaAs semiconductor laser based on the 85Rb-D2 line,” Jpn. J. Appl. Phys. 21, L561–L563 (1982).
[CrossRef]

Meas. Sci. Technol. (1)

Y. Surrel, J. García-Márquez, J. Fodor, and P. Juncar, “Spatial phase stepping wavelength meter,” Meas. Sci. Technol. 16, 821–827 (2005).
[CrossRef]

Opt. Eng. (1)

J. J. Snyder and S. L. Kwiatkowski, “Wavelength measurement with a Young’s interferometer,” Opt. Eng. 44, 083602 (2005).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (1)

J. W. Zhang, Z. B. Wang, S. G. Wang, K. Miao, B. Wang, and L. J. Wang, “High-resolution laser microwave double-resonance spectroscopy of hyperfine splitting of trapped 113Cd+ And 111Cd+ ions,” Phys. Rev. A 86, 022523 (2012).
[CrossRef]

Rev. Sci. Instrum. (2)

J. Zhang, W. H. Yuan, K. Deng, A. Deng, Z. T. Xu, C. B. Qin, Z. H. Lu, and J. Luo, “A long-term frequency stabilized deep ultraviolet laser for Mg+ ions trapping experiments,” Rev. Sci. Instrum. 84, 123109 (2013).
[CrossRef]

J. H. T. Burke, O. Garcia, K. J. Hughes, B. Livedalen, and C. A. Sackett, “Compact implementation of a scanning transfer cavity lock,” Rev. Sci. Instrum. 76, 116105 (2005).
[CrossRef]

Science (1)

L. S. Ma, Z. Y. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10−19 level,” Science 303, 1843–1845 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Experimental setup for laser frequency stabilization. The 780 nm laser is stabilized to Rb D2 line using a saturated absorption spectrum technique. The fiber interferometer is locked to the 780 nm laser with its temperature controlled. The target 858 nm laser is frequency stabilized to the interferometer. Two lasers shine into the fiber under control of a fiber shutter. A PC equipped with a DAQ card is employed for signal processing and PID controlling.

Fig. 2.
Fig. 2.

Sample fringe captured by the line-CCD. The fringe widths increase gradually from left to right due to changes in optical path.

Fig. 3.
Fig. 3.

Frequency stability of the locked target laser measured with high precision wavelength meter. The minimum Allan deviation of 2×109 can be achieved. The long time stability is limited by the wavelength meter used in the measurement.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δϕ=nkΔL,
δ(Δϕ)=n[ΔL·δk+δ(ΔL)·k],
δϕ>|n1[ΔL·δk1+δ(ΔL)·k1]|,
δ(ΔL)ΔL=δk1k1+δϕn1k1ΔL.
δϕ>|n2[ΔL·δk2+δ(ΔL)·k2]|.
δk2k2=δk1k1+δϕn1k1ΔL+δϕn2k2ΔL.
δϕCCD=12N1·

Metrics