Abstract

Solution processed silver nanowire indium-tin oxide nanoparticle (AgNW-ITONP) composite thin films were successfully applied as the transparent electrodes for Cu(In,Ga)Se2 (CIGS) thin film solar cells with ZnS buffer layers. Properties of the AgNW-ITONP thin film and its effects on performance of CIGS/ZnS thin film solar cells were studied. Compared with the traditional sputtered ITO electrodes, the AgNW-ITONP thin films show comparable optical transmittance and electrical conductivity. Furthermore, the AgNW-ITONP thin film causes no physical damage to the adjacent surface layer and does not need high temperature annealing, which makes it very suitable to use as transparent conductive layers for heat or sputtering damage-sensitive optoelectronic devices. By using AgNW-ITONP electrodes, the required thickness of the ZnS buffer layers for CIGS thin film solar cells was greatly decreased.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Nakada and M. Mizutani, “18% efficiency Cd-free Cu(In,Ga)Se2 thin film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers,” Jpn. J. Phys. 41, L165–L167 (2002).
    [CrossRef]
  2. T. Nakada, M. Mizutani, Y. Hagiwara, and A. Kunioka, “High-efficiency Cu(In,Ga)Se2 thin-film solar cells with a CBD-ZnS buffer layer,” Sol. Energy Mater. Sol. Cells 67, 255–260 (2001).
  3. S. Kijima and T. Nakada, “High-temperature degradation mechanism of Cu(In,Ga)Se2-based thin film solar cells,” Appl. Phys. Express 1, 075002 (2008).
    [CrossRef]
  4. H. Sugimoto, T. Yagioka, M. Nagahashi, Y. Yasaki, Y. Kawaguchi, T. Morimoto, Y. Chiba, T. Aramoto, Y. Tanaka, H. Hakuma, S. Kuriyagawa, and K. Kushiya, “Achievement of over 17% efficiency with 30 × 30cm2-sized Cu(In,Ga)(Se,S)2 submodules,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, USA (IEEE, 2011), pp. 003420–003423.
  5. M. Gross, N. Linse, I. Maksimenko, and P. J. Wellmann, “Conductance enhancement mechanisms of printable nanoparticulate indium tin oxide (ITO) layers for application in organic electronic devices,” Adv. Eng. Mater. 11, 295–301 (2009).
    [CrossRef]
  6. G. Guenther, G. Schierning, R. Theissmann, R. Kruk, R. Schmechel, C. Baehtz, and A. Prodi-Schwab, “Formation of metallic indium-tin phase from indium-tin-oxide nanoparticles under reducing conditions and its influence on the electrical properties,” J. Appl. Phys. 104, 034501 (2008).
    [CrossRef]
  7. U. J. Kim, I. H. Lee, J. J. Bae, S. Lee, H. G. Han, S. J. Chae, F. Gunes, J. H. Choi, C. W. Baik, S. I. Kim, J. M. Kim, and Y. H. Lee, “Graphene/carbon nanotube hybrid-based transparent 2D optical array,” Adv. Mater. 23, 3809–3814 (2011).
  8. Y. Wang, S. W. Tong, X. F. Xu, B. Ozyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater. 23, 1514–1518 (2011).
    [CrossRef]
  9. A. Kumer and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?” ACS Nano 4, 11–14 (2010).
    [CrossRef]
  10. J. Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12, 3138–3144 (2012).
  11. C.-H. Liu and X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Res. Lett. 6, 75–82 (2011).
    [CrossRef]
  12. L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Gui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
    [CrossRef]
  13. S. Y. Xie, Z. Q. B. Jia, and M. Gu, “Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21, A355–A462 (2013).
    [CrossRef]
  14. D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline, and A. G. Schrott, “A high-efficiency solution-deposited thin-film photovoltaic device,” Adv. Mater. 20, 3657–3662 (2008).
    [CrossRef]
  15. D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac, and A. G. Schrott, “Hydrazine-based deposition route for device-quality CIGS films,” Thin Solid Films 517, 2158–2162 (2009).
    [CrossRef]
  16. M. Yuan, D. B. Mitzi, O. Gunawan, A. J. Kellock, S. J. Chey, and V. R. Deline, “Antimony assisted low-temperature processing of CuIn1−xGaxSe2−ySy solar cells,” Thin Solid Films 519, 852–856 (2010).
    [CrossRef]
  17. J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).
  18. T. C. Gao and P. W. Leu, “The role of propagating modes in silver nanowire arrays for transparent electrodes,” Opt. Express 21, A419–A429 (2013).
    [CrossRef]
  19. S. Yan, J. Krantz, K. Forberich, C. Pflaum, and C. J. Brabec, “Numerical simulation of light propagation in silver nanowire films using tim-harmonic inverse interative method,” J. Appl. Phys. 113, 154303 (2013).
    [CrossRef]

2013 (3)

2012 (1)

J. Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12, 3138–3144 (2012).

2011 (3)

C.-H. Liu and X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Res. Lett. 6, 75–82 (2011).
[CrossRef]

U. J. Kim, I. H. Lee, J. J. Bae, S. Lee, H. G. Han, S. J. Chae, F. Gunes, J. H. Choi, C. W. Baik, S. I. Kim, J. M. Kim, and Y. H. Lee, “Graphene/carbon nanotube hybrid-based transparent 2D optical array,” Adv. Mater. 23, 3809–3814 (2011).

Y. Wang, S. W. Tong, X. F. Xu, B. Ozyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater. 23, 1514–1518 (2011).
[CrossRef]

2010 (3)

A. Kumer and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?” ACS Nano 4, 11–14 (2010).
[CrossRef]

M. Yuan, D. B. Mitzi, O. Gunawan, A. J. Kellock, S. J. Chey, and V. R. Deline, “Antimony assisted low-temperature processing of CuIn1−xGaxSe2−ySy solar cells,” Thin Solid Films 519, 852–856 (2010).
[CrossRef]

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Gui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[CrossRef]

2009 (2)

M. Gross, N. Linse, I. Maksimenko, and P. J. Wellmann, “Conductance enhancement mechanisms of printable nanoparticulate indium tin oxide (ITO) layers for application in organic electronic devices,” Adv. Eng. Mater. 11, 295–301 (2009).
[CrossRef]

D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac, and A. G. Schrott, “Hydrazine-based deposition route for device-quality CIGS films,” Thin Solid Films 517, 2158–2162 (2009).
[CrossRef]

2008 (4)

S. Kijima and T. Nakada, “High-temperature degradation mechanism of Cu(In,Ga)Se2-based thin film solar cells,” Appl. Phys. Express 1, 075002 (2008).
[CrossRef]

J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).

G. Guenther, G. Schierning, R. Theissmann, R. Kruk, R. Schmechel, C. Baehtz, and A. Prodi-Schwab, “Formation of metallic indium-tin phase from indium-tin-oxide nanoparticles under reducing conditions and its influence on the electrical properties,” J. Appl. Phys. 104, 034501 (2008).
[CrossRef]

D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline, and A. G. Schrott, “A high-efficiency solution-deposited thin-film photovoltaic device,” Adv. Mater. 20, 3657–3662 (2008).
[CrossRef]

2002 (1)

T. Nakada and M. Mizutani, “18% efficiency Cd-free Cu(In,Ga)Se2 thin film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers,” Jpn. J. Phys. 41, L165–L167 (2002).
[CrossRef]

2001 (1)

T. Nakada, M. Mizutani, Y. Hagiwara, and A. Kunioka, “High-efficiency Cu(In,Ga)Se2 thin-film solar cells with a CBD-ZnS buffer layer,” Sol. Energy Mater. Sol. Cells 67, 255–260 (2001).

Aramoto, T.

H. Sugimoto, T. Yagioka, M. Nagahashi, Y. Yasaki, Y. Kawaguchi, T. Morimoto, Y. Chiba, T. Aramoto, Y. Tanaka, H. Hakuma, S. Kuriyagawa, and K. Kushiya, “Achievement of over 17% efficiency with 30 × 30cm2-sized Cu(In,Ga)(Se,S)2 submodules,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, USA (IEEE, 2011), pp. 003420–003423.

Bae, J. J.

U. J. Kim, I. H. Lee, J. J. Bae, S. Lee, H. G. Han, S. J. Chae, F. Gunes, J. H. Choi, C. W. Baik, S. I. Kim, J. M. Kim, and Y. H. Lee, “Graphene/carbon nanotube hybrid-based transparent 2D optical array,” Adv. Mater. 23, 3809–3814 (2011).

Baehtz, C.

G. Guenther, G. Schierning, R. Theissmann, R. Kruk, R. Schmechel, C. Baehtz, and A. Prodi-Schwab, “Formation of metallic indium-tin phase from indium-tin-oxide nanoparticles under reducing conditions and its influence on the electrical properties,” J. Appl. Phys. 104, 034501 (2008).
[CrossRef]

Baik, C. W.

U. J. Kim, I. H. Lee, J. J. Bae, S. Lee, H. G. Han, S. J. Chae, F. Gunes, J. H. Choi, C. W. Baik, S. I. Kim, J. M. Kim, and Y. H. Lee, “Graphene/carbon nanotube hybrid-based transparent 2D optical array,” Adv. Mater. 23, 3809–3814 (2011).

Brabec, C. J.

S. Yan, J. Krantz, K. Forberich, C. Pflaum, and C. J. Brabec, “Numerical simulation of light propagation in silver nanowire films using tim-harmonic inverse interative method,” J. Appl. Phys. 113, 154303 (2013).
[CrossRef]

Chae, S. J.

U. J. Kim, I. H. Lee, J. J. Bae, S. Lee, H. G. Han, S. J. Chae, F. Gunes, J. H. Choi, C. W. Baik, S. I. Kim, J. M. Kim, and Y. H. Lee, “Graphene/carbon nanotube hybrid-based transparent 2D optical array,” Adv. Mater. 23, 3809–3814 (2011).

Chey, S. J.

M. Yuan, D. B. Mitzi, O. Gunawan, A. J. Kellock, S. J. Chey, and V. R. Deline, “Antimony assisted low-temperature processing of CuIn1−xGaxSe2−ySy solar cells,” Thin Solid Films 519, 852–856 (2010).
[CrossRef]

D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac, and A. G. Schrott, “Hydrazine-based deposition route for device-quality CIGS films,” Thin Solid Films 517, 2158–2162 (2009).
[CrossRef]

D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline, and A. G. Schrott, “A high-efficiency solution-deposited thin-film photovoltaic device,” Adv. Mater. 20, 3657–3662 (2008).
[CrossRef]

Chiba, Y.

H. Sugimoto, T. Yagioka, M. Nagahashi, Y. Yasaki, Y. Kawaguchi, T. Morimoto, Y. Chiba, T. Aramoto, Y. Tanaka, H. Hakuma, S. Kuriyagawa, and K. Kushiya, “Achievement of over 17% efficiency with 30 × 30cm2-sized Cu(In,Ga)(Se,S)2 submodules,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, USA (IEEE, 2011), pp. 003420–003423.

Choi, J. H.

U. J. Kim, I. H. Lee, J. J. Bae, S. Lee, H. G. Han, S. J. Chae, F. Gunes, J. H. Choi, C. W. Baik, S. I. Kim, J. M. Kim, and Y. H. Lee, “Graphene/carbon nanotube hybrid-based transparent 2D optical array,” Adv. Mater. 23, 3809–3814 (2011).

Connor, S. T.

J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).

Cui, Y.

J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).

Deline, V.

D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline, and A. G. Schrott, “A high-efficiency solution-deposited thin-film photovoltaic device,” Adv. Mater. 20, 3657–3662 (2008).
[CrossRef]

Deline, V. R.

M. Yuan, D. B. Mitzi, O. Gunawan, A. J. Kellock, S. J. Chey, and V. R. Deline, “Antimony assisted low-temperature processing of CuIn1−xGaxSe2−ySy solar cells,” Thin Solid Films 519, 852–856 (2010).
[CrossRef]

Forberich, K.

S. Yan, J. Krantz, K. Forberich, C. Pflaum, and C. J. Brabec, “Numerical simulation of light propagation in silver nanowire films using tim-harmonic inverse interative method,” J. Appl. Phys. 113, 154303 (2013).
[CrossRef]

Gao, T. C.

Gignac, L.

D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac, and A. G. Schrott, “Hydrazine-based deposition route for device-quality CIGS films,” Thin Solid Films 517, 2158–2162 (2009).
[CrossRef]

Groep, J.

J. Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12, 3138–3144 (2012).

Gross, M.

M. Gross, N. Linse, I. Maksimenko, and P. J. Wellmann, “Conductance enhancement mechanisms of printable nanoparticulate indium tin oxide (ITO) layers for application in organic electronic devices,” Adv. Eng. Mater. 11, 295–301 (2009).
[CrossRef]

Gu, M.

Guenther, G.

G. Guenther, G. Schierning, R. Theissmann, R. Kruk, R. Schmechel, C. Baehtz, and A. Prodi-Schwab, “Formation of metallic indium-tin phase from indium-tin-oxide nanoparticles under reducing conditions and its influence on the electrical properties,” J. Appl. Phys. 104, 034501 (2008).
[CrossRef]

Gui, Y.

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Gui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[CrossRef]

Gunawan, O.

M. Yuan, D. B. Mitzi, O. Gunawan, A. J. Kellock, S. J. Chey, and V. R. Deline, “Antimony assisted low-temperature processing of CuIn1−xGaxSe2−ySy solar cells,” Thin Solid Films 519, 852–856 (2010).
[CrossRef]

Gunes, F.

U. J. Kim, I. H. Lee, J. J. Bae, S. Lee, H. G. Han, S. J. Chae, F. Gunes, J. H. Choi, C. W. Baik, S. I. Kim, J. M. Kim, and Y. H. Lee, “Graphene/carbon nanotube hybrid-based transparent 2D optical array,” Adv. Mater. 23, 3809–3814 (2011).

Hagiwara, Y.

T. Nakada, M. Mizutani, Y. Hagiwara, and A. Kunioka, “High-efficiency Cu(In,Ga)Se2 thin-film solar cells with a CBD-ZnS buffer layer,” Sol. Energy Mater. Sol. Cells 67, 255–260 (2001).

Hakuma, H.

H. Sugimoto, T. Yagioka, M. Nagahashi, Y. Yasaki, Y. Kawaguchi, T. Morimoto, Y. Chiba, T. Aramoto, Y. Tanaka, H. Hakuma, S. Kuriyagawa, and K. Kushiya, “Achievement of over 17% efficiency with 30 × 30cm2-sized Cu(In,Ga)(Se,S)2 submodules,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, USA (IEEE, 2011), pp. 003420–003423.

Han, H. G.

U. J. Kim, I. H. Lee, J. J. Bae, S. Lee, H. G. Han, S. J. Chae, F. Gunes, J. H. Choi, C. W. Baik, S. I. Kim, J. M. Kim, and Y. H. Lee, “Graphene/carbon nanotube hybrid-based transparent 2D optical array,” Adv. Mater. 23, 3809–3814 (2011).

Hu, L.

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Gui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[CrossRef]

Jia, Z. Q. B.

Kawaguchi, Y.

H. Sugimoto, T. Yagioka, M. Nagahashi, Y. Yasaki, Y. Kawaguchi, T. Morimoto, Y. Chiba, T. Aramoto, Y. Tanaka, H. Hakuma, S. Kuriyagawa, and K. Kushiya, “Achievement of over 17% efficiency with 30 × 30cm2-sized Cu(In,Ga)(Se,S)2 submodules,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, USA (IEEE, 2011), pp. 003420–003423.

Kellock, A. J.

M. Yuan, D. B. Mitzi, O. Gunawan, A. J. Kellock, S. J. Chey, and V. R. Deline, “Antimony assisted low-temperature processing of CuIn1−xGaxSe2−ySy solar cells,” Thin Solid Films 519, 852–856 (2010).
[CrossRef]

D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac, and A. G. Schrott, “Hydrazine-based deposition route for device-quality CIGS films,” Thin Solid Films 517, 2158–2162 (2009).
[CrossRef]

D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline, and A. G. Schrott, “A high-efficiency solution-deposited thin-film photovoltaic device,” Adv. Mater. 20, 3657–3662 (2008).
[CrossRef]

Kijima, S.

S. Kijima and T. Nakada, “High-temperature degradation mechanism of Cu(In,Ga)Se2-based thin film solar cells,” Appl. Phys. Express 1, 075002 (2008).
[CrossRef]

Kim, H. S.

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Gui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[CrossRef]

Kim, J. M.

U. J. Kim, I. H. Lee, J. J. Bae, S. Lee, H. G. Han, S. J. Chae, F. Gunes, J. H. Choi, C. W. Baik, S. I. Kim, J. M. Kim, and Y. H. Lee, “Graphene/carbon nanotube hybrid-based transparent 2D optical array,” Adv. Mater. 23, 3809–3814 (2011).

Kim, S. I.

U. J. Kim, I. H. Lee, J. J. Bae, S. Lee, H. G. Han, S. J. Chae, F. Gunes, J. H. Choi, C. W. Baik, S. I. Kim, J. M. Kim, and Y. H. Lee, “Graphene/carbon nanotube hybrid-based transparent 2D optical array,” Adv. Mater. 23, 3809–3814 (2011).

Kim, U. J.

U. J. Kim, I. H. Lee, J. J. Bae, S. Lee, H. G. Han, S. J. Chae, F. Gunes, J. H. Choi, C. W. Baik, S. I. Kim, J. M. Kim, and Y. H. Lee, “Graphene/carbon nanotube hybrid-based transparent 2D optical array,” Adv. Mater. 23, 3809–3814 (2011).

Krantz, J.

S. Yan, J. Krantz, K. Forberich, C. Pflaum, and C. J. Brabec, “Numerical simulation of light propagation in silver nanowire films using tim-harmonic inverse interative method,” J. Appl. Phys. 113, 154303 (2013).
[CrossRef]

Kruk, R.

G. Guenther, G. Schierning, R. Theissmann, R. Kruk, R. Schmechel, C. Baehtz, and A. Prodi-Schwab, “Formation of metallic indium-tin phase from indium-tin-oxide nanoparticles under reducing conditions and its influence on the electrical properties,” J. Appl. Phys. 104, 034501 (2008).
[CrossRef]

Kumer, A.

A. Kumer and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?” ACS Nano 4, 11–14 (2010).
[CrossRef]

Kunioka, A.

T. Nakada, M. Mizutani, Y. Hagiwara, and A. Kunioka, “High-efficiency Cu(In,Ga)Se2 thin-film solar cells with a CBD-ZnS buffer layer,” Sol. Energy Mater. Sol. Cells 67, 255–260 (2001).

Kuriyagawa, S.

H. Sugimoto, T. Yagioka, M. Nagahashi, Y. Yasaki, Y. Kawaguchi, T. Morimoto, Y. Chiba, T. Aramoto, Y. Tanaka, H. Hakuma, S. Kuriyagawa, and K. Kushiya, “Achievement of over 17% efficiency with 30 × 30cm2-sized Cu(In,Ga)(Se,S)2 submodules,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, USA (IEEE, 2011), pp. 003420–003423.

Kushiya, K.

H. Sugimoto, T. Yagioka, M. Nagahashi, Y. Yasaki, Y. Kawaguchi, T. Morimoto, Y. Chiba, T. Aramoto, Y. Tanaka, H. Hakuma, S. Kuriyagawa, and K. Kushiya, “Achievement of over 17% efficiency with 30 × 30cm2-sized Cu(In,Ga)(Se,S)2 submodules,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, USA (IEEE, 2011), pp. 003420–003423.

Lee, I. H.

U. J. Kim, I. H. Lee, J. J. Bae, S. Lee, H. G. Han, S. J. Chae, F. Gunes, J. H. Choi, C. W. Baik, S. I. Kim, J. M. Kim, and Y. H. Lee, “Graphene/carbon nanotube hybrid-based transparent 2D optical array,” Adv. Mater. 23, 3809–3814 (2011).

Lee, J. Y.

J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).

Lee, J.-Y.

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Gui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[CrossRef]

Lee, S.

U. J. Kim, I. H. Lee, J. J. Bae, S. Lee, H. G. Han, S. J. Chae, F. Gunes, J. H. Choi, C. W. Baik, S. I. Kim, J. M. Kim, and Y. H. Lee, “Graphene/carbon nanotube hybrid-based transparent 2D optical array,” Adv. Mater. 23, 3809–3814 (2011).

Lee, Y. H.

U. J. Kim, I. H. Lee, J. J. Bae, S. Lee, H. G. Han, S. J. Chae, F. Gunes, J. H. Choi, C. W. Baik, S. I. Kim, J. M. Kim, and Y. H. Lee, “Graphene/carbon nanotube hybrid-based transparent 2D optical array,” Adv. Mater. 23, 3809–3814 (2011).

Leu, P. W.

Linse, N.

M. Gross, N. Linse, I. Maksimenko, and P. J. Wellmann, “Conductance enhancement mechanisms of printable nanoparticulate indium tin oxide (ITO) layers for application in organic electronic devices,” Adv. Eng. Mater. 11, 295–301 (2009).
[CrossRef]

Liu, C.-H.

C.-H. Liu and X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Res. Lett. 6, 75–82 (2011).
[CrossRef]

Liu, W.

D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac, and A. G. Schrott, “Hydrazine-based deposition route for device-quality CIGS films,” Thin Solid Films 517, 2158–2162 (2009).
[CrossRef]

D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline, and A. G. Schrott, “A high-efficiency solution-deposited thin-film photovoltaic device,” Adv. Mater. 20, 3657–3662 (2008).
[CrossRef]

Loh, K. P.

Y. Wang, S. W. Tong, X. F. Xu, B. Ozyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater. 23, 1514–1518 (2011).
[CrossRef]

Maksimenko, I.

M. Gross, N. Linse, I. Maksimenko, and P. J. Wellmann, “Conductance enhancement mechanisms of printable nanoparticulate indium tin oxide (ITO) layers for application in organic electronic devices,” Adv. Eng. Mater. 11, 295–301 (2009).
[CrossRef]

Mitzi, D. B.

M. Yuan, D. B. Mitzi, O. Gunawan, A. J. Kellock, S. J. Chey, and V. R. Deline, “Antimony assisted low-temperature processing of CuIn1−xGaxSe2−ySy solar cells,” Thin Solid Films 519, 852–856 (2010).
[CrossRef]

D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac, and A. G. Schrott, “Hydrazine-based deposition route for device-quality CIGS films,” Thin Solid Films 517, 2158–2162 (2009).
[CrossRef]

D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline, and A. G. Schrott, “A high-efficiency solution-deposited thin-film photovoltaic device,” Adv. Mater. 20, 3657–3662 (2008).
[CrossRef]

Mizutani, M.

T. Nakada and M. Mizutani, “18% efficiency Cd-free Cu(In,Ga)Se2 thin film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers,” Jpn. J. Phys. 41, L165–L167 (2002).
[CrossRef]

T. Nakada, M. Mizutani, Y. Hagiwara, and A. Kunioka, “High-efficiency Cu(In,Ga)Se2 thin-film solar cells with a CBD-ZnS buffer layer,” Sol. Energy Mater. Sol. Cells 67, 255–260 (2001).

Morimoto, T.

H. Sugimoto, T. Yagioka, M. Nagahashi, Y. Yasaki, Y. Kawaguchi, T. Morimoto, Y. Chiba, T. Aramoto, Y. Tanaka, H. Hakuma, S. Kuriyagawa, and K. Kushiya, “Achievement of over 17% efficiency with 30 × 30cm2-sized Cu(In,Ga)(Se,S)2 submodules,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, USA (IEEE, 2011), pp. 003420–003423.

Nagahashi, M.

H. Sugimoto, T. Yagioka, M. Nagahashi, Y. Yasaki, Y. Kawaguchi, T. Morimoto, Y. Chiba, T. Aramoto, Y. Tanaka, H. Hakuma, S. Kuriyagawa, and K. Kushiya, “Achievement of over 17% efficiency with 30 × 30cm2-sized Cu(In,Ga)(Se,S)2 submodules,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, USA (IEEE, 2011), pp. 003420–003423.

Nakada, T.

S. Kijima and T. Nakada, “High-temperature degradation mechanism of Cu(In,Ga)Se2-based thin film solar cells,” Appl. Phys. Express 1, 075002 (2008).
[CrossRef]

T. Nakada and M. Mizutani, “18% efficiency Cd-free Cu(In,Ga)Se2 thin film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers,” Jpn. J. Phys. 41, L165–L167 (2002).
[CrossRef]

T. Nakada, M. Mizutani, Y. Hagiwara, and A. Kunioka, “High-efficiency Cu(In,Ga)Se2 thin-film solar cells with a CBD-ZnS buffer layer,” Sol. Energy Mater. Sol. Cells 67, 255–260 (2001).

Ozyilmaz, B.

Y. Wang, S. W. Tong, X. F. Xu, B. Ozyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater. 23, 1514–1518 (2011).
[CrossRef]

Peumans, P.

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Gui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[CrossRef]

J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).

Pflaum, C.

S. Yan, J. Krantz, K. Forberich, C. Pflaum, and C. J. Brabec, “Numerical simulation of light propagation in silver nanowire films using tim-harmonic inverse interative method,” J. Appl. Phys. 113, 154303 (2013).
[CrossRef]

Polman, A.

J. Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12, 3138–3144 (2012).

Prodi-Schwab, A.

G. Guenther, G. Schierning, R. Theissmann, R. Kruk, R. Schmechel, C. Baehtz, and A. Prodi-Schwab, “Formation of metallic indium-tin phase from indium-tin-oxide nanoparticles under reducing conditions and its influence on the electrical properties,” J. Appl. Phys. 104, 034501 (2008).
[CrossRef]

Schierning, G.

G. Guenther, G. Schierning, R. Theissmann, R. Kruk, R. Schmechel, C. Baehtz, and A. Prodi-Schwab, “Formation of metallic indium-tin phase from indium-tin-oxide nanoparticles under reducing conditions and its influence on the electrical properties,” J. Appl. Phys. 104, 034501 (2008).
[CrossRef]

Schmechel, R.

G. Guenther, G. Schierning, R. Theissmann, R. Kruk, R. Schmechel, C. Baehtz, and A. Prodi-Schwab, “Formation of metallic indium-tin phase from indium-tin-oxide nanoparticles under reducing conditions and its influence on the electrical properties,” J. Appl. Phys. 104, 034501 (2008).
[CrossRef]

Schrott, A. G.

D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac, and A. G. Schrott, “Hydrazine-based deposition route for device-quality CIGS films,” Thin Solid Films 517, 2158–2162 (2009).
[CrossRef]

D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline, and A. G. Schrott, “A high-efficiency solution-deposited thin-film photovoltaic device,” Adv. Mater. 20, 3657–3662 (2008).
[CrossRef]

Spinelli, P.

J. Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12, 3138–3144 (2012).

Sugimoto, H.

H. Sugimoto, T. Yagioka, M. Nagahashi, Y. Yasaki, Y. Kawaguchi, T. Morimoto, Y. Chiba, T. Aramoto, Y. Tanaka, H. Hakuma, S. Kuriyagawa, and K. Kushiya, “Achievement of over 17% efficiency with 30 × 30cm2-sized Cu(In,Ga)(Se,S)2 submodules,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, USA (IEEE, 2011), pp. 003420–003423.

Tanaka, Y.

H. Sugimoto, T. Yagioka, M. Nagahashi, Y. Yasaki, Y. Kawaguchi, T. Morimoto, Y. Chiba, T. Aramoto, Y. Tanaka, H. Hakuma, S. Kuriyagawa, and K. Kushiya, “Achievement of over 17% efficiency with 30 × 30cm2-sized Cu(In,Ga)(Se,S)2 submodules,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, USA (IEEE, 2011), pp. 003420–003423.

Theissmann, R.

G. Guenther, G. Schierning, R. Theissmann, R. Kruk, R. Schmechel, C. Baehtz, and A. Prodi-Schwab, “Formation of metallic indium-tin phase from indium-tin-oxide nanoparticles under reducing conditions and its influence on the electrical properties,” J. Appl. Phys. 104, 034501 (2008).
[CrossRef]

Tong, S. W.

Y. Wang, S. W. Tong, X. F. Xu, B. Ozyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater. 23, 1514–1518 (2011).
[CrossRef]

Wang, Y.

Y. Wang, S. W. Tong, X. F. Xu, B. Ozyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater. 23, 1514–1518 (2011).
[CrossRef]

Wellmann, P. J.

M. Gross, N. Linse, I. Maksimenko, and P. J. Wellmann, “Conductance enhancement mechanisms of printable nanoparticulate indium tin oxide (ITO) layers for application in organic electronic devices,” Adv. Eng. Mater. 11, 295–301 (2009).
[CrossRef]

Xie, S. Y.

Xu, X. F.

Y. Wang, S. W. Tong, X. F. Xu, B. Ozyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater. 23, 1514–1518 (2011).
[CrossRef]

Yagioka, T.

H. Sugimoto, T. Yagioka, M. Nagahashi, Y. Yasaki, Y. Kawaguchi, T. Morimoto, Y. Chiba, T. Aramoto, Y. Tanaka, H. Hakuma, S. Kuriyagawa, and K. Kushiya, “Achievement of over 17% efficiency with 30 × 30cm2-sized Cu(In,Ga)(Se,S)2 submodules,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, USA (IEEE, 2011), pp. 003420–003423.

Yan, S.

S. Yan, J. Krantz, K. Forberich, C. Pflaum, and C. J. Brabec, “Numerical simulation of light propagation in silver nanowire films using tim-harmonic inverse interative method,” J. Appl. Phys. 113, 154303 (2013).
[CrossRef]

Yasaki, Y.

H. Sugimoto, T. Yagioka, M. Nagahashi, Y. Yasaki, Y. Kawaguchi, T. Morimoto, Y. Chiba, T. Aramoto, Y. Tanaka, H. Hakuma, S. Kuriyagawa, and K. Kushiya, “Achievement of over 17% efficiency with 30 × 30cm2-sized Cu(In,Ga)(Se,S)2 submodules,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, USA (IEEE, 2011), pp. 003420–003423.

Yu, X.

C.-H. Liu and X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Res. Lett. 6, 75–82 (2011).
[CrossRef]

Yuan, M.

M. Yuan, D. B. Mitzi, O. Gunawan, A. J. Kellock, S. J. Chey, and V. R. Deline, “Antimony assisted low-temperature processing of CuIn1−xGaxSe2−ySy solar cells,” Thin Solid Films 519, 852–856 (2010).
[CrossRef]

D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac, and A. G. Schrott, “Hydrazine-based deposition route for device-quality CIGS films,” Thin Solid Films 517, 2158–2162 (2009).
[CrossRef]

D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline, and A. G. Schrott, “A high-efficiency solution-deposited thin-film photovoltaic device,” Adv. Mater. 20, 3657–3662 (2008).
[CrossRef]

Zhou, C.

A. Kumer and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?” ACS Nano 4, 11–14 (2010).
[CrossRef]

ACS Nano (2)

L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Gui, “Scalable coating and properties of transparent, flexible, silver nanowire electrodes,” ACS Nano 4, 2955–2963 (2010).
[CrossRef]

A. Kumer and C. Zhou, “The race to replace tin-doped indium oxide: which material will win?” ACS Nano 4, 11–14 (2010).
[CrossRef]

Adv. Eng. Mater. (1)

M. Gross, N. Linse, I. Maksimenko, and P. J. Wellmann, “Conductance enhancement mechanisms of printable nanoparticulate indium tin oxide (ITO) layers for application in organic electronic devices,” Adv. Eng. Mater. 11, 295–301 (2009).
[CrossRef]

Adv. Mater. (3)

U. J. Kim, I. H. Lee, J. J. Bae, S. Lee, H. G. Han, S. J. Chae, F. Gunes, J. H. Choi, C. W. Baik, S. I. Kim, J. M. Kim, and Y. H. Lee, “Graphene/carbon nanotube hybrid-based transparent 2D optical array,” Adv. Mater. 23, 3809–3814 (2011).

Y. Wang, S. W. Tong, X. F. Xu, B. Ozyilmaz, and K. P. Loh, “Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells,” Adv. Mater. 23, 1514–1518 (2011).
[CrossRef]

D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline, and A. G. Schrott, “A high-efficiency solution-deposited thin-film photovoltaic device,” Adv. Mater. 20, 3657–3662 (2008).
[CrossRef]

Appl. Phys. Express (1)

S. Kijima and T. Nakada, “High-temperature degradation mechanism of Cu(In,Ga)Se2-based thin film solar cells,” Appl. Phys. Express 1, 075002 (2008).
[CrossRef]

J. Appl. Phys. (2)

G. Guenther, G. Schierning, R. Theissmann, R. Kruk, R. Schmechel, C. Baehtz, and A. Prodi-Schwab, “Formation of metallic indium-tin phase from indium-tin-oxide nanoparticles under reducing conditions and its influence on the electrical properties,” J. Appl. Phys. 104, 034501 (2008).
[CrossRef]

S. Yan, J. Krantz, K. Forberich, C. Pflaum, and C. J. Brabec, “Numerical simulation of light propagation in silver nanowire films using tim-harmonic inverse interative method,” J. Appl. Phys. 113, 154303 (2013).
[CrossRef]

Jpn. J. Phys. (1)

T. Nakada and M. Mizutani, “18% efficiency Cd-free Cu(In,Ga)Se2 thin film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers,” Jpn. J. Phys. 41, L165–L167 (2002).
[CrossRef]

Nano Lett. (2)

J. Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12, 3138–3144 (2012).

J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689–692 (2008).

Nanoscale Res. Lett. (1)

C.-H. Liu and X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Res. Lett. 6, 75–82 (2011).
[CrossRef]

Opt. Express (2)

Sol. Energy Mater. Sol. Cells (1)

T. Nakada, M. Mizutani, Y. Hagiwara, and A. Kunioka, “High-efficiency Cu(In,Ga)Se2 thin-film solar cells with a CBD-ZnS buffer layer,” Sol. Energy Mater. Sol. Cells 67, 255–260 (2001).

Thin Solid Films (2)

D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac, and A. G. Schrott, “Hydrazine-based deposition route for device-quality CIGS films,” Thin Solid Films 517, 2158–2162 (2009).
[CrossRef]

M. Yuan, D. B. Mitzi, O. Gunawan, A. J. Kellock, S. J. Chey, and V. R. Deline, “Antimony assisted low-temperature processing of CuIn1−xGaxSe2−ySy solar cells,” Thin Solid Films 519, 852–856 (2010).
[CrossRef]

Other (1)

H. Sugimoto, T. Yagioka, M. Nagahashi, Y. Yasaki, Y. Kawaguchi, T. Morimoto, Y. Chiba, T. Aramoto, Y. Tanaka, H. Hakuma, S. Kuriyagawa, and K. Kushiya, “Achievement of over 17% efficiency with 30 × 30cm2-sized Cu(In,Ga)(Se,S)2 submodules,” in Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, USA (IEEE, 2011), pp. 003420–003423.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Cross-sectional SEM image of CIGS thin film solar cell with ZnS buffer layer and AgNW-ITONP electrode. (b) Surface of ZnS layer with thickness of 105 nm. (c) Schematic diagram of electron transportation in AgNW-ITONP electrode.

Fig. 2.
Fig. 2.

(a) Sheet resistance of bare AgNW networks, sheet resistance of AgNW-ITONP films with different thicknesses of AgNW network, and sheet resistance of plain ITONP film. Different thicknesses of AgNW films were obtained by repeating spin coating AgNW different times. The number (1–5) indicates the repetitions of spin coating of AgNW. (b) Optical transmittance at 550 nm of bare AgNW networks, transmittance of AgNW-ITONP films with different thicknesses of AgNW films, and transmittance at 550 nm of plain ITONP film. (c) Transmittance spectra of sputtered ITO film and AgNW-ITONP film with 260 nm thick AgNW film.

Fig. 3.
Fig. 3.

Dependence of photovoltaic performance of CIGS thin film solar cells with sputtered ITO electrodes and AgNW-ITONP electrodes on the thickness of ZnS buffer layers.

Fig. 4.
Fig. 4.

JV curves of best-performance CIGS/ZnS solar cells with AgNW-ITONP electrode and sputtered ITO film.

Fig. 5.
Fig. 5.

Transmittance spectra of ZnS films with thicknesses of 35, 105, and 140 nm.

Metrics