Abstract

In this work, frequency doubling of a passively mode-locked 3.5 mm long monolithic distributed Bragg reflector diode laser is investigated experimentally. At 1064 nm, optical pulses with a duration of 12.4 ps are generated at a repetition rate of 13 GHz and a peak power of 825 mW, resulting in an average power of 133 mW. Second-harmonic generation is carried out in a periodically poled MgO-doped LiNbO3 ridge waveguide at a normalized nonlinear conversion efficiency of 930%/W. A maximum average second-harmonic power of 40.9 mW, corresponding to a pulse energy of 3.15 pJ, is reached in the experiment at an opto-optical conversion efficiency of 30.8%. The normalized nonlinear conversion efficiency in mode-locked operation is more than 2 times larger compared to continuous-wave operation.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Goldberg and D. Mehuys, “Blue-light intensity modulation in a frequency-doubled tapered amplifier mode locked laser,” Electron. Lett. 30, 1296–1297 (1994).
    [CrossRef]
  2. H. Wenzel, S. Schwertfeger, A. Klehr, D. Jedrzejczyk, T. Hoffmann, and G. Erbert, “High peak power optical pulses generated with a monolithic master-oscillator power amplifier,” Opt. Lett. 37, 1826–1828 (2012).
    [CrossRef]
  3. O. Brox, T. Prziwarka, A. Klehr, F. Bugge, M. Matalla, H. Wenzel, and G. Erbert, “Integrated 13  Ghz ps-pulse source at 1064  nm,” Semicond. Sci. Technol. 28, 045015 (2013).
    [CrossRef]
  4. T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett. 40, 1359–1361 (2004).
    [CrossRef]
  5. , “Lasers and laser-related equipment—Test methods for laser beam widths, divergence angles and beam propagation ratios—Part 1: stigmatic and simple astigmatic beams,” 2005.
  6. D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
    [CrossRef]
  7. H. Ishizuki, T. Suhara, and H. Nishihara, “Numerical analysis of ultra-short pulse wavelength conversion characteristics of LiNbO3 waveguide nonlinear-optic devices,” Electron. Comm. Jpn. Pt. II 86, 11–20 (2003).
  8. S. Helmfrid and G. Arvidsson, “Second-harmonic generation in quasi-phase-matching waveguides with a multimode pump,” J. Opt. Soc. Am. B 8, 2326–2330 (1991).
    [CrossRef]
  9. Y. Qu and S. Singh, “Second-harmonic generation and photon bunching in multimode laser beams,” Phys. Rev. A 47, 3259–3263 (1993).
    [CrossRef]

2013 (1)

O. Brox, T. Prziwarka, A. Klehr, F. Bugge, M. Matalla, H. Wenzel, and G. Erbert, “Integrated 13  Ghz ps-pulse source at 1064  nm,” Semicond. Sci. Technol. 28, 045015 (2013).
[CrossRef]

2012 (2)

H. Wenzel, S. Schwertfeger, A. Klehr, D. Jedrzejczyk, T. Hoffmann, and G. Erbert, “High peak power optical pulses generated with a monolithic master-oscillator power amplifier,” Opt. Lett. 37, 1826–1828 (2012).
[CrossRef]

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[CrossRef]

2004 (1)

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett. 40, 1359–1361 (2004).
[CrossRef]

2003 (1)

H. Ishizuki, T. Suhara, and H. Nishihara, “Numerical analysis of ultra-short pulse wavelength conversion characteristics of LiNbO3 waveguide nonlinear-optic devices,” Electron. Comm. Jpn. Pt. II 86, 11–20 (2003).

1994 (1)

L. Goldberg and D. Mehuys, “Blue-light intensity modulation in a frequency-doubled tapered amplifier mode locked laser,” Electron. Lett. 30, 1296–1297 (1994).
[CrossRef]

1993 (1)

Y. Qu and S. Singh, “Second-harmonic generation and photon bunching in multimode laser beams,” Phys. Rev. A 47, 3259–3263 (1993).
[CrossRef]

1991 (1)

Arvidsson, G.

Brox, O.

O. Brox, T. Prziwarka, A. Klehr, F. Bugge, M. Matalla, H. Wenzel, and G. Erbert, “Integrated 13  Ghz ps-pulse source at 1064  nm,” Semicond. Sci. Technol. 28, 045015 (2013).
[CrossRef]

Bugge, F.

O. Brox, T. Prziwarka, A. Klehr, F. Bugge, M. Matalla, H. Wenzel, and G. Erbert, “Integrated 13  Ghz ps-pulse source at 1064  nm,” Semicond. Sci. Technol. 28, 045015 (2013).
[CrossRef]

Erbert, G.

O. Brox, T. Prziwarka, A. Klehr, F. Bugge, M. Matalla, H. Wenzel, and G. Erbert, “Integrated 13  Ghz ps-pulse source at 1064  nm,” Semicond. Sci. Technol. 28, 045015 (2013).
[CrossRef]

H. Wenzel, S. Schwertfeger, A. Klehr, D. Jedrzejczyk, T. Hoffmann, and G. Erbert, “High peak power optical pulses generated with a monolithic master-oscillator power amplifier,” Opt. Lett. 37, 1826–1828 (2012).
[CrossRef]

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[CrossRef]

Fukuda, K.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett. 40, 1359–1361 (2004).
[CrossRef]

Goldberg, L.

L. Goldberg and D. Mehuys, “Blue-light intensity modulation in a frequency-doubled tapered amplifier mode locked laser,” Electron. Lett. 30, 1296–1297 (1994).
[CrossRef]

Güther, R.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[CrossRef]

Helmfrid, S.

Hoffmann, T.

Ishizuki, H.

H. Ishizuki, T. Suhara, and H. Nishihara, “Numerical analysis of ultra-short pulse wavelength conversion characteristics of LiNbO3 waveguide nonlinear-optic devices,” Electron. Comm. Jpn. Pt. II 86, 11–20 (2003).

Jedrzejczyk, D.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[CrossRef]

H. Wenzel, S. Schwertfeger, A. Klehr, D. Jedrzejczyk, T. Hoffmann, and G. Erbert, “High peak power optical pulses generated with a monolithic master-oscillator power amplifier,” Opt. Lett. 37, 1826–1828 (2012).
[CrossRef]

Kai, T.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett. 40, 1359–1361 (2004).
[CrossRef]

Klehr, A.

O. Brox, T. Prziwarka, A. Klehr, F. Bugge, M. Matalla, H. Wenzel, and G. Erbert, “Integrated 13  Ghz ps-pulse source at 1064  nm,” Semicond. Sci. Technol. 28, 045015 (2013).
[CrossRef]

H. Wenzel, S. Schwertfeger, A. Klehr, D. Jedrzejczyk, T. Hoffmann, and G. Erbert, “High peak power optical pulses generated with a monolithic master-oscillator power amplifier,” Opt. Lett. 37, 1826–1828 (2012).
[CrossRef]

Matalla, M.

O. Brox, T. Prziwarka, A. Klehr, F. Bugge, M. Matalla, H. Wenzel, and G. Erbert, “Integrated 13  Ghz ps-pulse source at 1064  nm,” Semicond. Sci. Technol. 28, 045015 (2013).
[CrossRef]

Mehuys, D.

L. Goldberg and D. Mehuys, “Blue-light intensity modulation in a frequency-doubled tapered amplifier mode locked laser,” Electron. Lett. 30, 1296–1297 (1994).
[CrossRef]

Mizuuchi, K.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett. 40, 1359–1361 (2004).
[CrossRef]

Nakayama, I.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett. 40, 1359–1361 (2004).
[CrossRef]

Nishihara, H.

H. Ishizuki, T. Suhara, and H. Nishihara, “Numerical analysis of ultra-short pulse wavelength conversion characteristics of LiNbO3 waveguide nonlinear-optic devices,” Electron. Comm. Jpn. Pt. II 86, 11–20 (2003).

Paschke, K.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[CrossRef]

Prziwarka, T.

O. Brox, T. Prziwarka, A. Klehr, F. Bugge, M. Matalla, H. Wenzel, and G. Erbert, “Integrated 13  Ghz ps-pulse source at 1064  nm,” Semicond. Sci. Technol. 28, 045015 (2013).
[CrossRef]

Qu, Y.

Y. Qu and S. Singh, “Second-harmonic generation and photon bunching in multimode laser beams,” Phys. Rev. A 47, 3259–3263 (1993).
[CrossRef]

Schwertfeger, S.

Singh, S.

Y. Qu and S. Singh, “Second-harmonic generation and photon bunching in multimode laser beams,” Phys. Rev. A 47, 3259–3263 (1993).
[CrossRef]

Sugita, T.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett. 40, 1359–1361 (2004).
[CrossRef]

Suhara, T.

H. Ishizuki, T. Suhara, and H. Nishihara, “Numerical analysis of ultra-short pulse wavelength conversion characteristics of LiNbO3 waveguide nonlinear-optic devices,” Electron. Comm. Jpn. Pt. II 86, 11–20 (2003).

Takahashi, K.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett. 40, 1359–1361 (2004).
[CrossRef]

Tränkle, G.

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[CrossRef]

Wenzel, H.

O. Brox, T. Prziwarka, A. Klehr, F. Bugge, M. Matalla, H. Wenzel, and G. Erbert, “Integrated 13  Ghz ps-pulse source at 1064  nm,” Semicond. Sci. Technol. 28, 045015 (2013).
[CrossRef]

H. Wenzel, S. Schwertfeger, A. Klehr, D. Jedrzejczyk, T. Hoffmann, and G. Erbert, “High peak power optical pulses generated with a monolithic master-oscillator power amplifier,” Opt. Lett. 37, 1826–1828 (2012).
[CrossRef]

Yamamoto, K.

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett. 40, 1359–1361 (2004).
[CrossRef]

Appl. Phys. B (1)

D. Jedrzejczyk, R. Güther, K. Paschke, G. Erbert, and G. Tränkle, “Diode laser frequency doubling in a ppMgO:LN ridge waveguide: influence of structural imperfection, optical absorption and heat generation,” Appl. Phys. B 109, 33–42 (2012).
[CrossRef]

Electron. Comm. Jpn. Pt. II (1)

H. Ishizuki, T. Suhara, and H. Nishihara, “Numerical analysis of ultra-short pulse wavelength conversion characteristics of LiNbO3 waveguide nonlinear-optic devices,” Electron. Comm. Jpn. Pt. II 86, 11–20 (2003).

Electron. Lett. (2)

L. Goldberg and D. Mehuys, “Blue-light intensity modulation in a frequency-doubled tapered amplifier mode locked laser,” Electron. Lett. 30, 1296–1297 (1994).
[CrossRef]

T. Sugita, K. Mizuuchi, K. Yamamoto, K. Fukuda, T. Kai, I. Nakayama, and K. Takahashi, “Highly efficient second-harmonic generation in direct-bonded MgO:LiNbO3 pure crystal waveguide,” Electron. Lett. 40, 1359–1361 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Phys. Rev. A (1)

Y. Qu and S. Singh, “Second-harmonic generation and photon bunching in multimode laser beams,” Phys. Rev. A 47, 3259–3263 (1993).
[CrossRef]

Semicond. Sci. Technol. (1)

O. Brox, T. Prziwarka, A. Klehr, F. Bugge, M. Matalla, H. Wenzel, and G. Erbert, “Integrated 13  Ghz ps-pulse source at 1064  nm,” Semicond. Sci. Technol. 28, 045015 (2013).
[CrossRef]

Other (1)

, “Lasers and laser-related equipment—Test methods for laser beam widths, divergence angles and beam propagation ratios—Part 1: stigmatic and simple astigmatic beams,” 2005.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental setup.

Fig. 2.
Fig. 2.

Power–voltage-gain current characteristics (T=25°C).

Fig. 3.
Fig. 3.

NIR spectrum under CW mode operation (T=25°C, Igain=500mA).

Fig. 4.
Fig. 4.

Time averaged NIR spectrum in pulsed operation (T=25°C, Uabs=3V, Igain=500mA).

Fig. 5.
Fig. 5.

Results of the measurements of (a) the ACF and (b) the RF spectrum (T=25°C, Uabs=3V, Igain=500mA).

Fig. 6.
Fig. 6.

Temperature phase-matching curves measured in CW (red squares) and pulse mode (blue circles) operation (lines are guides to the eye).

Fig. 7.
Fig. 7.

Average SH power versus average NIR pump power.

Fig. 8.
Fig. 8.

Time averaged SH spectrum in (a) CW and (b) pulse mode operation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Ppulse=Paveragefrep·τsech2.
PSH=(1RSH)·TPNIRtanh2(η¯TPNIR),

Metrics