Abstract

We report numerical and experimental results obtained with an optical setup that simulates the heating and cooling processes expected in a multi-slab high-average-power laser head. We have tested the performance of an adaptive optics system consisting of a photo-controlled deformable mirror (PCDM) and a Shack–Hartmann wavefront sensor for the effective correction of the generated wavefront aberrations. The performance of the adaptive optics system is characterized for different layouts of the actuator array and for different configurations of the heating mechanisms. The numerical results are benchmarked using a PCDM, which allowed us to experimentally compare the performances of different deformable mirrors.

© 2014 Optical Society of America

Full Article  |  PDF Article

Corrections

Jan Pilar, Ondrej Slezak, Pawel Sikocinski, Martin Divoky, Magdalena Sawicka, Stefano Bonora, Antonio Lucianetti, Tomas Mocek, and Helena Jelinkova, "Design and optimization of an adaptive optics system for a high-average-power multi-slab laser (HiLASE): erratum," Appl. Opt. 53, 7877-7877 (2014)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-53-33-7877

References

  • View by:
  • |
  • |
  • |

  1. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
    [CrossRef]
  2. M. Sawicka, M. Divoky, J. Novak, A. Lucianetti, B. Rus, and T. Mocek, “Modeling of amplified spontaneous emission, heat deposition, and energy extraction in cryogenically cooled multislab Yb3+:YAG laser amplifier for the HiLASE project,” J. Opt. Soc. Am. B 29, 1270–1276 (2012).
    [CrossRef]
  3. O. Slezak, A. Lucianetti, M. Divoky, M. Sawicka, and T. Mocek, “Optimization of wavefront distortions and thermal-stress-induced birefringence in a cryogenically cooled multislab laser amplifier,” IEEE J. Quantum Electron. 49, 960–966 (2013).
    [CrossRef]
  4. A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).
  5. S. Banerjee, K. Ertel, P. Mason, P. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. Collier, “High-efficiency 10  J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett. 37, 2175–2177 (2012).
    [CrossRef]
  6. A. Lucianetti, D. Albach, and J. Chanteloup, “Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures,” Opt. Express 19, 12766–12780 (2011).
    [CrossRef]
  7. M. Hornung, S. Keppler, R. Bodefeld, A. Kessler, H. Liebetrau, J. Korner, M. Hellwing, F. Schorcht, O. Jackel, A. Savert, J. Polz, A. Arunachalam, J. Hein, and M. Kaluza, “High-intensity, high-contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS,” Opt. Lett. 38, 718–720 (2013).
    [CrossRef]
  8. A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).
  9. M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52, 064201 (2013).
    [CrossRef]
  10. J. Pilar, “Modeling of an adaptive optical system for wavefront correction of a high-average-power multi-slab laser system,” in Faculty of Nuclear Sciences and Physical Engineering (Czech Technical University in Prague, 2013), p. 69.
  11. W. Koechner, Solid-state Laser Engineering (Springer, 2006).
  12. R. Aggarwal, D. Ripin, J. Ochoa, and T. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80–300  K temperature range,” J. Appl. Phys. 98, 103514 (2005).
    [CrossRef]
  13. D. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861–873 (1997).
    [CrossRef]
  14. O. Morice, “Miro: complete modeling and software for pulse amplification and propagation in high-power laser systems,” Opt. Eng. 42, 1530–1541 (2003).
    [CrossRef]
  15. Z. M. Liao, “Initial demonstration of mercury wavefront correction system,” (2006).
  16. V. Mahajan and G. Dai, “Orthonormal polynomials in wavefront analysis: analytical solution,” J. Opt. Soc. Am. A 24, 2994–3016 (2007).
    [CrossRef]
  17. V. Mahajan, “Orthonormal aberration polynomials for anamorphic optical imaging systems with rectangular pupils,” Appl. Opt. 49, 6924–6929 (2010).
    [CrossRef]
  18. S. Bonora, D. Coburn, U. Bortolozzo, C. Dainty, and S. Residori, “High resolution wavefront correction with photocontrolled deformable mirror,” Opt. Express 20, 5178–5188 (2012).
    [CrossRef]
  19. R. Tyson, Adaptive Optics Engineering Handbook (Taylor & Francis, 1999).

2013 (3)

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52, 064201 (2013).
[CrossRef]

O. Slezak, A. Lucianetti, M. Divoky, M. Sawicka, and T. Mocek, “Optimization of wavefront distortions and thermal-stress-induced birefringence in a cryogenically cooled multislab laser amplifier,” IEEE J. Quantum Electron. 49, 960–966 (2013).
[CrossRef]

M. Hornung, S. Keppler, R. Bodefeld, A. Kessler, H. Liebetrau, J. Korner, M. Hellwing, F. Schorcht, O. Jackel, A. Savert, J. Polz, A. Arunachalam, J. Hein, and M. Kaluza, “High-intensity, high-contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS,” Opt. Lett. 38, 718–720 (2013).
[CrossRef]

2012 (3)

2011 (2)

A. Lucianetti, D. Albach, and J. Chanteloup, “Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures,” Opt. Express 19, 12766–12780 (2011).
[CrossRef]

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

2010 (1)

2007 (1)

2006 (1)

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

2005 (1)

R. Aggarwal, D. Ripin, J. Ochoa, and T. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80–300  K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

2003 (1)

O. Morice, “Miro: complete modeling and software for pulse amplification and propagation in high-power laser systems,” Opt. Eng. 42, 1530–1541 (2003).
[CrossRef]

2001 (1)

A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).

1997 (1)

D. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861–873 (1997).
[CrossRef]

Aceves, S.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Aggarwal, R.

R. Aggarwal, D. Ripin, J. Ochoa, and T. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80–300  K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Albach, D.

Anklam, T.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Arunachalam, A.

Baker, K.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Balembois, F.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

Banerjee, S.

Bayramian, A.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).

Beach, R.

A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).

Bibeau, C.

A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).

Bliss, E.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Bodefeld, R.

Boley, C.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Bonora, S.

Bortolozzo, U.

Brown, D.

D. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861–873 (1997).
[CrossRef]

Bullington, A.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Caird, J.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Chanteloup, J.

A. Lucianetti, D. Albach, and J. Chanteloup, “Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures,” Opt. Express 19, 12766–12780 (2011).
[CrossRef]

A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).

Chen, D.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Chenais, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

Coburn, D.

Collier, J.

Dai, G.

Dainty, C.

Deri, R.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Divoky, M.

O. Slezak, A. Lucianetti, M. Divoky, M. Sawicka, and T. Mocek, “Optimization of wavefront distortions and thermal-stress-induced birefringence in a cryogenically cooled multislab laser amplifier,” IEEE J. Quantum Electron. 49, 960–966 (2013).
[CrossRef]

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52, 064201 (2013).
[CrossRef]

M. Sawicka, M. Divoky, J. Novak, A. Lucianetti, B. Rus, and T. Mocek, “Modeling of amplified spontaneous emission, heat deposition, and energy extraction in cryogenically cooled multislab Yb3+:YAG laser amplifier for the HiLASE project,” J. Opt. Soc. Am. B 29, 1270–1276 (2012).
[CrossRef]

Druon, F.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

Dunne, M.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Ebbers, C.

A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).

Erlandson, A.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Ertel, K.

Fan, T.

R. Aggarwal, D. Ripin, J. Ochoa, and T. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80–300  K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Flowers, D.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Forget, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

Georges, P.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

Hein, J.

Hellwing, M.

Henesian, M.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Hernandez-Gomez, C.

Hornung, M.

Jackel, O.

Kaluza, M.

Kanz, K.

A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).

Keppler, S.

Kessler, A.

Koechner, W.

W. Koechner, Solid-state Laser Engineering (Springer, 2006).

Korner, J.

Latkowski, J.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Liao, Z. M.

Z. M. Liao, “Initial demonstration of mercury wavefront correction system,” (2006).

Liebetrau, H.

Loeser, M.

Lucianetti, A.

O. Slezak, A. Lucianetti, M. Divoky, M. Sawicka, and T. Mocek, “Optimization of wavefront distortions and thermal-stress-induced birefringence in a cryogenically cooled multislab laser amplifier,” IEEE J. Quantum Electron. 49, 960–966 (2013).
[CrossRef]

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52, 064201 (2013).
[CrossRef]

M. Sawicka, M. Divoky, J. Novak, A. Lucianetti, B. Rus, and T. Mocek, “Modeling of amplified spontaneous emission, heat deposition, and energy extraction in cryogenically cooled multislab Yb3+:YAG laser amplifier for the HiLASE project,” J. Opt. Soc. Am. B 29, 1270–1276 (2012).
[CrossRef]

A. Lucianetti, D. Albach, and J. Chanteloup, “Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures,” Opt. Express 19, 12766–12780 (2011).
[CrossRef]

Mahajan, V.

Manes, K.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Marshall, C.

A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).

Mason, P.

Mocek, T.

O. Slezak, A. Lucianetti, M. Divoky, M. Sawicka, and T. Mocek, “Optimization of wavefront distortions and thermal-stress-induced birefringence in a cryogenically cooled multislab laser amplifier,” IEEE J. Quantum Electron. 49, 960–966 (2013).
[CrossRef]

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52, 064201 (2013).
[CrossRef]

M. Sawicka, M. Divoky, J. Novak, A. Lucianetti, B. Rus, and T. Mocek, “Modeling of amplified spontaneous emission, heat deposition, and energy extraction in cryogenically cooled multislab Yb3+:YAG laser amplifier for the HiLASE project,” J. Opt. Soc. Am. B 29, 1270–1276 (2012).
[CrossRef]

Molander, W.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Morice, O.

O. Morice, “Miro: complete modeling and software for pulse amplification and propagation in high-power laser systems,” Opt. Eng. 42, 1530–1541 (2003).
[CrossRef]

Moses, E.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Nakano, H.

A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).

Novak, J.

Ochoa, J.

R. Aggarwal, D. Ripin, J. Ochoa, and T. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80–300  K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Payne, S.

A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).

Phillips, P.

Piggott, T.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Pilar, J.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52, 064201 (2013).
[CrossRef]

J. Pilar, “Modeling of an adaptive optical system for wavefront correction of a high-average-power multi-slab laser system,” in Faculty of Nuclear Sciences and Physical Engineering (Czech Technical University in Prague, 2013), p. 69.

Polz, J.

Powell, H.

A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).

Powers, S.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Rana, S.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Residori, S.

Ripin, D.

R. Aggarwal, D. Ripin, J. Ochoa, and T. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80–300  K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Rodriguez, S.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Rus, B.

Savert, A.

Sawicka, M.

O. Slezak, A. Lucianetti, M. Divoky, M. Sawicka, and T. Mocek, “Optimization of wavefront distortions and thermal-stress-induced birefringence in a cryogenically cooled multislab laser amplifier,” IEEE J. Quantum Electron. 49, 960–966 (2013).
[CrossRef]

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52, 064201 (2013).
[CrossRef]

M. Sawicka, M. Divoky, J. Novak, A. Lucianetti, B. Rus, and T. Mocek, “Modeling of amplified spontaneous emission, heat deposition, and energy extraction in cryogenically cooled multislab Yb3+:YAG laser amplifier for the HiLASE project,” J. Opt. Soc. Am. B 29, 1270–1276 (2012).
[CrossRef]

Sawicki, R.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Schaffers, K.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).

Schorcht, F.

Seppala, L.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).

Siebold, M.

Sikocinski, P.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52, 064201 (2013).
[CrossRef]

Skulina, K.

A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).

Slezak, O.

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52, 064201 (2013).
[CrossRef]

O. Slezak, A. Lucianetti, M. Divoky, M. Sawicka, and T. Mocek, “Optimization of wavefront distortions and thermal-stress-induced birefringence in a cryogenically cooled multislab laser amplifier,” IEEE J. Quantum Electron. 49, 960–966 (2013).
[CrossRef]

Smith, L.

A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).

Spaeth, M.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Sutton, S.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).

Telford, S.

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

Tyson, R.

R. Tyson, Adaptive Optics Engineering Handbook (Taylor & Francis, 1999).

Zapata, L.

A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).

Appl. Opt. (1)

Fusion Sci. Technol. (1)

A. Bayramian, S. Aceves, T. Anklam, K. Baker, E. Bliss, C. Boley, A. Bullington, J. Caird, D. Chen, R. Deri, M. Dunne, A. Erlandson, D. Flowers, M. Henesian, J. Latkowski, K. Manes, W. Molander, E. Moses, T. Piggott, S. Powers, S. Rana, S. Rodriguez, R. Sawicki, K. Schaffers, L. Seppala, M. Spaeth, S. Sutton, and S. Telford, “Compact, efficient laser systems required for laser inertial fusion energy,” Fusion Sci. Technol. 60, 28–48 (2011).

IEEE J. Quantum Electron. (2)

D. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb:YAG lasers,” IEEE J. Quantum Electron. 33, 861–873 (1997).
[CrossRef]

O. Slezak, A. Lucianetti, M. Divoky, M. Sawicka, and T. Mocek, “Optimization of wavefront distortions and thermal-stress-induced birefringence in a cryogenically cooled multislab laser amplifier,” IEEE J. Quantum Electron. 49, 960–966 (2013).
[CrossRef]

J. Appl. Phys. (1)

R. Aggarwal, D. Ripin, J. Ochoa, and T. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO(3), LiYF4, LiLuF4, BaY2F8, KGd(WO4)(2), and KY(WO4)(2) laser crystals in the 80–300  K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Eng. (2)

O. Morice, “Miro: complete modeling and software for pulse amplification and propagation in high-power laser systems,” Opt. Eng. 42, 1530–1541 (2003).
[CrossRef]

M. Divoky, P. Sikocinski, J. Pilar, A. Lucianetti, M. Sawicka, O. Slezak, and T. Mocek, “Design of high-energy-class cryogenically cooled Yb3+:YAG multislab laser system with low wavefront distortion,” Opt. Eng. 52, 064201 (2013).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

OSA Trends Opt. Photon. (1)

A. Bayramian, C. Bibeau, R. Beach, J. Chanteloup, C. Ebbers, K. Kanz, H. Nakano, S. Payne, H. Powell, K. Schaffers, L. Seppala, K. Skulina, L. Smith, S. Sutton, L. Zapata, and C. Marshall, “Activation of the mercury laser: a diode-pumped solid-state laser driver for inertial fusion,” OSA Trends Opt. Photon. 50, 24–28 (2001).

Prog. Quantum Electron. (1)

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006).
[CrossRef]

Other (4)

Z. M. Liao, “Initial demonstration of mercury wavefront correction system,” (2006).

J. Pilar, “Modeling of an adaptive optical system for wavefront correction of a high-average-power multi-slab laser system,” in Faculty of Nuclear Sciences and Physical Engineering (Czech Technical University in Prague, 2013), p. 69.

W. Koechner, Solid-state Laser Engineering (Springer, 2006).

R. Tyson, Adaptive Optics Engineering Handbook (Taylor & Francis, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Layout of the 100 J main amplifier system. (a) 50J+50J and (b) 10J+100J. Input and output of the amplifier are denoted as in and out, respectively. Optical components are denoted as follows: PC, Pockel’s cell; P, polarizer; SF, spatial filter; PD, pump diodes; DBS, dichroic beam splitter; DM, deformable mirror.

Fig. 2.
Fig. 2.

Numerical results of (a) heating power deposition, (b) temperature distribution, and (c) OPD for a 10 J multi-slab laser system. The area through which the laser beam is transmitted is highlighted by a dashed square. The beam trace dimensions are 20mm×20mm. OPD is evaluated only in this central area.

Fig. 3.
Fig. 3.

Numerical results of (a) heat deposition, (b) temperature distribution, and (c) OPD for a 100 J multi-slab laser system. The beam trace dimensions are 45mm×45mm.

Fig. 4.
Fig. 4.

(a) OPD at the output of a 100 J multi-slab laser and (b) OPD at the output of a 100 J multi-slab laser, with tilt and defocus subtracted.

Fig. 5.
Fig. 5.

Decomposition of the phase map into modified Zernike and Legendre polynomial bases. Coefficients of the expansion for the first 28 terms are plotted in a bar graph. The two sets of miniature graphs at the bottom of the figure show plots of the first 28 polynomials of both polynomial bases.

Fig. 6.
Fig. 6.

Simulation results of corrected wavefront OPD using (a) 6×6, (b) 9×9, and (c) 12×12 actuators in the array. The corresponding p-v and RMS parameters of the residual aberration are listed above each phase map.

Fig. 7.
Fig. 7.

Optical layout of the experimental setup, reproducing the aberrations in the 10 J laser system. In the left part of the figure, the beam traces of the heating beams are shown along with their dimension definitions. The optical elements used are denoted as follows: He–Ne, helium–neon gas laser used as a source of the probe beam; Mx, flat silver mirror; NDFx, neutral density filter; T2x-8x, telescope with variable magnification between 2x and 8x (8x was used for this experiment); T20x, telescope with fixed magnification 20x; SA, soft aperture; HMx, hot mirror (reflects wavelengths from 700 nm up); Lx, lens; DM, deformable mirror; WFS, SID4 wavefront sensor; LDx, laser diode with 970 nm output wavelength; HAx, hard aperture.

Fig. 8.
Fig. 8.

Measured OPD of thermal aberration introduced by (a) heating the central part of the model slab, (b) heating the outer parts of the model slab, and (c) heating both the central and the outer part of the model slab.

Fig. 9.
Fig. 9.

Photo-controlled deformable mirror. (a) Layout of the photo-controlled deformable mirror. (b) Example of square patterns signal sent to the mini-projector. (c) Example of the patterns projected on the back of the photoconductor.

Fig. 10.
Fig. 10.

Performance of adaptive optics system installed at HiLASE. (a) Initial OPD of the experimental setup. This aberration is static and introduced by optical elements in the system. (b) Mean values of rms during stable operation of the adaptive optics loop. The mean values were taken for a square actuator array from 2×2 up to 8×8 actuators in the array.

Fig. 11.
Fig. 11.

Dynamic performance of the adaptive optics system. The solid lines denote the RMS development without the adaptive system, whereas the dashed lines denote the RMS development under the same circumstances, but with the adaptive system running. Three cases are compared: (a) central heating beam on, (b) outer heating beam on, and (c) both heating beams on.

Tables (1)

Tables Icon

Table 1. Relationship between Actuator Numbers and Residual Wavefront Parameters

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2W(x,y)=P(x,y)T,
WDM=ici·IFi,
ci=IM1×WT,

Metrics