Abstract

We reported on a highly effective chelate precursor doping technique for Yb-doped large-mode-area (LMA) fiber manufacture. By accurately controlling the evaporation temperature and flow rate of carrier gas, the chelate precursor doping technique is capable of making Yb-doped LMA silica fiber with good uniformity free of center dip, low numerical aperture of 0.056, large preform core size of 4.46 mm, and appropriate cladding absorption of 1.17dB/m at 976.4 nm. Based on a single-end-pump all-fiber oscillator laser setup, the laser output at 1080 nm reached 700 W with slope efficiency of 54.2%.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
    [CrossRef]
  2. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1  kW of continuous-wave output power,” Electron. Lett. 40, 470–471 (2004).
    [CrossRef]
  3. S. Norman, M. Zervas, A. Appleyard, M. Durkin, R. Horley, M. Varnham, J. Nilsson, and Y. Jeong, “Latest development of high power fiber lasers in SPI,” Proc. SPIE 5335, 229–237 (2004).
    [CrossRef]
  4. J. Kirchhof, S. Unger, A. Schwuchow, and S. Grimm, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352, 2399–2403 (2006).
    [CrossRef]
  5. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36  kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004).
    [CrossRef]
  6. M. A. Melkumov, A. Y. Laptev, M. V. Yashkov, N. N. Vechkanov, A. N. Guryanov, and I. A. Bufetov, “Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers,” J. Inorg. Mater. 46, 299–303 (2010).
  7. M. Drolet, P. Laperle, C. Paré, H. Zheng, L. Desbiens, A. Proulx, and Y. Taillon, “High-power fiber amplifier using a depressed-clad Yb-doped LMA fiber with low photodarkening,” Proc. SPIE 7750, 775018 (2010).
    [CrossRef]
  8. A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356, 848–851 (2010).
    [CrossRef]
  9. J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibers,” Electron. Lett. 23, 329–331 (1987).
    [CrossRef]
  10. M. C. Paul, A. V. Kir’yanov, S. Das, M. Pal, S. K. Bhadra, Y. O. Barmenkov, A. M. Gamez, and J. L. Martínez, “Development of large-core Yb2O3-doped yttria-alumino-silicate nanoparticles based optical fibers,” Proc. SPIE 7839, 78391Y (2010).
    [CrossRef]
  11. A. J. Boyland, A. S. Webb, M. P. Kalita, S. Yoo, C. A. Codemard, R. J. Standish, J. Nilsson, and J. K. Sahu, “Rare-earth doped optical fiber fabrication using novel gas phase deposition technique,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CTHV7.
  12. S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low loss optical fibers containing rare earth ions,” Electron. Lett. 21, 737–738 (1985).
    [CrossRef]
  13. S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and characterization of low-loss optical fibers containing rare-earth ions,” J. Lightwave Technol. 4, 870–876 (1986).
    [CrossRef]
  14. L. Norin, E. Vanin, P. Soininen, and M. Putkonen, “Atomic layer deposition as a new method for rare-earth doping of optical fibers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CtuBB5.
  15. R. P. Tumminelli, B. C. McCollum, and E. Snitzer, “Fabrication of high-concentration rare-earth doped optical fibers using chelates,” J. Lightwave Technol. 8, 1680–1683 (1990).
    [CrossRef]
  16. R. Tumminelli, F. Hakimi, and J. Haavisto, “Integrated-optic Nd: glass laser fabricated by flame hydrolysis deposition using chelates,” Opt. Lett. 16, 1098–1100 (1991).
    [CrossRef]
  17. S. D. Jackson, T. Ryan, and S. Mossman, “High power Tm3+-doped silica fiber laser fabricated using chelate delivery deposition,” Opt. Commun. 216, 401–404 (2003).
    [CrossRef]
  18. E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Non-Cryst. Solids 354, 4737–4742 (2008).
    [CrossRef]
  19. B. Lenardič and M. Kveder, “Advanced vapor-phase doping method using chelate precursor for fabrication of rare earth-doped fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2009), paper OThK6.
  20. A. J. Boyland, A. S. Webb, S. Yoo, F. H. Mountfort, M. P. Kalita, R. J. Standish, J. K. Sahu, D. J. Richardson, and D. N. Payne, “Optical fiber fabrication using novel gas-phase deposition technique,” J. Lightwave Technol. 29, 912–915 (2011).
    [CrossRef]
  21. S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, “Highly ytterbium-doped silica fibers with low photo-darkening,” Opt. Express 17, 9924–9932 (2009).
    [CrossRef]
  22. M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett. 34, 1285–1287 (2009).
    [CrossRef]
  23. A. Lin, S. Boo, D. S. Moon, H. J. Jeong, Y. Chung, and W.-T. Han, “Luminescence enhancement by Au nanoparticles in Er3+-doped germano-silicate optical fiber,” Opt. Express 15, 8603–8608 (2007).
    [CrossRef]
  24. A. Lin, P. R. Watekar, G. Sun, Y. Chung, and W.-T. Han, “Pb2+/Al3+ codoped germano-silicate optical fiber with high non-resonant third-order nonlinearity,” J. Non-Cryst. Solids 354, 3907–3909 (2008).
    [CrossRef]
  25. A. Lin, B. H. Kim, D. S. Moon, Y. Chung, and W.-T. Han, “Cu2+-doped germano-silicate fiber with high resonant nonlinearity,” Opt. Express 15, 3665–3672 (2007).
    [CrossRef]

2011

2010

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
[CrossRef]

M. A. Melkumov, A. Y. Laptev, M. V. Yashkov, N. N. Vechkanov, A. N. Guryanov, and I. A. Bufetov, “Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers,” J. Inorg. Mater. 46, 299–303 (2010).

M. Drolet, P. Laperle, C. Paré, H. Zheng, L. Desbiens, A. Proulx, and Y. Taillon, “High-power fiber amplifier using a depressed-clad Yb-doped LMA fiber with low photodarkening,” Proc. SPIE 7750, 775018 (2010).
[CrossRef]

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356, 848–851 (2010).
[CrossRef]

M. C. Paul, A. V. Kir’yanov, S. Das, M. Pal, S. K. Bhadra, Y. O. Barmenkov, A. M. Gamez, and J. L. Martínez, “Development of large-core Yb2O3-doped yttria-alumino-silicate nanoparticles based optical fibers,” Proc. SPIE 7839, 78391Y (2010).
[CrossRef]

2009

2008

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Non-Cryst. Solids 354, 4737–4742 (2008).
[CrossRef]

A. Lin, P. R. Watekar, G. Sun, Y. Chung, and W.-T. Han, “Pb2+/Al3+ codoped germano-silicate optical fiber with high non-resonant third-order nonlinearity,” J. Non-Cryst. Solids 354, 3907–3909 (2008).
[CrossRef]

2007

2006

J. Kirchhof, S. Unger, A. Schwuchow, and S. Grimm, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352, 2399–2403 (2006).
[CrossRef]

2004

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1  kW of continuous-wave output power,” Electron. Lett. 40, 470–471 (2004).
[CrossRef]

S. Norman, M. Zervas, A. Appleyard, M. Durkin, R. Horley, M. Varnham, J. Nilsson, and Y. Jeong, “Latest development of high power fiber lasers in SPI,” Proc. SPIE 5335, 229–237 (2004).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36  kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004).
[CrossRef]

2003

S. D. Jackson, T. Ryan, and S. Mossman, “High power Tm3+-doped silica fiber laser fabricated using chelate delivery deposition,” Opt. Commun. 216, 401–404 (2003).
[CrossRef]

1991

1990

R. P. Tumminelli, B. C. McCollum, and E. Snitzer, “Fabrication of high-concentration rare-earth doped optical fibers using chelates,” J. Lightwave Technol. 8, 1680–1683 (1990).
[CrossRef]

1987

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibers,” Electron. Lett. 23, 329–331 (1987).
[CrossRef]

1986

S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and characterization of low-loss optical fibers containing rare-earth ions,” J. Lightwave Technol. 4, 870–876 (1986).
[CrossRef]

1985

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low loss optical fibers containing rare earth ions,” Electron. Lett. 21, 737–738 (1985).
[CrossRef]

Appleyard, A.

S. Norman, M. Zervas, A. Appleyard, M. Durkin, R. Horley, M. Varnham, J. Nilsson, and Y. Jeong, “Latest development of high power fiber lasers in SPI,” Proc. SPIE 5335, 229–237 (2004).
[CrossRef]

Barmenkov, Y. O.

M. C. Paul, A. V. Kir’yanov, S. Das, M. Pal, S. K. Bhadra, Y. O. Barmenkov, A. M. Gamez, and J. L. Martínez, “Development of large-core Yb2O3-doped yttria-alumino-silicate nanoparticles based optical fibers,” Proc. SPIE 7839, 78391Y (2010).
[CrossRef]

Barua, P.

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Non-Cryst. Solids 354, 4737–4742 (2008).
[CrossRef]

Bhadra, S. K.

M. C. Paul, A. V. Kir’yanov, S. Das, M. Pal, S. K. Bhadra, Y. O. Barmenkov, A. M. Gamez, and J. L. Martínez, “Development of large-core Yb2O3-doped yttria-alumino-silicate nanoparticles based optical fibers,” Proc. SPIE 7839, 78391Y (2010).
[CrossRef]

Boo, S.

Boyland, A. J.

A. J. Boyland, A. S. Webb, S. Yoo, F. H. Mountfort, M. P. Kalita, R. J. Standish, J. K. Sahu, D. J. Richardson, and D. N. Payne, “Optical fiber fabrication using novel gas-phase deposition technique,” J. Lightwave Technol. 29, 912–915 (2011).
[CrossRef]

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356, 848–851 (2010).
[CrossRef]

A. J. Boyland, A. S. Webb, M. P. Kalita, S. Yoo, C. A. Codemard, R. J. Standish, J. Nilsson, and J. K. Sahu, “Rare-earth doped optical fiber fabrication using novel gas phase deposition technique,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CTHV7.

Bufetov, I. A.

M. A. Melkumov, A. Y. Laptev, M. V. Yashkov, N. N. Vechkanov, A. N. Guryanov, and I. A. Bufetov, “Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers,” J. Inorg. Mater. 46, 299–303 (2010).

Chung, Y.

Clarkson, W. A.

Codemard, C. A.

A. J. Boyland, A. S. Webb, M. P. Kalita, S. Yoo, C. A. Codemard, R. J. Standish, J. Nilsson, and J. K. Sahu, “Rare-earth doped optical fiber fabrication using novel gas phase deposition technique,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CTHV7.

Das, S.

M. C. Paul, A. V. Kir’yanov, S. Das, M. Pal, S. K. Bhadra, Y. O. Barmenkov, A. M. Gamez, and J. L. Martínez, “Development of large-core Yb2O3-doped yttria-alumino-silicate nanoparticles based optical fibers,” Proc. SPIE 7839, 78391Y (2010).
[CrossRef]

Desbiens, L.

M. Drolet, P. Laperle, C. Paré, H. Zheng, L. Desbiens, A. Proulx, and Y. Taillon, “High-power fiber amplifier using a depressed-clad Yb-doped LMA fiber with low photodarkening,” Proc. SPIE 7750, 775018 (2010).
[CrossRef]

Dong, L.

Drolet, M.

M. Drolet, P. Laperle, C. Paré, H. Zheng, L. Desbiens, A. Proulx, and Y. Taillon, “High-power fiber amplifier using a depressed-clad Yb-doped LMA fiber with low photodarkening,” Proc. SPIE 7750, 775018 (2010).
[CrossRef]

Durkin, M.

S. Norman, M. Zervas, A. Appleyard, M. Durkin, R. Horley, M. Varnham, J. Nilsson, and Y. Jeong, “Latest development of high power fiber lasers in SPI,” Proc. SPIE 5335, 229–237 (2004).
[CrossRef]

Engholm, M.

Fermann, M. E.

S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and characterization of low-loss optical fibers containing rare-earth ions,” J. Lightwave Technol. 4, 870–876 (1986).
[CrossRef]

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low loss optical fibers containing rare earth ions,” Electron. Lett. 21, 737–738 (1985).
[CrossRef]

Fu, L.

Gamez, A. M.

M. C. Paul, A. V. Kir’yanov, S. Das, M. Pal, S. K. Bhadra, Y. O. Barmenkov, A. M. Gamez, and J. L. Martínez, “Development of large-core Yb2O3-doped yttria-alumino-silicate nanoparticles based optical fibers,” Proc. SPIE 7839, 78391Y (2010).
[CrossRef]

Grimm, S.

J. Kirchhof, S. Unger, A. Schwuchow, and S. Grimm, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352, 2399–2403 (2006).
[CrossRef]

Guryanov, A. N.

M. A. Melkumov, A. Y. Laptev, M. V. Yashkov, N. N. Vechkanov, A. N. Guryanov, and I. A. Bufetov, “Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers,” J. Inorg. Mater. 46, 299–303 (2010).

Haavisto, J.

Hakimi, F.

Han, W.-T.

Horley, R.

S. Norman, M. Zervas, A. Appleyard, M. Durkin, R. Horley, M. Varnham, J. Nilsson, and Y. Jeong, “Latest development of high power fiber lasers in SPI,” Proc. SPIE 5335, 229–237 (2004).
[CrossRef]

Ikushima, A. J.

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Non-Cryst. Solids 354, 4737–4742 (2008).
[CrossRef]

Jackson, S. D.

S. D. Jackson, T. Ryan, and S. Mossman, “High power Tm3+-doped silica fiber laser fabricated using chelate delivery deposition,” Opt. Commun. 216, 401–404 (2003).
[CrossRef]

Jelger, P.

Jeong, H. J.

Jeong, Y.

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1  kW of continuous-wave output power,” Electron. Lett. 40, 470–471 (2004).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36  kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004).
[CrossRef]

S. Norman, M. Zervas, A. Appleyard, M. Durkin, R. Horley, M. Varnham, J. Nilsson, and Y. Jeong, “Latest development of high power fiber lasers in SPI,” Proc. SPIE 5335, 229–237 (2004).
[CrossRef]

Kalita, M. P.

A. J. Boyland, A. S. Webb, S. Yoo, F. H. Mountfort, M. P. Kalita, R. J. Standish, J. K. Sahu, D. J. Richardson, and D. N. Payne, “Optical fiber fabrication using novel gas-phase deposition technique,” J. Lightwave Technol. 29, 912–915 (2011).
[CrossRef]

A. J. Boyland, A. S. Webb, M. P. Kalita, S. Yoo, C. A. Codemard, R. J. Standish, J. Nilsson, and J. K. Sahu, “Rare-earth doped optical fiber fabrication using novel gas phase deposition technique,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CTHV7.

Kim, B. H.

Kir’yanov, A. V.

M. C. Paul, A. V. Kir’yanov, S. Das, M. Pal, S. K. Bhadra, Y. O. Barmenkov, A. M. Gamez, and J. L. Martínez, “Development of large-core Yb2O3-doped yttria-alumino-silicate nanoparticles based optical fibers,” Proc. SPIE 7839, 78391Y (2010).
[CrossRef]

Kirchhof, J.

J. Kirchhof, S. Unger, A. Schwuchow, and S. Grimm, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352, 2399–2403 (2006).
[CrossRef]

Kveder, M.

B. Lenardič and M. Kveder, “Advanced vapor-phase doping method using chelate precursor for fabrication of rare earth-doped fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2009), paper OThK6.

Laming, R. I.

S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and characterization of low-loss optical fibers containing rare-earth ions,” J. Lightwave Technol. 4, 870–876 (1986).
[CrossRef]

Laperle, P.

M. Drolet, P. Laperle, C. Paré, H. Zheng, L. Desbiens, A. Proulx, and Y. Taillon, “High-power fiber amplifier using a depressed-clad Yb-doped LMA fiber with low photodarkening,” Proc. SPIE 7750, 775018 (2010).
[CrossRef]

Laptev, A. Y.

M. A. Melkumov, A. Y. Laptev, M. V. Yashkov, N. N. Vechkanov, A. N. Guryanov, and I. A. Bufetov, “Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers,” J. Inorg. Mater. 46, 299–303 (2010).

Laurell, F.

Lenardic, B.

B. Lenardič and M. Kveder, “Advanced vapor-phase doping method using chelate precursor for fabrication of rare earth-doped fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2009), paper OThK6.

Lin, A.

Martínez, J. L.

M. C. Paul, A. V. Kir’yanov, S. Das, M. Pal, S. K. Bhadra, Y. O. Barmenkov, A. M. Gamez, and J. L. Martínez, “Development of large-core Yb2O3-doped yttria-alumino-silicate nanoparticles based optical fibers,” Proc. SPIE 7839, 78391Y (2010).
[CrossRef]

McCollum, B. C.

R. P. Tumminelli, B. C. McCollum, and E. Snitzer, “Fabrication of high-concentration rare-earth doped optical fibers using chelates,” J. Lightwave Technol. 8, 1680–1683 (1990).
[CrossRef]

McKay, H. A.

Mears, R. J.

S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and characterization of low-loss optical fibers containing rare-earth ions,” J. Lightwave Technol. 4, 870–876 (1986).
[CrossRef]

Melkumov, M. A.

M. A. Melkumov, A. Y. Laptev, M. V. Yashkov, N. N. Vechkanov, A. N. Guryanov, and I. A. Bufetov, “Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers,” J. Inorg. Mater. 46, 299–303 (2010).

Moon, D. S.

Mossman, S.

S. D. Jackson, T. Ryan, and S. Mossman, “High power Tm3+-doped silica fiber laser fabricated using chelate delivery deposition,” Opt. Commun. 216, 401–404 (2003).
[CrossRef]

Mountfort, F. H.

Nilsson, J.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1  kW of continuous-wave output power,” Electron. Lett. 40, 470–471 (2004).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36  kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004).
[CrossRef]

S. Norman, M. Zervas, A. Appleyard, M. Durkin, R. Horley, M. Varnham, J. Nilsson, and Y. Jeong, “Latest development of high power fiber lasers in SPI,” Proc. SPIE 5335, 229–237 (2004).
[CrossRef]

A. J. Boyland, A. S. Webb, M. P. Kalita, S. Yoo, C. A. Codemard, R. J. Standish, J. Nilsson, and J. K. Sahu, “Rare-earth doped optical fiber fabrication using novel gas phase deposition technique,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CTHV7.

Norin, L.

M. Engholm, P. Jelger, F. Laurell, and L. Norin, “Improved photodarkening resistivity in ytterbium-doped fiber lasers by cerium codoping,” Opt. Lett. 34, 1285–1287 (2009).
[CrossRef]

L. Norin, E. Vanin, P. Soininen, and M. Putkonen, “Atomic layer deposition as a new method for rare-earth doping of optical fibers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CtuBB5.

Norman, S.

S. Norman, M. Zervas, A. Appleyard, M. Durkin, R. Horley, M. Varnham, J. Nilsson, and Y. Jeong, “Latest development of high power fiber lasers in SPI,” Proc. SPIE 5335, 229–237 (2004).
[CrossRef]

Pal, M.

M. C. Paul, A. V. Kir’yanov, S. Das, M. Pal, S. K. Bhadra, Y. O. Barmenkov, A. M. Gamez, and J. L. Martínez, “Development of large-core Yb2O3-doped yttria-alumino-silicate nanoparticles based optical fibers,” Proc. SPIE 7839, 78391Y (2010).
[CrossRef]

Paré, C.

M. Drolet, P. Laperle, C. Paré, H. Zheng, L. Desbiens, A. Proulx, and Y. Taillon, “High-power fiber amplifier using a depressed-clad Yb-doped LMA fiber with low photodarkening,” Proc. SPIE 7750, 775018 (2010).
[CrossRef]

Paul, M. C.

M. C. Paul, A. V. Kir’yanov, S. Das, M. Pal, S. K. Bhadra, Y. O. Barmenkov, A. M. Gamez, and J. L. Martínez, “Development of large-core Yb2O3-doped yttria-alumino-silicate nanoparticles based optical fibers,” Proc. SPIE 7839, 78391Y (2010).
[CrossRef]

Payne, D. N.

A. J. Boyland, A. S. Webb, S. Yoo, F. H. Mountfort, M. P. Kalita, R. J. Standish, J. K. Sahu, D. J. Richardson, and D. N. Payne, “Optical fiber fabrication using novel gas-phase deposition technique,” J. Lightwave Technol. 29, 912–915 (2011).
[CrossRef]

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356, 848–851 (2010).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1  kW of continuous-wave output power,” Electron. Lett. 40, 470–471 (2004).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36  kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004).
[CrossRef]

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibers,” Electron. Lett. 23, 329–331 (1987).
[CrossRef]

S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and characterization of low-loss optical fibers containing rare-earth ions,” J. Lightwave Technol. 4, 870–876 (1986).
[CrossRef]

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low loss optical fibers containing rare earth ions,” Electron. Lett. 21, 737–738 (1985).
[CrossRef]

Peng, X.

Poole, S. B.

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibers,” Electron. Lett. 23, 329–331 (1987).
[CrossRef]

S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and characterization of low-loss optical fibers containing rare-earth ions,” J. Lightwave Technol. 4, 870–876 (1986).
[CrossRef]

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low loss optical fibers containing rare earth ions,” Electron. Lett. 21, 737–738 (1985).
[CrossRef]

Proulx, A.

M. Drolet, P. Laperle, C. Paré, H. Zheng, L. Desbiens, A. Proulx, and Y. Taillon, “High-power fiber amplifier using a depressed-clad Yb-doped LMA fiber with low photodarkening,” Proc. SPIE 7750, 775018 (2010).
[CrossRef]

Putkonen, M.

L. Norin, E. Vanin, P. Soininen, and M. Putkonen, “Atomic layer deposition as a new method for rare-earth doping of optical fibers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CtuBB5.

Richardson, D. J.

Ryan, T.

S. D. Jackson, T. Ryan, and S. Mossman, “High power Tm3+-doped silica fiber laser fabricated using chelate delivery deposition,” Opt. Commun. 216, 401–404 (2003).
[CrossRef]

Sahu, J. K.

A. J. Boyland, A. S. Webb, S. Yoo, F. H. Mountfort, M. P. Kalita, R. J. Standish, J. K. Sahu, D. J. Richardson, and D. N. Payne, “Optical fiber fabrication using novel gas-phase deposition technique,” J. Lightwave Technol. 29, 912–915 (2011).
[CrossRef]

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356, 848–851 (2010).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1  kW of continuous-wave output power,” Electron. Lett. 40, 470–471 (2004).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36  kW continuous-wave output power,” Opt. Express 12, 6088–6092 (2004).
[CrossRef]

A. J. Boyland, A. S. Webb, M. P. Kalita, S. Yoo, C. A. Codemard, R. J. Standish, J. Nilsson, and J. K. Sahu, “Rare-earth doped optical fiber fabrication using novel gas phase deposition technique,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CTHV7.

Saito, K.

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Non-Cryst. Solids 354, 4737–4742 (2008).
[CrossRef]

Schwuchow, A.

J. Kirchhof, S. Unger, A. Schwuchow, and S. Grimm, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352, 2399–2403 (2006).
[CrossRef]

Sekiya, E. H.

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Non-Cryst. Solids 354, 4737–4742 (2008).
[CrossRef]

Snitzer, E.

R. P. Tumminelli, B. C. McCollum, and E. Snitzer, “Fabrication of high-concentration rare-earth doped optical fibers using chelates,” J. Lightwave Technol. 8, 1680–1683 (1990).
[CrossRef]

Soininen, P.

L. Norin, E. Vanin, P. Soininen, and M. Putkonen, “Atomic layer deposition as a new method for rare-earth doping of optical fibers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CtuBB5.

Standish, R. J.

A. J. Boyland, A. S. Webb, S. Yoo, F. H. Mountfort, M. P. Kalita, R. J. Standish, J. K. Sahu, D. J. Richardson, and D. N. Payne, “Optical fiber fabrication using novel gas-phase deposition technique,” J. Lightwave Technol. 29, 912–915 (2011).
[CrossRef]

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356, 848–851 (2010).
[CrossRef]

A. J. Boyland, A. S. Webb, M. P. Kalita, S. Yoo, C. A. Codemard, R. J. Standish, J. Nilsson, and J. K. Sahu, “Rare-earth doped optical fiber fabrication using novel gas phase deposition technique,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CTHV7.

Sun, G.

A. Lin, P. R. Watekar, G. Sun, Y. Chung, and W.-T. Han, “Pb2+/Al3+ codoped germano-silicate optical fiber with high non-resonant third-order nonlinearity,” J. Non-Cryst. Solids 354, 3907–3909 (2008).
[CrossRef]

Suzuki, S.

Taillon, Y.

M. Drolet, P. Laperle, C. Paré, H. Zheng, L. Desbiens, A. Proulx, and Y. Taillon, “High-power fiber amplifier using a depressed-clad Yb-doped LMA fiber with low photodarkening,” Proc. SPIE 7750, 775018 (2010).
[CrossRef]

Townsend, J. E.

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibers,” Electron. Lett. 23, 329–331 (1987).
[CrossRef]

Tumminelli, R.

Tumminelli, R. P.

R. P. Tumminelli, B. C. McCollum, and E. Snitzer, “Fabrication of high-concentration rare-earth doped optical fibers using chelates,” J. Lightwave Technol. 8, 1680–1683 (1990).
[CrossRef]

Unger, S.

J. Kirchhof, S. Unger, A. Schwuchow, and S. Grimm, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352, 2399–2403 (2006).
[CrossRef]

Vanin, E.

L. Norin, E. Vanin, P. Soininen, and M. Putkonen, “Atomic layer deposition as a new method for rare-earth doping of optical fibers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CtuBB5.

Varnham, M.

S. Norman, M. Zervas, A. Appleyard, M. Durkin, R. Horley, M. Varnham, J. Nilsson, and Y. Jeong, “Latest development of high power fiber lasers in SPI,” Proc. SPIE 5335, 229–237 (2004).
[CrossRef]

Vechkanov, N. N.

M. A. Melkumov, A. Y. Laptev, M. V. Yashkov, N. N. Vechkanov, A. N. Guryanov, and I. A. Bufetov, “Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers,” J. Inorg. Mater. 46, 299–303 (2010).

Watekar, P. R.

A. Lin, P. R. Watekar, G. Sun, Y. Chung, and W.-T. Han, “Pb2+/Al3+ codoped germano-silicate optical fiber with high non-resonant third-order nonlinearity,” J. Non-Cryst. Solids 354, 3907–3909 (2008).
[CrossRef]

Webb, A. S.

A. J. Boyland, A. S. Webb, S. Yoo, F. H. Mountfort, M. P. Kalita, R. J. Standish, J. K. Sahu, D. J. Richardson, and D. N. Payne, “Optical fiber fabrication using novel gas-phase deposition technique,” J. Lightwave Technol. 29, 912–915 (2011).
[CrossRef]

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356, 848–851 (2010).
[CrossRef]

A. J. Boyland, A. S. Webb, M. P. Kalita, S. Yoo, C. A. Codemard, R. J. Standish, J. Nilsson, and J. K. Sahu, “Rare-earth doped optical fiber fabrication using novel gas phase deposition technique,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CTHV7.

Yashkov, M. V.

M. A. Melkumov, A. Y. Laptev, M. V. Yashkov, N. N. Vechkanov, A. N. Guryanov, and I. A. Bufetov, “Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers,” J. Inorg. Mater. 46, 299–303 (2010).

Yoo, S.

A. J. Boyland, A. S. Webb, S. Yoo, F. H. Mountfort, M. P. Kalita, R. J. Standish, J. K. Sahu, D. J. Richardson, and D. N. Payne, “Optical fiber fabrication using novel gas-phase deposition technique,” J. Lightwave Technol. 29, 912–915 (2011).
[CrossRef]

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356, 848–851 (2010).
[CrossRef]

A. J. Boyland, A. S. Webb, M. P. Kalita, S. Yoo, C. A. Codemard, R. J. Standish, J. Nilsson, and J. K. Sahu, “Rare-earth doped optical fiber fabrication using novel gas phase deposition technique,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CTHV7.

Zervas, M.

S. Norman, M. Zervas, A. Appleyard, M. Durkin, R. Horley, M. Varnham, J. Nilsson, and Y. Jeong, “Latest development of high power fiber lasers in SPI,” Proc. SPIE 5335, 229–237 (2004).
[CrossRef]

Zheng, H.

M. Drolet, P. Laperle, C. Paré, H. Zheng, L. Desbiens, A. Proulx, and Y. Taillon, “High-power fiber amplifier using a depressed-clad Yb-doped LMA fiber with low photodarkening,” Proc. SPIE 7750, 775018 (2010).
[CrossRef]

Electron. Lett.

J. E. Townsend, S. B. Poole, and D. N. Payne, “Solution-doping technique for fabrication of rare-earth-doped optical fibers,” Electron. Lett. 23, 329–331 (1987).
[CrossRef]

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low loss optical fibers containing rare earth ions,” Electron. Lett. 21, 737–738 (1985).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1  kW of continuous-wave output power,” Electron. Lett. 40, 470–471 (2004).
[CrossRef]

J. Inorg. Mater.

M. A. Melkumov, A. Y. Laptev, M. V. Yashkov, N. N. Vechkanov, A. N. Guryanov, and I. A. Bufetov, “Effects of Yb3+ and Er3+ concentrations and doping procedure on excitation transfer efficiency in Er-Yb doped phosphosilicate fibers,” J. Inorg. Mater. 46, 299–303 (2010).

J. Lightwave Technol.

S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann, and R. I. Laming, “Fabrication and characterization of low-loss optical fibers containing rare-earth ions,” J. Lightwave Technol. 4, 870–876 (1986).
[CrossRef]

R. P. Tumminelli, B. C. McCollum, and E. Snitzer, “Fabrication of high-concentration rare-earth doped optical fibers using chelates,” J. Lightwave Technol. 8, 1680–1683 (1990).
[CrossRef]

A. J. Boyland, A. S. Webb, S. Yoo, F. H. Mountfort, M. P. Kalita, R. J. Standish, J. K. Sahu, D. J. Richardson, and D. N. Payne, “Optical fiber fabrication using novel gas-phase deposition technique,” J. Lightwave Technol. 29, 912–915 (2011).
[CrossRef]

J. Non-Cryst. Solids

A. S. Webb, A. J. Boyland, R. J. Standish, S. Yoo, J. K. Sahu, and D. N. Payne, “MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers,” J. Non-Cryst. Solids 356, 848–851 (2010).
[CrossRef]

J. Kirchhof, S. Unger, A. Schwuchow, and S. Grimm, “Materials for high-power fiber lasers,” J. Non-Cryst. Solids 352, 2399–2403 (2006).
[CrossRef]

E. H. Sekiya, P. Barua, K. Saito, and A. J. Ikushima, “Fabrication of Yb-doped silica glass through the modification of MCVD process,” J. Non-Cryst. Solids 354, 4737–4742 (2008).
[CrossRef]

A. Lin, P. R. Watekar, G. Sun, Y. Chung, and W.-T. Han, “Pb2+/Al3+ codoped germano-silicate optical fiber with high non-resonant third-order nonlinearity,” J. Non-Cryst. Solids 354, 3907–3909 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

S. D. Jackson, T. Ryan, and S. Mossman, “High power Tm3+-doped silica fiber laser fabricated using chelate delivery deposition,” Opt. Commun. 216, 401–404 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

S. Norman, M. Zervas, A. Appleyard, M. Durkin, R. Horley, M. Varnham, J. Nilsson, and Y. Jeong, “Latest development of high power fiber lasers in SPI,” Proc. SPIE 5335, 229–237 (2004).
[CrossRef]

M. Drolet, P. Laperle, C. Paré, H. Zheng, L. Desbiens, A. Proulx, and Y. Taillon, “High-power fiber amplifier using a depressed-clad Yb-doped LMA fiber with low photodarkening,” Proc. SPIE 7750, 775018 (2010).
[CrossRef]

M. C. Paul, A. V. Kir’yanov, S. Das, M. Pal, S. K. Bhadra, Y. O. Barmenkov, A. M. Gamez, and J. L. Martínez, “Development of large-core Yb2O3-doped yttria-alumino-silicate nanoparticles based optical fibers,” Proc. SPIE 7839, 78391Y (2010).
[CrossRef]

Other

A. J. Boyland, A. S. Webb, M. P. Kalita, S. Yoo, C. A. Codemard, R. J. Standish, J. Nilsson, and J. K. Sahu, “Rare-earth doped optical fiber fabrication using novel gas phase deposition technique,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CTHV7.

L. Norin, E. Vanin, P. Soininen, and M. Putkonen, “Atomic layer deposition as a new method for rare-earth doping of optical fibers,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CtuBB5.

B. Lenardič and M. Kveder, “Advanced vapor-phase doping method using chelate precursor for fabrication of rare earth-doped fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2009), paper OThK6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of CPDT.

Fig. 2.
Fig. 2.

Single-end-pump all-fiber oscillator laser setup.

Fig. 3.
Fig. 3.

Single-stage all-fiber amplifier setup.

Fig. 4.
Fig. 4.

Cross-section graphs of Yb-doped LMA fiber preforms fabricated by SDT (left) and CPDT (right).

Fig. 5.
Fig. 5.

RIP of Yb-doped LMA fiber preform.

Fig. 6.
Fig. 6.

Cross-section picture of Yb-doped LMA fiber for laser output experiments.

Fig. 7.
Fig. 7.

Clad absorption spectrum of Yb-doped LMA fiber.

Fig. 8.
Fig. 8.

Output power and slope efficiency of single-end-pump all-fiber oscillator laser setup.

Fig. 9.
Fig. 9.

Output power and slope efficiency of single-stage all-fiber amplifier setup.

Metrics