Abstract

In this paper, we show a renewed approach to the generalized methodology for atmospheric lidar assessment, which uses the dimensionless parameterization as a core component. It is based on a series of our previous works where the problem of universal parameterization over many lidar technologies were described and analyzed from different points of view. The modernized dimensionless parameterization concept applied to relatively new silicon photomultiplier detectors (SiPMs) and traditional photomultiplier (PMT) detectors for remote-sensing instruments allowed predicting the lidar receiver performance with sky background available. The renewed approach can be widely used to evaluate a broad range of lidar system capabilities for a variety of lidar remote-sensing applications as well as to serve as a basis for selection of appropriate lidar system parameters for a specific application. Such a modernized methodology provides a generalized, uniform, and objective approach for evaluation of a broad range of lidar types and systems (aerosol, Raman, DIAL) operating on different targets (backscatter or topographic) and under intense sky background conditions. It can be used within the lidar community to compare different lidar instruments.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Agishev, Lidar Monitoring of the Atmosphere (PhysMathLit, 2009).
  2. R. Agishev, Protection from Background Clutter in Electro-Optical Systems of Atmosphere Monitoring (Mashinostroenie Publishing House, 1994).
  3. D. Killinger, Lidar and Laser Remote Sensing: Handbook of Vibrational Spectroscopy (Wiley, 2002).
  4. V. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (Wiley-Interscience, 2004).
  5. T. Leblanc, T. Trickl, and H. Vogelmann, “Lidar,” in Monitoring Atmospheric Water Vapour: Ground-Based Remote Sensing and In-situ Methods, N. Kampfer, ed. (Springer, 2009), pp. 113–158.
  6. C. Weitkamp, ed., Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).
  7. J. Minkoff, Signal Processing Fundamentals and Applications for Communications and Sensing Systems (Artech House, 2002).
  8. V. Molebny, G. Kamerman, and O. Steinvall, “Laser remote sensing: yesterday, today and tomorrow,” Electron. Commun. 3, 68–73 (2011).
  9. G. Osche, Optical Detection Theory for Laser Applications (Wiley, 2002).
  10. W. Grant, E. V. Browell, R. T. Menzies, K. Sassen, C. Y. She, and C.-Y. She, eds., Selected Papers on Laser Applications in Remote Sensing (SPIE, 1997).
  11. W. Wiegner, “Lidar for aerosol remote sensing,” in Atmospheric Physics: Background, Methods, Trends, U. Schumann, ed. (Springer-Verlag, 2012) pp. 449–464.
  12. R. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1994).
  13. R. Agishev, A. Comeron, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Application of the method of decomposition of lidar signal-to-noise ratio to the assessment of laser instruments for gaseous pollution detection,” Appl. Phys. B 79, 255–264 (2004).
    [CrossRef]
  14. R. Agishev and A. Comeron, “Spatial filtering efficiency of biaxial monostatic lidar: analysis and applications,” Appl. Opt. 41, 7516–7521 (2002).
    [CrossRef]
  15. R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parameterization,” Opt. Lasers Eng. 44, 779–796 (2006).
  16. R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Development of a SNR parameterization scheme for general lidar assessment,” Appl. Phys. B 80, 765–776 (2005).
    [CrossRef]
  17. M. Ross, Laser Receivers (Wiley, 1966).
  18. G. Barbarino, R. de Asmundis, and G. de Rosa, “Silicon photo multipliers detectors operating in Geiger regime,” in Photodiodes—World Activities in 2011, J.-W. Park, ed. (InTechOpen, 2011), pp. 183–226.
  19. A. Del Guerra, N. Belcari, M. Bisogni, and F. Corsi, “Silicon photomultipliers as novel photodetectors for PET,” Nucl. Instrum. Methods Phys. Res. A 648, 232–235 (2011).
    [CrossRef]
  20. J. Riu, M. Sicard, S. Royo, and A. Comeron, “Silicon photomultiplier detector for atmospheric lidar applications,” Opt. Lett. 37, 1229–1231 (2012).
    [CrossRef]

2012 (1)

2011 (2)

A. Del Guerra, N. Belcari, M. Bisogni, and F. Corsi, “Silicon photomultipliers as novel photodetectors for PET,” Nucl. Instrum. Methods Phys. Res. A 648, 232–235 (2011).
[CrossRef]

V. Molebny, G. Kamerman, and O. Steinvall, “Laser remote sensing: yesterday, today and tomorrow,” Electron. Commun. 3, 68–73 (2011).

2006 (1)

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parameterization,” Opt. Lasers Eng. 44, 779–796 (2006).

2005 (1)

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Development of a SNR parameterization scheme for general lidar assessment,” Appl. Phys. B 80, 765–776 (2005).
[CrossRef]

2004 (1)

R. Agishev, A. Comeron, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Application of the method of decomposition of lidar signal-to-noise ratio to the assessment of laser instruments for gaseous pollution detection,” Appl. Phys. B 79, 255–264 (2004).
[CrossRef]

2002 (1)

Agishev, R.

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parameterization,” Opt. Lasers Eng. 44, 779–796 (2006).

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Development of a SNR parameterization scheme for general lidar assessment,” Appl. Phys. B 80, 765–776 (2005).
[CrossRef]

R. Agishev, A. Comeron, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Application of the method of decomposition of lidar signal-to-noise ratio to the assessment of laser instruments for gaseous pollution detection,” Appl. Phys. B 79, 255–264 (2004).
[CrossRef]

R. Agishev and A. Comeron, “Spatial filtering efficiency of biaxial monostatic lidar: analysis and applications,” Appl. Opt. 41, 7516–7521 (2002).
[CrossRef]

R. Agishev, Lidar Monitoring of the Atmosphere (PhysMathLit, 2009).

R. Agishev, Protection from Background Clutter in Electro-Optical Systems of Atmosphere Monitoring (Mashinostroenie Publishing House, 1994).

Ahmed, S.

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parameterization,” Opt. Lasers Eng. 44, 779–796 (2006).

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Development of a SNR parameterization scheme for general lidar assessment,” Appl. Phys. B 80, 765–776 (2005).
[CrossRef]

R. Agishev, A. Comeron, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Application of the method of decomposition of lidar signal-to-noise ratio to the assessment of laser instruments for gaseous pollution detection,” Appl. Phys. B 79, 255–264 (2004).
[CrossRef]

Barbarino, G.

G. Barbarino, R. de Asmundis, and G. de Rosa, “Silicon photo multipliers detectors operating in Geiger regime,” in Photodiodes—World Activities in 2011, J.-W. Park, ed. (InTechOpen, 2011), pp. 183–226.

Belcari, N.

A. Del Guerra, N. Belcari, M. Bisogni, and F. Corsi, “Silicon photomultipliers as novel photodetectors for PET,” Nucl. Instrum. Methods Phys. Res. A 648, 232–235 (2011).
[CrossRef]

Bisogni, M.

A. Del Guerra, N. Belcari, M. Bisogni, and F. Corsi, “Silicon photomultipliers as novel photodetectors for PET,” Nucl. Instrum. Methods Phys. Res. A 648, 232–235 (2011).
[CrossRef]

Comeron, A.

J. Riu, M. Sicard, S. Royo, and A. Comeron, “Silicon photomultiplier detector for atmospheric lidar applications,” Opt. Lett. 37, 1229–1231 (2012).
[CrossRef]

R. Agishev, A. Comeron, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Application of the method of decomposition of lidar signal-to-noise ratio to the assessment of laser instruments for gaseous pollution detection,” Appl. Phys. B 79, 255–264 (2004).
[CrossRef]

R. Agishev and A. Comeron, “Spatial filtering efficiency of biaxial monostatic lidar: analysis and applications,” Appl. Opt. 41, 7516–7521 (2002).
[CrossRef]

Corsi, F.

A. Del Guerra, N. Belcari, M. Bisogni, and F. Corsi, “Silicon photomultipliers as novel photodetectors for PET,” Nucl. Instrum. Methods Phys. Res. A 648, 232–235 (2011).
[CrossRef]

de Asmundis, R.

G. Barbarino, R. de Asmundis, and G. de Rosa, “Silicon photo multipliers detectors operating in Geiger regime,” in Photodiodes—World Activities in 2011, J.-W. Park, ed. (InTechOpen, 2011), pp. 183–226.

de Rosa, G.

G. Barbarino, R. de Asmundis, and G. de Rosa, “Silicon photo multipliers detectors operating in Geiger regime,” in Photodiodes—World Activities in 2011, J.-W. Park, ed. (InTechOpen, 2011), pp. 183–226.

Del Guerra, A.

A. Del Guerra, N. Belcari, M. Bisogni, and F. Corsi, “Silicon photomultipliers as novel photodetectors for PET,” Nucl. Instrum. Methods Phys. Res. A 648, 232–235 (2011).
[CrossRef]

Eichinger, W. E.

V. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (Wiley-Interscience, 2004).

Gilerson, A.

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parameterization,” Opt. Lasers Eng. 44, 779–796 (2006).

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Development of a SNR parameterization scheme for general lidar assessment,” Appl. Phys. B 80, 765–776 (2005).
[CrossRef]

R. Agishev, A. Comeron, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Application of the method of decomposition of lidar signal-to-noise ratio to the assessment of laser instruments for gaseous pollution detection,” Appl. Phys. B 79, 255–264 (2004).
[CrossRef]

Gross, B.

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parameterization,” Opt. Lasers Eng. 44, 779–796 (2006).

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Development of a SNR parameterization scheme for general lidar assessment,” Appl. Phys. B 80, 765–776 (2005).
[CrossRef]

R. Agishev, A. Comeron, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Application of the method of decomposition of lidar signal-to-noise ratio to the assessment of laser instruments for gaseous pollution detection,” Appl. Phys. B 79, 255–264 (2004).
[CrossRef]

Kamerman, G.

V. Molebny, G. Kamerman, and O. Steinvall, “Laser remote sensing: yesterday, today and tomorrow,” Electron. Commun. 3, 68–73 (2011).

Killinger, D.

D. Killinger, Lidar and Laser Remote Sensing: Handbook of Vibrational Spectroscopy (Wiley, 2002).

Kovalev, V.

V. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (Wiley-Interscience, 2004).

Leblanc, T.

T. Leblanc, T. Trickl, and H. Vogelmann, “Lidar,” in Monitoring Atmospheric Water Vapour: Ground-Based Remote Sensing and In-situ Methods, N. Kampfer, ed. (Springer, 2009), pp. 113–158.

Measures, R.

R. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1994).

Minkoff, J.

J. Minkoff, Signal Processing Fundamentals and Applications for Communications and Sensing Systems (Artech House, 2002).

Molebny, V.

V. Molebny, G. Kamerman, and O. Steinvall, “Laser remote sensing: yesterday, today and tomorrow,” Electron. Commun. 3, 68–73 (2011).

Moshary, F.

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parameterization,” Opt. Lasers Eng. 44, 779–796 (2006).

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Development of a SNR parameterization scheme for general lidar assessment,” Appl. Phys. B 80, 765–776 (2005).
[CrossRef]

R. Agishev, A. Comeron, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Application of the method of decomposition of lidar signal-to-noise ratio to the assessment of laser instruments for gaseous pollution detection,” Appl. Phys. B 79, 255–264 (2004).
[CrossRef]

Osche, G.

G. Osche, Optical Detection Theory for Laser Applications (Wiley, 2002).

Riu, J.

Ross, M.

M. Ross, Laser Receivers (Wiley, 1966).

Royo, S.

Sicard, M.

Steinvall, O.

V. Molebny, G. Kamerman, and O. Steinvall, “Laser remote sensing: yesterday, today and tomorrow,” Electron. Commun. 3, 68–73 (2011).

Trickl, T.

T. Leblanc, T. Trickl, and H. Vogelmann, “Lidar,” in Monitoring Atmospheric Water Vapour: Ground-Based Remote Sensing and In-situ Methods, N. Kampfer, ed. (Springer, 2009), pp. 113–158.

Vogelmann, H.

T. Leblanc, T. Trickl, and H. Vogelmann, “Lidar,” in Monitoring Atmospheric Water Vapour: Ground-Based Remote Sensing and In-situ Methods, N. Kampfer, ed. (Springer, 2009), pp. 113–158.

Wiegner, W.

W. Wiegner, “Lidar for aerosol remote sensing,” in Atmospheric Physics: Background, Methods, Trends, U. Schumann, ed. (Springer-Verlag, 2012) pp. 449–464.

Appl. Opt. (1)

Appl. Phys. B (2)

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Development of a SNR parameterization scheme for general lidar assessment,” Appl. Phys. B 80, 765–776 (2005).
[CrossRef]

R. Agishev, A. Comeron, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Application of the method of decomposition of lidar signal-to-noise ratio to the assessment of laser instruments for gaseous pollution detection,” Appl. Phys. B 79, 255–264 (2004).
[CrossRef]

Electron. Commun. (1)

V. Molebny, G. Kamerman, and O. Steinvall, “Laser remote sensing: yesterday, today and tomorrow,” Electron. Commun. 3, 68–73 (2011).

Nucl. Instrum. Methods Phys. Res. A (1)

A. Del Guerra, N. Belcari, M. Bisogni, and F. Corsi, “Silicon photomultipliers as novel photodetectors for PET,” Nucl. Instrum. Methods Phys. Res. A 648, 232–235 (2011).
[CrossRef]

Opt. Lasers Eng. (1)

R. Agishev, B. Gross, F. Moshary, S. Ahmed, and A. Gilerson, “Simple approach to predict APD/PMT lidar detector performance under sky background using dimensionless parameterization,” Opt. Lasers Eng. 44, 779–796 (2006).

Opt. Lett. (1)

Other (13)

M. Ross, Laser Receivers (Wiley, 1966).

G. Barbarino, R. de Asmundis, and G. de Rosa, “Silicon photo multipliers detectors operating in Geiger regime,” in Photodiodes—World Activities in 2011, J.-W. Park, ed. (InTechOpen, 2011), pp. 183–226.

G. Osche, Optical Detection Theory for Laser Applications (Wiley, 2002).

W. Grant, E. V. Browell, R. T. Menzies, K. Sassen, C. Y. She, and C.-Y. She, eds., Selected Papers on Laser Applications in Remote Sensing (SPIE, 1997).

W. Wiegner, “Lidar for aerosol remote sensing,” in Atmospheric Physics: Background, Methods, Trends, U. Schumann, ed. (Springer-Verlag, 2012) pp. 449–464.

R. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley, 1994).

R. Agishev, Lidar Monitoring of the Atmosphere (PhysMathLit, 2009).

R. Agishev, Protection from Background Clutter in Electro-Optical Systems of Atmosphere Monitoring (Mashinostroenie Publishing House, 1994).

D. Killinger, Lidar and Laser Remote Sensing: Handbook of Vibrational Spectroscopy (Wiley, 2002).

V. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (Wiley-Interscience, 2004).

T. Leblanc, T. Trickl, and H. Vogelmann, “Lidar,” in Monitoring Atmospheric Water Vapour: Ground-Based Remote Sensing and In-situ Methods, N. Kampfer, ed. (Springer, 2009), pp. 113–158.

C. Weitkamp, ed., Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).

J. Minkoff, Signal Processing Fundamentals and Applications for Communications and Sensing Systems (Artech House, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic illustration of the universal V parameter formation principle.

Fig. 2.
Fig. 2.

Schematic illustration of the U parameter formation principle.

Fig. 3.
Fig. 3.

Flow chart of experimental setup. Designations: FOC, fiber-optical cable; FL, focusing lens; BS, beam splitter; NF, neutral filter; IF, interference filter.

Fig. 4.
Fig. 4.

Quantum noise Pq, internal noise Pn of photodetectors, and their quantum efficiency η as a function of wavelength λ.

Fig. 5.
Fig. 5.

Echo signals of lidar with SiPM and PMT photodetectors in different modes. Top: the range-square-compensated (P·R2) SiPM Hamamatsu (analog mode and photon counting). Middle: the PMT-Hamamatsu (analog mode and photon counting). Bottom: SiPM SensL (analog mode and photon counting).

Fig. 6.
Fig. 6.

Range-compensated lidar signals’ time series (top) and backscattering coefficient inversions (middle and bottom) with SiPM detector SensL 30035 in analog (blue) and photon-counting (red) modes.

Fig. 7.
Fig. 7.

U parameter as a function of (a) wavelength and (b) of brightness of the sky background brightness.

Fig. 8.
Fig. 8.

United VUequ parameter as an illustration of effect of varying brightness of sky background effect on remote sensing abilities of compared photodetectors: SiPM SensL, SiPM Hamamatsu and PMT general: (a) weak sky background (PbPq); (b) moderate sky background (PbPq); (c) strong sky background (PbPq) with Bλ=4·106/4·107/109W·m2·sr·m1, respectively; R=1km.

Fig. 9.
Fig. 9.

Minimum detectable target or scattering medium characterized by bands of minimum achievable values of QXnorm parameter as a function of wavelength within the boundaries corresponding to strong daylight sky background and lack of background for photodetectors SiMP SensL, SiMP Hamamatsu, PMT general. R0=1km; Taccum=1min; Δf=3·108Hz.

Fig. 10.
Fig. 10.

Relative maximum operation range of the SiMP Ha, SiMP Se, PMT gen as a function of wavelength rmax=f(λ) for different Bλ and Q: Bλ=106Wm2m1sr1 (dashed) and Bλ=3*108Wm2m1sr1(solid); Qx=102, 101, 100, 104, 106 (red/blue/brown/violet/green respectively); α=0.1km1.

Fig. 11.
Fig. 11.

rb as a function of λ for Bλ=109 and 108Wm2sr1m1; Δf=300MHz

Fig. 12.
Fig. 12.

rb as a function of Bλ for λ=355 and 532 μm. Δf=300MHz.

Fig. 13.
Fig. 13.

Block diagram of a renewed dimensionless parameterization scheme for multiwavelength lidar.

Tables (1)

Tables Icon

Table 1. Some Parameters of SiPMs and PMT Used

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

ψX=VQXW2U1r2,
Bλ=2·h·c2·λ5(ehc/λkT1)1[W/m2·sr·m].
bλBλ/Bλmax=(λmax/λ)5·(ehc/λmaxkT1)/(ehc/λkT1).
Pb(λ)=Bλ·Ar·Ω·Δλ(λ)·ξ(λ).
Pbref(λi)=Bref(λi)·Ar·Ω·Δλ(λi)·ξ(λi).
ρout2=Ps2/[Pq(Ps+Pb)+Pn2],
Ps/Pq=12ρout2/[1+1+4(Pb/Pq+Pn2/Pq2)/ρout2]
PtBref(λi)Pt(λi,Bref)=1/2ρout2Pq(λi){1+1+(4/ρout2)[Pbref(λi)/Pq(λi)+Pn2(λi)/Pq2(λi)]}.
ViPs0(λi)/PtBref(λi).
V(λi)Ps0(λi)PtBref(λi)=Ps0(λi)12ρout2Pq(λi)[1+1+(4/ρout2)[Pbref(λi)/Pq(λi)+Pn2(λi)/Pq2(λi)]],
V(λi)=τpP0(λi)cArξ(λi)λiη(λi)8hFΔfBrefλiΩΔλβπref(λi)T02(λi,αref,Rref)Rref2,
V(λi)=τpP0(λi)Arξ(λi)λiη(λi)2(1+5)hFΔfβπref(λi)T02(λi,αref,Rref)Rref2,
V(λi)=τpP0(λi)Arξ(λi)λiη(λi)4hFΔfβπref(λi)T02(λi,αref,Rref)Rref2.
UiPtB(λi)/PtBref(λi)=[1+1+4ρout2(Pb(λi)Pq(λi)+Pn2(λi)Pq2(λi))]/[1+1+4ρout2(Pbref(λi)Pq(λi)+Pn2(λi)Pq2(λi))].
Ui=2BλiArξ(λi)ΩΔλλiη(λi)/hcFΔf1+1+2BrefλiArξ(λi)ΩΔλλiη(λi)/hcFΔf,
UiPb(λi)/Pq(λi)=BλiArξ(λi)ΩΔλλiη(λi)/hcFΔf.
Ui=21+1+4ρout2Pbref(λi)Pq(λi)=21+1+2BrefλiArξ(λi)ΩΔλλiη(λi)/hcFΔf.
VUequ(λi)V(λi)U(λi)=cτpP0(λi)Arξ(λi)βπ(λi,αi)T02(λi,R0)R02ρout2Pq(λi)[1+1+(4/ρout2)[Pb(λi)/Pq(λi)]].
rmax=Vexp[2α0R0(αα0rmax1)]U1.
rbRBRref=[1+4ρout2Pn2Pq2(1+PbPqPn2)1]/[(1+PbPqPn2)(1+4ρout2Pn2Pq21)].
rb=2hcΔf/λ4·F/η(λ)4/Pb4.

Metrics