Abstract

We demonstrate compressive sensing (CS) of the eight-dimensional reflectance field (RF), which describes spatial and angular information of light rays toward and from an object. The RF is also known as the bidirectional scattering surface reflectance distribution function. In this method, incident rays and reflected rays to/from the object are modulated by variable coding masks, and the modulated rays are multiplexed onto an image sensor. The images captured with multiple mask patterns are decoded by a CS algorithm. The RF of the object was successfully reconstructed from less than half of the number of measurements required with conventional methods.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Szeliski, Computer Vision: Algorithms and Applications, 1st ed. (Springer-Verlag, 2010).
  2. H. Shum and S. B. Kang, “Review of image-based rendering techniques,” Proc. SPIE 4067, 2 (2000).
    [CrossRef]
  3. M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 31–42.
  4. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
    [CrossRef]
  5. A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized light fields,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2000), pp. 297–306.
  6. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (Stanford University, 2005).
  7. V. Masselus, P. Peers, P. Dutré, and Y. D. Willems, “Relighting with 4D incident light fields,” ACM Trans. Graph. 22, 613–620 (2003).
    [CrossRef]
  8. P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, “Acquiring the reflectance field of a human face,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2000), pp. 145–156.
  9. R. Horisaki, Y. Tampa, and J. Tanida, “Compressive reflectance field acquisition using confocal imaging with variable coded apertures,” in Computational Optical Sensing and Imaging (Optical Society of America, 2012), paper CTu3B.4.
  10. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
    [CrossRef]
  11. B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
    [CrossRef]
  12. A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” ACM Trans. Graph. 26, 69 (2007).
    [CrossRef]
  13. F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt. 4, 767–775 (1965).
    [CrossRef]
  14. R. Horisaki and J. Tanida, “Reflectance field display,” Opt. Express 21, 11181–11186 (2013).
    [CrossRef]
  15. H. Li, S. C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Proc. SPIE 5878, 221–231 (2005).
  16. G. Müller, G. H. Bendels, and R. Klein, “Rapid synchronous acquisition of geometry and appearance of cultural heritage artefacts,” in Proceedings of the 6th International Conference on Virtual Reality, Archaeology and Intelligent Cultural Heritage (Eurographics Association, 2005), pp. 13–20.
  17. Y. Mukaigawa, K. Sumino, and Y. Yagi, “Rapid BRDF measurement using an ellipsoidal mirror and a projector,” IPSJ Trans. Comput. Vis. Appl. 1, 21–32 (2009).
  18. G. Garg, E.-V. Talvala, M. Levoy, and H. P. A. Lensch, “Symmetric photography: exploiting data-sparseness in reflectance fields,” in Rendering Techniques 2006: Eurographics Symposium on Rendering, T. Akenine-Möller and W. Heidrich, eds. (Eurographics Association, 2006), pp. 251–262.
  19. M. Levoy, Z. Zhang, and I. Mcdowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235, 144–162 (2009).
    [CrossRef]
  20. S. Tagawa, Y. Mukaigawa, and Y. Yagi, “8-D reflectance field for computational photography,” in Proceedings of the International Conference on Pattern Recognition (IEEE, 2012), pp. 2181–2185.
  21. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
    [CrossRef]
  22. E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
    [CrossRef]
  23. R. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
    [CrossRef]
  24. S. D. Babacan, R. Ansorge, M. Luessi, R. Molina, and A. K. Katsaggelos, “Compressive sensing of light fields,” in IEEE International Conference on Image Processing (IEEE, 2009), pp. 2313–2316.
  25. A. Ashok and M. A. Neifeld, “Compressive light field imaging,” Proc. SPIE 7690, 76900Q (2010).
    [CrossRef]
  26. R. Horisaki and J. Tanida, “Full-resolution light-field single-shot acquisition with spatial encoding,” in Computational Optical Sensing and Imaging (Optical Society of America, 2011), p. CTuB5.
  27. K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2013), pp. 1–11.
  28. P. Peers, D. K. Mahajan, B. Lamond, A. Ghosh, W. Matusik, R. Ramamoorthi, and P. Debevec, “Compressive light transport sensing,” ACM Trans. Graph. 28, 1–18 (2009).
    [CrossRef]
  29. J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007).
    [CrossRef]

2013 (1)

2010 (1)

A. Ashok and M. A. Neifeld, “Compressive light field imaging,” Proc. SPIE 7690, 76900Q (2010).
[CrossRef]

2009 (3)

P. Peers, D. K. Mahajan, B. Lamond, A. Ghosh, W. Matusik, R. Ramamoorthi, and P. Debevec, “Compressive light transport sensing,” ACM Trans. Graph. 28, 1–18 (2009).
[CrossRef]

Y. Mukaigawa, K. Sumino, and Y. Yagi, “Rapid BRDF measurement using an ellipsoidal mirror and a projector,” IPSJ Trans. Comput. Vis. Appl. 1, 21–32 (2009).

M. Levoy, Z. Zhang, and I. Mcdowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235, 144–162 (2009).
[CrossRef]

2008 (1)

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[CrossRef]

2007 (3)

R. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
[CrossRef]

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007).
[CrossRef]

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” ACM Trans. Graph. 26, 69 (2007).
[CrossRef]

2006 (1)

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[CrossRef]

2005 (2)

H. Li, S. C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Proc. SPIE 5878, 221–231 (2005).

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[CrossRef]

2003 (1)

V. Masselus, P. Peers, P. Dutré, and Y. D. Willems, “Relighting with 4D incident light fields,” ACM Trans. Graph. 22, 613–620 (2003).
[CrossRef]

2001 (1)

2000 (1)

H. Shum and S. B. Kang, “Review of image-based rendering techniques,” Proc. SPIE 4067, 2 (2000).
[CrossRef]

1992 (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[CrossRef]

1965 (1)

Adams, A.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[CrossRef]

Adelson, E. H.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[CrossRef]

Agrawal, A.

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” ACM Trans. Graph. 26, 69 (2007).
[CrossRef]

Ansorge, R.

S. D. Babacan, R. Ansorge, M. Luessi, R. Molina, and A. K. Katsaggelos, “Compressive sensing of light fields,” in IEEE International Conference on Image Processing (IEEE, 2009), pp. 2313–2316.

Antunez, E.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[CrossRef]

Ashok, A.

A. Ashok and M. A. Neifeld, “Compressive light field imaging,” Proc. SPIE 7690, 76900Q (2010).
[CrossRef]

Babacan, S. D.

S. D. Babacan, R. Ansorge, M. Luessi, R. Molina, and A. K. Katsaggelos, “Compressive sensing of light fields,” in IEEE International Conference on Image Processing (IEEE, 2009), pp. 2313–2316.

Bando, Y.

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2013), pp. 1–11.

Baraniuk, R.

R. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
[CrossRef]

Barth, A.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[CrossRef]

Bendels, G. H.

G. Müller, G. H. Bendels, and R. Klein, “Rapid synchronous acquisition of geometry and appearance of cultural heritage artefacts,” in Proceedings of the 6th International Conference on Virtual Reality, Archaeology and Intelligent Cultural Heritage (Eurographics Association, 2005), pp. 13–20.

Bioucas-Dias, J. M.

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007).
[CrossRef]

Brédif, M.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (Stanford University, 2005).

Candes, E. J.

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[CrossRef]

Debevec, P.

P. Peers, D. K. Mahajan, B. Lamond, A. Ghosh, W. Matusik, R. Ramamoorthi, and P. Debevec, “Compressive light transport sensing,” ACM Trans. Graph. 28, 1–18 (2009).
[CrossRef]

P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, “Acquiring the reflectance field of a human face,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2000), pp. 145–156.

Donoho, D. L.

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[CrossRef]

Duiker, H.-P.

P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, “Acquiring the reflectance field of a human face,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2000), pp. 145–156.

Dutré, P.

V. Masselus, P. Peers, P. Dutré, and Y. D. Willems, “Relighting with 4D incident light fields,” ACM Trans. Graph. 22, 613–620 (2003).
[CrossRef]

Duval, G.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (Stanford University, 2005).

Figueiredo, M. A. T.

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007).
[CrossRef]

Foo, S. C.

H. Li, S. C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Proc. SPIE 5878, 221–231 (2005).

Garg, G.

G. Garg, E.-V. Talvala, M. Levoy, and H. P. A. Lensch, “Symmetric photography: exploiting data-sparseness in reflectance fields,” in Rendering Techniques 2006: Eurographics Symposium on Rendering, T. Akenine-Möller and W. Heidrich, eds. (Eurographics Association, 2006), pp. 251–262.

Ghosh, A.

P. Peers, D. K. Mahajan, B. Lamond, A. Ghosh, W. Matusik, R. Ramamoorthi, and P. Debevec, “Compressive light transport sensing,” ACM Trans. Graph. 28, 1–18 (2009).
[CrossRef]

Gortler, S. J.

A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized light fields,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2000), pp. 297–306.

Hanrahan, P.

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 31–42.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (Stanford University, 2005).

Hawkins, T.

P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, “Acquiring the reflectance field of a human face,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2000), pp. 145–156.

Horisaki, R.

R. Horisaki and J. Tanida, “Reflectance field display,” Opt. Express 21, 11181–11186 (2013).
[CrossRef]

R. Horisaki and J. Tanida, “Full-resolution light-field single-shot acquisition with spatial encoding,” in Computational Optical Sensing and Imaging (Optical Society of America, 2011), p. CTuB5.

R. Horisaki, Y. Tampa, and J. Tanida, “Compressive reflectance field acquisition using confocal imaging with variable coded apertures,” in Computational Optical Sensing and Imaging (Optical Society of America, 2012), paper CTu3B.4.

Horowitz, M.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[CrossRef]

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (Stanford University, 2005).

Ichioka, Y.

Isaksen, A.

A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized light fields,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2000), pp. 297–306.

Ishida, K.

Joshi, N.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[CrossRef]

Kang, S. B.

H. Shum and S. B. Kang, “Review of image-based rendering techniques,” Proc. SPIE 4067, 2 (2000).
[CrossRef]

Katsaggelos, A. K.

S. D. Babacan, R. Ansorge, M. Luessi, R. Molina, and A. K. Katsaggelos, “Compressive sensing of light fields,” in IEEE International Conference on Image Processing (IEEE, 2009), pp. 2313–2316.

Klein, R.

G. Müller, G. H. Bendels, and R. Klein, “Rapid synchronous acquisition of geometry and appearance of cultural heritage artefacts,” in Proceedings of the 6th International Conference on Virtual Reality, Archaeology and Intelligent Cultural Heritage (Eurographics Association, 2005), pp. 13–20.

Kondou, N.

Kumagai, T.

Lamond, B.

P. Peers, D. K. Mahajan, B. Lamond, A. Ghosh, W. Matusik, R. Ramamoorthi, and P. Debevec, “Compressive light transport sensing,” ACM Trans. Graph. 28, 1–18 (2009).
[CrossRef]

Lensch, H. P. A.

G. Garg, E.-V. Talvala, M. Levoy, and H. P. A. Lensch, “Symmetric photography: exploiting data-sparseness in reflectance fields,” in Rendering Techniques 2006: Eurographics Symposium on Rendering, T. Akenine-Möller and W. Heidrich, eds. (Eurographics Association, 2006), pp. 251–262.

Levoy, M.

M. Levoy, Z. Zhang, and I. Mcdowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235, 144–162 (2009).
[CrossRef]

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[CrossRef]

G. Garg, E.-V. Talvala, M. Levoy, and H. P. A. Lensch, “Symmetric photography: exploiting data-sparseness in reflectance fields,” in Rendering Techniques 2006: Eurographics Symposium on Rendering, T. Akenine-Möller and W. Heidrich, eds. (Eurographics Association, 2006), pp. 251–262.

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 31–42.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (Stanford University, 2005).

Li, H.

H. Li, S. C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Proc. SPIE 5878, 221–231 (2005).

Luessi, M.

S. D. Babacan, R. Ansorge, M. Luessi, R. Molina, and A. K. Katsaggelos, “Compressive sensing of light fields,” in IEEE International Conference on Image Processing (IEEE, 2009), pp. 2313–2316.

Mahajan, D. K.

P. Peers, D. K. Mahajan, B. Lamond, A. Ghosh, W. Matusik, R. Ramamoorthi, and P. Debevec, “Compressive light transport sensing,” ACM Trans. Graph. 28, 1–18 (2009).
[CrossRef]

Marwah, K.

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2013), pp. 1–11.

Masselus, V.

V. Masselus, P. Peers, P. Dutré, and Y. D. Willems, “Relighting with 4D incident light fields,” ACM Trans. Graph. 22, 613–620 (2003).
[CrossRef]

Matusik, W.

P. Peers, D. K. Mahajan, B. Lamond, A. Ghosh, W. Matusik, R. Ramamoorthi, and P. Debevec, “Compressive light transport sensing,” ACM Trans. Graph. 28, 1–18 (2009).
[CrossRef]

Mcdowall, I.

M. Levoy, Z. Zhang, and I. Mcdowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235, 144–162 (2009).
[CrossRef]

McMillan, L.

A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized light fields,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2000), pp. 297–306.

Miyatake, S.

Miyazaki, D.

Mohan, A.

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” ACM Trans. Graph. 26, 69 (2007).
[CrossRef]

Molina, R.

S. D. Babacan, R. Ansorge, M. Luessi, R. Molina, and A. K. Katsaggelos, “Compressive sensing of light fields,” in IEEE International Conference on Image Processing (IEEE, 2009), pp. 2313–2316.

Morimoto, T.

Mukaigawa, Y.

Y. Mukaigawa, K. Sumino, and Y. Yagi, “Rapid BRDF measurement using an ellipsoidal mirror and a projector,” IPSJ Trans. Comput. Vis. Appl. 1, 21–32 (2009).

S. Tagawa, Y. Mukaigawa, and Y. Yagi, “8-D reflectance field for computational photography,” in Proceedings of the International Conference on Pattern Recognition (IEEE, 2012), pp. 2181–2185.

Müller, G.

G. Müller, G. H. Bendels, and R. Klein, “Rapid synchronous acquisition of geometry and appearance of cultural heritage artefacts,” in Proceedings of the 6th International Conference on Virtual Reality, Archaeology and Intelligent Cultural Heritage (Eurographics Association, 2005), pp. 13–20.

Neifeld, M. A.

A. Ashok and M. A. Neifeld, “Compressive light field imaging,” Proc. SPIE 7690, 76900Q (2010).
[CrossRef]

Ng, R.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (Stanford University, 2005).

Nicodemus, F. E.

Peers, P.

P. Peers, D. K. Mahajan, B. Lamond, A. Ghosh, W. Matusik, R. Ramamoorthi, and P. Debevec, “Compressive light transport sensing,” ACM Trans. Graph. 28, 1–18 (2009).
[CrossRef]

V. Masselus, P. Peers, P. Dutré, and Y. D. Willems, “Relighting with 4D incident light fields,” ACM Trans. Graph. 22, 613–620 (2003).
[CrossRef]

Ramamoorthi, R.

P. Peers, D. K. Mahajan, B. Lamond, A. Ghosh, W. Matusik, R. Ramamoorthi, and P. Debevec, “Compressive light transport sensing,” ACM Trans. Graph. 28, 1–18 (2009).
[CrossRef]

Raskar, R.

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” ACM Trans. Graph. 26, 69 (2007).
[CrossRef]

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2013), pp. 1–11.

Sagar, M.

P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, “Acquiring the reflectance field of a human face,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2000), pp. 145–156.

Sarokin, W.

P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, “Acquiring the reflectance field of a human face,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2000), pp. 145–156.

Shum, H.

H. Shum and S. B. Kang, “Review of image-based rendering techniques,” Proc. SPIE 4067, 2 (2000).
[CrossRef]

Sumino, K.

Y. Mukaigawa, K. Sumino, and Y. Yagi, “Rapid BRDF measurement using an ellipsoidal mirror and a projector,” IPSJ Trans. Comput. Vis. Appl. 1, 21–32 (2009).

Szeliski, R.

R. Szeliski, Computer Vision: Algorithms and Applications, 1st ed. (Springer-Verlag, 2010).

Tagawa, S.

S. Tagawa, Y. Mukaigawa, and Y. Yagi, “8-D reflectance field for computational photography,” in Proceedings of the International Conference on Pattern Recognition (IEEE, 2012), pp. 2181–2185.

Talvala, E.-V.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[CrossRef]

G. Garg, E.-V. Talvala, M. Levoy, and H. P. A. Lensch, “Symmetric photography: exploiting data-sparseness in reflectance fields,” in Rendering Techniques 2006: Eurographics Symposium on Rendering, T. Akenine-Möller and W. Heidrich, eds. (Eurographics Association, 2006), pp. 251–262.

Tampa, Y.

R. Horisaki, Y. Tampa, and J. Tanida, “Compressive reflectance field acquisition using confocal imaging with variable coded apertures,” in Computational Optical Sensing and Imaging (Optical Society of America, 2012), paper CTu3B.4.

Tanida, J.

R. Horisaki and J. Tanida, “Reflectance field display,” Opt. Express 21, 11181–11186 (2013).
[CrossRef]

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40, 1806–1813 (2001).
[CrossRef]

R. Horisaki, Y. Tampa, and J. Tanida, “Compressive reflectance field acquisition using confocal imaging with variable coded apertures,” in Computational Optical Sensing and Imaging (Optical Society of America, 2012), paper CTu3B.4.

R. Horisaki and J. Tanida, “Full-resolution light-field single-shot acquisition with spatial encoding,” in Computational Optical Sensing and Imaging (Optical Society of America, 2011), p. CTuB5.

Tchou, C.

P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, “Acquiring the reflectance field of a human face,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2000), pp. 145–156.

Torrance, K. E.

H. Li, S. C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Proc. SPIE 5878, 221–231 (2005).

Tumblin, J.

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” ACM Trans. Graph. 26, 69 (2007).
[CrossRef]

Vaish, V.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[CrossRef]

Veeraraghavan, A.

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” ACM Trans. Graph. 26, 69 (2007).
[CrossRef]

Wakin, M. B.

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[CrossRef]

Wang, J. Y. A.

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[CrossRef]

Westin, S. H.

H. Li, S. C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Proc. SPIE 5878, 221–231 (2005).

Wetzstein, G.

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2013), pp. 1–11.

Wilburn, B.

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[CrossRef]

Willems, Y. D.

V. Masselus, P. Peers, P. Dutré, and Y. D. Willems, “Relighting with 4D incident light fields,” ACM Trans. Graph. 22, 613–620 (2003).
[CrossRef]

Yagi, Y.

Y. Mukaigawa, K. Sumino, and Y. Yagi, “Rapid BRDF measurement using an ellipsoidal mirror and a projector,” IPSJ Trans. Comput. Vis. Appl. 1, 21–32 (2009).

S. Tagawa, Y. Mukaigawa, and Y. Yagi, “8-D reflectance field for computational photography,” in Proceedings of the International Conference on Pattern Recognition (IEEE, 2012), pp. 2181–2185.

Yamada, K.

Zhang, Z.

M. Levoy, Z. Zhang, and I. Mcdowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235, 144–162 (2009).
[CrossRef]

ACM Trans. Graph. (4)

V. Masselus, P. Peers, P. Dutré, and Y. D. Willems, “Relighting with 4D incident light fields,” ACM Trans. Graph. 22, 613–620 (2003).
[CrossRef]

P. Peers, D. K. Mahajan, B. Lamond, A. Ghosh, W. Matusik, R. Ramamoorthi, and P. Debevec, “Compressive light transport sensing,” ACM Trans. Graph. 28, 1–18 (2009).
[CrossRef]

B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, “High performance imaging using large camera arrays,” ACM Trans. Graph. 24, 765–776 (2005).
[CrossRef]

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin, “Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing,” ACM Trans. Graph. 26, 69 (2007).
[CrossRef]

Appl. Opt. (2)

IEEE Signal Process. Mag. (2)

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25(2), 21–30 (2008).
[CrossRef]

R. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
[CrossRef]

IEEE Trans. Image Process. (1)

J. M. Bioucas-Dias and M. A. T. Figueiredo, “A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration,” IEEE Trans. Image Process. 16, 2992–3004 (2007).
[CrossRef]

IEEE Trans. Inf. Theory (1)

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 99–106 (1992).
[CrossRef]

IPSJ Trans. Comput. Vis. Appl. (1)

Y. Mukaigawa, K. Sumino, and Y. Yagi, “Rapid BRDF measurement using an ellipsoidal mirror and a projector,” IPSJ Trans. Comput. Vis. Appl. 1, 21–32 (2009).

J. Microsc. (1)

M. Levoy, Z. Zhang, and I. Mcdowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235, 144–162 (2009).
[CrossRef]

Opt. Express (1)

Proc. SPIE (3)

A. Ashok and M. A. Neifeld, “Compressive light field imaging,” Proc. SPIE 7690, 76900Q (2010).
[CrossRef]

H. Shum and S. B. Kang, “Review of image-based rendering techniques,” Proc. SPIE 4067, 2 (2000).
[CrossRef]

H. Li, S. C. Foo, K. E. Torrance, and S. H. Westin, “Automated three-axis gonioreflectometer for computer graphics applications,” Proc. SPIE 5878, 221–231 (2005).

Other (12)

G. Müller, G. H. Bendels, and R. Klein, “Rapid synchronous acquisition of geometry and appearance of cultural heritage artefacts,” in Proceedings of the 6th International Conference on Virtual Reality, Archaeology and Intelligent Cultural Heritage (Eurographics Association, 2005), pp. 13–20.

P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin, and M. Sagar, “Acquiring the reflectance field of a human face,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2000), pp. 145–156.

R. Horisaki, Y. Tampa, and J. Tanida, “Compressive reflectance field acquisition using confocal imaging with variable coded apertures,” in Computational Optical Sensing and Imaging (Optical Society of America, 2012), paper CTu3B.4.

M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 1996), pp. 31–42.

A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameterized light fields,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2000), pp. 297–306.

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” (Stanford University, 2005).

S. Tagawa, Y. Mukaigawa, and Y. Yagi, “8-D reflectance field for computational photography,” in Proceedings of the International Conference on Pattern Recognition (IEEE, 2012), pp. 2181–2185.

G. Garg, E.-V. Talvala, M. Levoy, and H. P. A. Lensch, “Symmetric photography: exploiting data-sparseness in reflectance fields,” in Rendering Techniques 2006: Eurographics Symposium on Rendering, T. Akenine-Möller and W. Heidrich, eds. (Eurographics Association, 2006), pp. 251–262.

R. Szeliski, Computer Vision: Algorithms and Applications, 1st ed. (Springer-Verlag, 2010).

S. D. Babacan, R. Ansorge, M. Luessi, R. Molina, and A. K. Katsaggelos, “Compressive sensing of light fields,” in IEEE International Conference on Image Processing (IEEE, 2009), pp. 2313–2316.

R. Horisaki and J. Tanida, “Full-resolution light-field single-shot acquisition with spatial encoding,” in Computational Optical Sensing and Imaging (Optical Society of America, 2011), p. CTuB5.

K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography using overcomplete dictionaries and optimized projections,” in Proceedings of the ACM Special Interest Group on Computer Graphics and Interactive Techniques (ACM, 2013), pp. 1–11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Definition of the LF.

Fig. 2.
Fig. 2.

Definition of parameters in reflectance functions. (a) BRDF model and (b) RF model.

Fig. 3.
Fig. 3.

Optical setup for compressive RF acquisition.

Fig. 4.
Fig. 4.

Single image capture of a scattering object. (a) Object (origami crane), (b) example patterns on the projector, SLM1, and SLM2, and (c) captured image.

Fig. 5.
Fig. 5.

RF reconstruction of the scattering object. Reconstructions with (a) conventional method using 64 measurements, (b) proposed method using 24 measurements, and (c) proposed method using eight measurements.

Fig. 6.
Fig. 6.

RF reconstruction of a translucent object. (a) Translucent object (bead), the reconstructions with (b) conventional method using 64 measurements, (c) proposed method using 32 measurements, and (d) proposed method using eight measurements.

Fig. 7.
Fig. 7.

Histograms of the 8-D DCT coefficients. (a) Scattering object (origami crane) in Figs. 5(a), and 5(b) translucent object (bead) in Fig. 6(b).

Fig. 8.
Fig. 8.

Plot of reconstruction fidelity versus number of measurements.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

B(s,t,u,v,u,v)=dLout(s,t,u,v)dLin(s,t,u,v),
R(s,t,u,v,s,t,u,v)=dLout(s,t,u,v)dLin(s,t,u,v).
g=Hr,
r^=argminrgHr2+τS(r),
Gm(s,t)=uvstuvPmSLM2(u,v)×PmSLM1(s,t)×Pmproj(u,v)×R(s,t,u,v,s,t,u,v),
H=[A1,1,1,1,1,1,1IA1,Nu,Nv,Ns,Nt,Nu,NvIANm,1,1,1,1,1,1IANm,Nu,Nv,Ns,Nt,Nu,NvI],
Am,u,v,s,t,u,v=PmSLM2(u,v)×PmSLM1(s,t)×Pmproj(u,v).

Metrics