Abstract

Grating waveguide structures have been prepared by the deposition of a high refractive index broadband antireflection coating onto a patterned fused silica substrate. Aluminum oxide and hafnium oxide as well as mixtures thereof have been used as coating materials. Optical reflection measurements combined with atomic force microscopy have been used to characterize the structures. Upon illumination with a TE wave, the best structure shows a narrow reflection peak located at 633 nm at an incidence angle of about 17°. The peak reflectance of that sample accounts for more than 89%. Off-resonance interference structures appear strongly suppressed in the spectrum between 450 and 800 nm because of the characteristics of the designed antireflection layer. The structure thus possesses a notch filter spectral characteristic in a broad spectral range.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC Press, 2010).
  2. R. W. Klopfenstein, “A transmission line taper of improved design,” Proc. IRE 44, 31–35 (1956).
    [CrossRef]
  3. E. B. Grann, M. G. Moharam, and D. A. Pommet, “Optimal design for antireflective tapered two-dimensional subwavelength grating structures,” J. Opt. Soc. Am. A 12, 333–339 (1995).
    [CrossRef]
  4. A. V. Tikhonravov and J. A. Dobrowolski, “Quasi-optimal synthesis for antireflection coatings: a new method,” Appl. Opt. 32, 4265–4275 (1993).
    [CrossRef]
  5. J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, and P. G. Verly, “Optimal single-band normal-incidence antireflection coatings,” Appl. Opt. 35, 644–658 (1996).
    [CrossRef]
  6. R. Willey, “Refined criteria for estimating limits of broad-band AR coatings,” Proc. SPIE 5250, 393–399 (2004).
    [CrossRef]
  7. J. A. Dobrowolski, “Antireflection coatings: key optical components,” Proc. SPIE 5963, 596303 (2005).
    [CrossRef]
  8. T. V. Amotchkina, “Empirical expression for the minimum residual reflectance of normal- and oblique-incidence antireflection coatings,” Appl. Opt. 47, 3109–3113 (2008).
    [CrossRef]
  9. S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 19732–19742 (2010).
    [CrossRef]
  10. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
    [CrossRef]
  11. S. S. Wang and R. Magnusson, “Design of waveguide-grating filters with symmetrical line shapes and low sidebands,” Opt. Lett. 19, 919–921 (1994).
    [CrossRef]
  12. R. Magnusson and S. S. Wang, “Efficient bandpass reflection and transmission filters with low sidebands based on guided-mode resonance effects,” U.S. patent5,598,300 (5June1997).
  13. E. Popov, L. Mashew, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
    [CrossRef]
  14. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating–waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997).
    [CrossRef]
  15. Z. Hegedus and R. Netterfield, “Low sideband guided-mode resonant filter,” Appl. Opt. 39, 1469–1473 (2000).
    [CrossRef]
  16. P. S. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83, 3248–3250 (2003).
    [CrossRef]
  17. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Normally incident resonant grating reflection filters for efficient narrow-band spectral filtering of finite beams,” J. Opt. Soc. Am. A 18, 2109–2120 (2001).
    [CrossRef]
  18. A. Sentenac and A. Fehrembach, “Angular tolerant resonant grating filters under oblique incidence,” J. Opt. Soc. Am. A 22, 475–480 (2005).
    [CrossRef]
  19. H. Thiele, G. Niederer, W. Nakagawa, and H. P. Herzig, “Design and characterization of a tunable polarization-independent resonant grating filter,” Opt. Express 13, 2196–2200 (2005).
    [CrossRef]
  20. X. Fu, K. Yi, J. Shao, and Z. Fan, “Nonpolarizing guided-mode resonance filter,” J. Opt. Soc. Am. A 34, 124–126 (2009).
  21. T. Clausnitzer, A. V. Tishchenko, E. Kley, H. Fuchs, D. Schelle, and U. Kroll, “Narrowband, polarization-independent free-space wave notch filter,” J. Opt. Soc. Am. A 22, 2799–2803 (2005).
    [CrossRef]
  22. E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, C. Dupuis, S. Collin, F. Pardo, R. Haidar, and J. Pelouard, “Free-standing guided-mode resonance band-pass filters: from 1D to 2D structures,” Opt. Express 20, 13082–13090 (2012).
    [CrossRef]
  23. O. Stenzel, “Resonant reflection and absorption in grating waveguide structures,” Proc. SPIE 5355, 1–13 (2004).
    [CrossRef]
  24. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, N. Kaiser, O. Stenzel, S. Wilbrandt, and D. Gäbler, “New optimisation algorithm for the synthesis of rugate optical coatings,” Appl. Opt. 45, 1515–1524 (2006).
    [CrossRef]
  25. A. Debnath, S. Kumar, D. V. Udupa, and N. K. Sahoo, “Design of narrow band notch filter based on guided mode resonance effect in thin film layers,” Proc. AIP 1451, 301–303 (2012).
    [CrossRef]
  26. K. Hehl and J. Bischoff, UNIGIT grating solver software (2001), http://www.unigit.com/ .
  27. O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Prax. 21, 15–23 (2009).
  28. S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).

2012 (2)

A. Debnath, S. Kumar, D. V. Udupa, and N. K. Sahoo, “Design of narrow band notch filter based on guided mode resonance effect in thin film layers,” Proc. AIP 1451, 301–303 (2012).
[CrossRef]

E. Sakat, G. Vincent, P. Ghenuche, N. Bardou, C. Dupuis, S. Collin, F. Pardo, R. Haidar, and J. Pelouard, “Free-standing guided-mode resonance band-pass filters: from 1D to 2D structures,” Opt. Express 20, 13082–13090 (2012).
[CrossRef]

2010 (1)

2009 (2)

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Prax. 21, 15–23 (2009).

X. Fu, K. Yi, J. Shao, and Z. Fan, “Nonpolarizing guided-mode resonance filter,” J. Opt. Soc. Am. A 34, 124–126 (2009).

2008 (2)

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).

T. V. Amotchkina, “Empirical expression for the minimum residual reflectance of normal- and oblique-incidence antireflection coatings,” Appl. Opt. 47, 3109–3113 (2008).
[CrossRef]

2006 (1)

2005 (4)

2004 (2)

R. Willey, “Refined criteria for estimating limits of broad-band AR coatings,” Proc. SPIE 5250, 393–399 (2004).
[CrossRef]

O. Stenzel, “Resonant reflection and absorption in grating waveguide structures,” Proc. SPIE 5355, 1–13 (2004).
[CrossRef]

2003 (1)

P. S. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83, 3248–3250 (2003).
[CrossRef]

2001 (1)

2000 (1)

1997 (1)

1996 (1)

1995 (1)

1994 (1)

1993 (2)

1986 (1)

E. Popov, L. Mashew, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[CrossRef]

1956 (1)

R. W. Klopfenstein, “A transmission line taper of improved design,” Proc. IRE 44, 31–35 (1956).
[CrossRef]

Amotchkina, T. V.

Bardou, N.

Clausnitzer, T.

Collin, S.

Debnath, A.

A. Debnath, S. Kumar, D. V. Udupa, and N. K. Sahoo, “Design of narrow band notch filter based on guided mode resonance effect in thin film layers,” Proc. AIP 1451, 301–303 (2012).
[CrossRef]

Dobrowolski, J. A.

Dunn, S. C.

Dupuis, C.

Fan, Z.

X. Fu, K. Yi, J. Shao, and Z. Fan, “Nonpolarizing guided-mode resonance filter,” J. Opt. Soc. Am. A 34, 124–126 (2009).

Fehrembach, A.

Friedrich, K.

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Prax. 21, 15–23 (2009).

Friesem, A. A.

Fu, X.

X. Fu, K. Yi, J. Shao, and Z. Fan, “Nonpolarizing guided-mode resonance filter,” J. Opt. Soc. Am. A 34, 124–126 (2009).

Fuchs, H.

Gäbler, D.

Ghenuche, P.

Grann, E. B.

Haidar, R.

Hegedus, Z.

Herzig, H. P.

Jacob, D. K.

Kaiser, N.

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 19732–19742 (2010).
[CrossRef]

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Prax. 21, 15–23 (2009).

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, N. Kaiser, O. Stenzel, S. Wilbrandt, and D. Gäbler, “New optimisation algorithm for the synthesis of rugate optical coatings,” Appl. Opt. 45, 1515–1524 (2006).
[CrossRef]

Kley, E.

Klopfenstein, R. W.

R. W. Klopfenstein, “A transmission line taper of improved design,” Proc. IRE 44, 31–35 (1956).
[CrossRef]

Kokarev, M. A.

Kroll, U.

Kumar, S.

A. Debnath, S. Kumar, D. V. Udupa, and N. K. Sahoo, “Design of narrow band notch filter based on guided mode resonance effect in thin film layers,” Proc. AIP 1451, 301–303 (2012).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC Press, 2010).

Magnusson, R.

P. S. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83, 3248–3250 (2003).
[CrossRef]

S. S. Wang and R. Magnusson, “Design of waveguide-grating filters with symmetrical line shapes and low sidebands,” Opt. Lett. 19, 919–921 (1994).
[CrossRef]

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606–2613 (1993).
[CrossRef]

R. Magnusson and S. S. Wang, “Efficient bandpass reflection and transmission filters with low sidebands based on guided-mode resonance effects,” U.S. patent5,598,300 (5June1997).

Maldonado, T. A.

P. S. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83, 3248–3250 (2003).
[CrossRef]

Mashew, L.

E. Popov, L. Mashew, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[CrossRef]

Maystre, D.

E. Popov, L. Mashew, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[CrossRef]

Moharam, M. G.

Nakagawa, W.

Netterfield, R.

Niederer, G.

Pardo, F.

Pelouard, J.

Pommet, D. A.

Popov, E.

E. Popov, L. Mashew, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[CrossRef]

Priambodo, P. S.

P. S. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83, 3248–3250 (2003).
[CrossRef]

Rosenblatt, D.

Sahoo, N. K.

A. Debnath, S. Kumar, D. V. Udupa, and N. K. Sahoo, “Design of narrow band notch filter based on guided mode resonance effect in thin film layers,” Proc. AIP 1451, 301–303 (2012).
[CrossRef]

Sakat, E.

Schelle, D.

Sentenac, A.

Shao, J.

X. Fu, K. Yi, J. Shao, and Z. Fan, “Nonpolarizing guided-mode resonance filter,” J. Opt. Soc. Am. A 34, 124–126 (2009).

Sharon, A.

Stenzel, O.

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 19732–19742 (2010).
[CrossRef]

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Prax. 21, 15–23 (2009).

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, N. Kaiser, O. Stenzel, S. Wilbrandt, and D. Gäbler, “New optimisation algorithm for the synthesis of rugate optical coatings,” Appl. Opt. 45, 1515–1524 (2006).
[CrossRef]

O. Stenzel, “Resonant reflection and absorption in grating waveguide structures,” Proc. SPIE 5355, 1–13 (2004).
[CrossRef]

Sullivan, B. T.

Thiele, H.

Tikhonravov, A. V.

Tishchenko, A. V.

Trubetskov, M. K.

Udupa, D. V.

A. Debnath, S. Kumar, D. V. Udupa, and N. K. Sahoo, “Design of narrow band notch filter based on guided mode resonance effect in thin film layers,” Proc. AIP 1451, 301–303 (2012).
[CrossRef]

Verly, P. G.

Vincent, G.

Wang, S. S.

Wilbrandt, S.

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express 18, 19732–19742 (2010).
[CrossRef]

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Prax. 21, 15–23 (2009).

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, N. Kaiser, O. Stenzel, S. Wilbrandt, and D. Gäbler, “New optimisation algorithm for the synthesis of rugate optical coatings,” Appl. Opt. 45, 1515–1524 (2006).
[CrossRef]

Willey, R.

R. Willey, “Refined criteria for estimating limits of broad-band AR coatings,” Proc. SPIE 5250, 393–399 (2004).
[CrossRef]

Yi, K.

X. Fu, K. Yi, J. Shao, and Z. Fan, “Nonpolarizing guided-mode resonance filter,” J. Opt. Soc. Am. A 34, 124–126 (2009).

Appl. Opt. (6)

Appl. Phys. Lett. (1)

P. S. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83, 3248–3250 (2003).
[CrossRef]

J. Opt. Soc. Am. A (6)

Opt. Acta (1)

E. Popov, L. Mashew, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” Opt. Acta 33, 607–619 (1986).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proc. AIP (1)

A. Debnath, S. Kumar, D. V. Udupa, and N. K. Sahoo, “Design of narrow band notch filter based on guided mode resonance effect in thin film layers,” Proc. AIP 1451, 301–303 (2012).
[CrossRef]

Proc. IRE (1)

R. W. Klopfenstein, “A transmission line taper of improved design,” Proc. IRE 44, 31–35 (1956).
[CrossRef]

Proc. SPIE (4)

R. Willey, “Refined criteria for estimating limits of broad-band AR coatings,” Proc. SPIE 5250, 393–399 (2004).
[CrossRef]

J. A. Dobrowolski, “Antireflection coatings: key optical components,” Proc. SPIE 5963, 596303 (2005).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).

O. Stenzel, “Resonant reflection and absorption in grating waveguide structures,” Proc. SPIE 5355, 1–13 (2004).
[CrossRef]

Vak. Forsch. Prax. (1)

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische Modellierung der NIR/VIS/UV-optischen Konstanten dünner optischer Schichten im Rahmen des Oszillatormodells,” Vak. Forsch. Prax. 21, 15–23 (2009).

Other (3)

H. A. Macleod, Thin-Film Optical Filters, 4th ed. (CRC Press, 2010).

R. Magnusson and S. S. Wang, “Efficient bandpass reflection and transmission filters with low sidebands based on guided-mode resonance effects,” U.S. patent5,598,300 (5June1997).

K. Hehl and J. Bischoff, UNIGIT grating solver software (2001), http://www.unigit.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Principle structure of a GWS with rectangular grooves. In the high-refractive-index film, both zero- (solid lines) and first-order (dashed lines) diffracted waves may propagate. The first-order diffracted wave undergoes total internal reflection at the film boundaries. d is the waveguide film thickness and t the groove depth. T and R denote sample transmittance and reflectance, respectively, while E is the electric field strength in the electromagnetic wave.

Fig. 2.
Fig. 2.

Top: refractive index profile at 600 nm of the designed AR coating (screenshot of the design program). The substrate (fused silica) starts on the left side at zero thickness. Bottom: corresponding normal incidence reflection spectrum (no substrate backside considered).

Fig. 3.
Fig. 3.

Top: principle GWS construction underlying the RCWA calculations. Middle: calculated TE transmittance at 17° and 20° incidence angle without substrate backside reflection. Bottom: calculated TE reflectance at 17° and 20° incidence angle without substrate backside reflection.

Fig. 4.
Fig. 4.

(a) Sketch of the grating fabrication process. (b) Photograph of the Vistec SB350 OS e-beam writer used for the exposure of the grating pattern.

Fig. 5.
Fig. 5.

Refractive index of hafnia–alumina mixture coatings as a function of the alumina volume content.

Fig. 6.
Fig. 6.

Refractive index profiles of two different antireflection coatings.

Fig. 7.
Fig. 7.

Visual appearance of the GWS in daylight.

Fig. 8.
Fig. 8.

Results of primary goniometer reflection measurements of the samples GWS1 (top) and GWS2 (bottom) together with the corresponding reference samples on smooth substrates (20° incidence angle, TE wave).

Fig. 9.
Fig. 9.

Angular reflectance scan of the sample GWS2. Top: overview. Bottom: resonance region. The theoretical spectrum is corrected with respect to backside reflection.

Fig. 10.
Fig. 10.

AFM topographic surface images from samples GWS1 (top) and GWS2 (bottom). The dark areas correspond to the grooves.

Fig. 11.
Fig. 11.

AFM surface profiles from samples GWS1 (top) and GWS2 (bottom), as averaged over a 3μm×3μm surface area.

Fig. 12.
Fig. 12.

SEM image of the surface of sample GWS1 in the region of a surface “defect.”

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Raverage,minf1(ρLa,ρsa)·[0.8(0.02)1/(λu/λl1)](11/ρHL2)ρLa1Rres,f1ρsa2(1ρLa2)2+(ρLa2ρsa2)2(ρLa2+ρsa)2(1+ρsa)2,ρHLnHnL,ρLanLn1,ρsansubn1.
Rmax12λ0k(λ0)Δλn(λ0).
PBG=RmaxRres12λ0k(λ0)Δλn(λ0)Rres(nL,nH,nsub).

Metrics