Abstract

The Bloch surface wave resonance (SWR) was visualized with the aid of plasmon absorption in a dielectric/metal/dielectric sandwich terminating a one-dimensional photonic crystal (PhC). An SWR peak in calculated spectra of such a plasmonic photonic crystal (PPhC) slab comprising a noble or base metal layer was demonstrated to be sensitive to a negligible variation of refractive index of a medium adjoining to the slab. The considered structure of PPhC slabs can be of practical importance because the metal layer is protected by a capping dielectric layer from contact with analytes and, consequently, from deterioration. We found that, in case of PPhC slabs, gold (the key element of the surface plasmon resonance-based biosensors) can be replaced by other metals. The PPhC-based sensors can be low-cost, reusable, and robust sensors having a sensitivity surpassing that of the known optical sensors.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Wulfkuhle, L. A. Liotta, and E. F. Petricoin, “Proteomic applications for the early detection of cancer,” Nat. Rev. Cancer 3, 267–275 (2003).
  2. P. J. Nestor, P. Scheltens, and J. R. Hodges, “Advances in the early detection of Alzheimer’s disease,” Nat. Rev. Neurosci. 10, S34–S41 (2004).
    [CrossRef]
  3. C. R. Taitt, J. P. Golden, Y. S. Shubin, L. C. Shriver-Lake, K. E. Sapsford, A. Rasooly, and F. S. Ligler, “A portable array biosensor for detecting multiple analytes in complex samples,” Microb. Ecol. 47, 175–185 (2004).
    [CrossRef]
  4. A. Patton, M. C. Mullenix, S. J. Swanson, and E. Koren, “An acid dissociation bridging ELISA for detection of antibodies directed against therapeutic proteins in the presence of antigen,” J. Immunol. Methods 304, 189–195 (2005).
    [CrossRef]
  5. A. Szabo, L. Stolz, and R. Granzow, “Surface plasmon resonance and its use in biomolecular interaction analysis (BIA),” Curr. Opin. Struct. Biol. 5, 699–705 (1995).
    [CrossRef]
  6. J. A. Lofgren, S. Dhandapani, J. J. Pennucci, C. M. Abbott, D. T. Mytych, A. Kaliyaperumal, S. J. Swanson, and M. C. Mullenix, “Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab,” J. Immunol. 178, 7467–7472 (2007).
  7. J. Homola, Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors (Springer-Verlag, 2006).
  8. G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038–2046 (2002).
    [CrossRef]
  9. M. Piliarik, L. Párová, and J. Homola, “High-throughput SPR sensor for food safety,” Biosens. Bioelectron. 24, 1399–1404 (2009).
    [CrossRef]
  10. C. M. Wu and M. C. Pao, “Sensitivity-tunable optical sensors based on surface plasmon resonance and phase detection,” Opt. Express 12, 3509–3514 (2004).
    [CrossRef]
  11. I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators, B 54, 98–105 (1999).
    [CrossRef]
  12. F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron. 24, 2100–2105 (2009).
    [CrossRef]
  13. C. Thirstrup and W. Zong, “Data analysis for surface plasmon resonance sensors using dynamic baseline algorithm,” Sens. Actuators, B 106, 796–802 (2005).
    [CrossRef]
  14. T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuators, B 91, 266–274 (2003).
    [CrossRef]
  15. M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24, 3430–3435 (2009).
    [CrossRef]
  16. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505–16517 (2009).
    [CrossRef]
  17. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54, 3–15 (1999).
    [CrossRef]
  18. G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators 29, 31–36 (1995).
    [CrossRef]
  19. H. Raether, Surface Plasmons (Springer, 1988).
  20. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
    [CrossRef]
  21. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
    [CrossRef]
  22. W. M. Robertson and M. S. May, “Surface electromagnetic waves on one-dimensional photonic band gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
    [CrossRef]
  23. V. N. Konopsky and E. V. Alieva, “A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index,” Biosens. Bioelectron. 25, 1212–1216 (2010).
    [CrossRef]
  24. V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
  25. A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Efficiency of optical sensing by a plasmonic photonic-crystal slab,” J. Phys. D 46, 125107 (2013).
    [CrossRef]
  26. A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Plasmonic photonic-crystal slab as an ultrasensitive and robust optical biosensor,” Proc. SPIE 8632, 863209 (2013).
    [CrossRef]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1991).
  28. Landolt-Bornstein Database ( http://www.springermaterials.com ).
  29. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical tamm states in one-dimensional magnetophotonic structure,” Phys. Rev. Lett. 101, 113902 (2008).
    [CrossRef]
  30. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
    [CrossRef]
  31. F. Villa and J. A. Gaspar-Armenta, “Electromagnetic surface waves: photonic crystal-photonic crystal interface,” Opt. Commun. 223, 109–115 (2003).
    [CrossRef]
  32. A. Kavokin, I. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
    [CrossRef]
  33. A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006).
    [CrossRef]
  34. A. V. Baryshev, K. Kawasaki, P. B. Lim, and M. Inoue, “Interplay of surface resonances in one-dimensional plasmonic magnetophotonic crystal slabs,” Phys. Rev. B 85, 205130 (2012).
    [CrossRef]
  35. B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103, 061112 (2013).
    [CrossRef]
  36. V. N. Konopsky and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Phys. Rev. Lett. 97, 253904 (2006).
    [CrossRef]
  37. D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics 5, 601–616 (2012).
    [CrossRef]

2013 (4)

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Efficiency of optical sensing by a plasmonic photonic-crystal slab,” J. Phys. D 46, 125107 (2013).
[CrossRef]

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Plasmonic photonic-crystal slab as an ultrasensitive and robust optical biosensor,” Proc. SPIE 8632, 863209 (2013).
[CrossRef]

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103, 061112 (2013).
[CrossRef]

2012 (2)

A. V. Baryshev, K. Kawasaki, P. B. Lim, and M. Inoue, “Interplay of surface resonances in one-dimensional plasmonic magnetophotonic crystal slabs,” Phys. Rev. B 85, 205130 (2012).
[CrossRef]

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics 5, 601–616 (2012).
[CrossRef]

2010 (1)

V. N. Konopsky and E. V. Alieva, “A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index,” Biosens. Bioelectron. 25, 1212–1216 (2010).
[CrossRef]

2009 (4)

M. Piliarik, L. Párová, and J. Homola, “High-throughput SPR sensor for food safety,” Biosens. Bioelectron. 24, 1399–1404 (2009).
[CrossRef]

F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron. 24, 2100–2105 (2009).
[CrossRef]

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24, 3430–3435 (2009).
[CrossRef]

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505–16517 (2009).
[CrossRef]

2008 (1)

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical tamm states in one-dimensional magnetophotonic structure,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef]

2007 (2)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[CrossRef]

J. A. Lofgren, S. Dhandapani, J. J. Pennucci, C. M. Abbott, D. T. Mytych, A. Kaliyaperumal, S. J. Swanson, and M. C. Mullenix, “Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab,” J. Immunol. 178, 7467–7472 (2007).

2006 (2)

A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006).
[CrossRef]

V. N. Konopsky and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Phys. Rev. Lett. 97, 253904 (2006).
[CrossRef]

2005 (3)

C. Thirstrup and W. Zong, “Data analysis for surface plasmon resonance sensors using dynamic baseline algorithm,” Sens. Actuators, B 106, 796–802 (2005).
[CrossRef]

A. Patton, M. C. Mullenix, S. J. Swanson, and E. Koren, “An acid dissociation bridging ELISA for detection of antibodies directed against therapeutic proteins in the presence of antigen,” J. Immunol. Methods 304, 189–195 (2005).
[CrossRef]

A. Kavokin, I. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[CrossRef]

2004 (3)

P. J. Nestor, P. Scheltens, and J. R. Hodges, “Advances in the early detection of Alzheimer’s disease,” Nat. Rev. Neurosci. 10, S34–S41 (2004).
[CrossRef]

C. R. Taitt, J. P. Golden, Y. S. Shubin, L. C. Shriver-Lake, K. E. Sapsford, A. Rasooly, and F. S. Ligler, “A portable array biosensor for detecting multiple analytes in complex samples,” Microb. Ecol. 47, 175–185 (2004).
[CrossRef]

C. M. Wu and M. C. Pao, “Sensitivity-tunable optical sensors based on surface plasmon resonance and phase detection,” Opt. Express 12, 3509–3514 (2004).
[CrossRef]

2003 (3)

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuators, B 91, 266–274 (2003).
[CrossRef]

J. D. Wulfkuhle, L. A. Liotta, and E. F. Petricoin, “Proteomic applications for the early detection of cancer,” Nat. Rev. Cancer 3, 267–275 (2003).

F. Villa and J. A. Gaspar-Armenta, “Electromagnetic surface waves: photonic crystal-photonic crystal interface,” Opt. Commun. 223, 109–115 (2003).
[CrossRef]

2002 (1)

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038–2046 (2002).
[CrossRef]

1999 (3)

W. M. Robertson and M. S. May, “Surface electromagnetic waves on one-dimensional photonic band gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
[CrossRef]

I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators, B 54, 98–105 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54, 3–15 (1999).
[CrossRef]

1995 (2)

G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators 29, 31–36 (1995).
[CrossRef]

A. Szabo, L. Stolz, and R. Granzow, “Surface plasmon resonance and its use in biomolecular interaction analysis (BIA),” Curr. Opin. Struct. Biol. 5, 699–705 (1995).
[CrossRef]

1978 (1)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

1977 (1)

Abbott, C. M.

J. A. Lofgren, S. Dhandapani, J. J. Pennucci, C. M. Abbott, D. T. Mytych, A. Kaliyaperumal, S. J. Swanson, and M. C. Mullenix, “Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab,” J. Immunol. 178, 7467–7472 (2007).

Abram, R. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Afinogenov, B. I.

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103, 061112 (2013).
[CrossRef]

Alieva, E. V.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).

V. N. Konopsky and E. V. Alieva, “A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index,” Biosens. Bioelectron. 25, 1212–1216 (2010).
[CrossRef]

V. N. Konopsky and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Phys. Rev. Lett. 97, 253904 (2006).
[CrossRef]

Bardin, F.

F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron. 24, 2100–2105 (2009).
[CrossRef]

Bartholomew, D. U.

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuators, B 91, 266–274 (2003).
[CrossRef]

Baryshev, A. V.

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Efficiency of optical sensing by a plasmonic photonic-crystal slab,” J. Phys. D 46, 125107 (2013).
[CrossRef]

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Plasmonic photonic-crystal slab as an ultrasensitive and robust optical biosensor,” Proc. SPIE 8632, 863209 (2013).
[CrossRef]

A. V. Baryshev, K. Kawasaki, P. B. Lim, and M. Inoue, “Interplay of surface resonances in one-dimensional plasmonic magnetophotonic crystal slabs,” Phys. Rev. B 85, 205130 (2012).
[CrossRef]

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical tamm states in one-dimensional magnetophotonic structure,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef]

Bellemain, A.

F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron. 24, 2100–2105 (2009).
[CrossRef]

Bessonov, V. O.

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103, 061112 (2013).
[CrossRef]

Brand, S.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Brecht, A.

I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators, B 54, 98–105 (1999).
[CrossRef]

Canva, M.

F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron. 24, 2100–2105 (2009).
[CrossRef]

Chamberlain, J. M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Chinowsky, T. M.

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuators, B 91, 266–274 (2003).
[CrossRef]

Cho, A. Y.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

Dhandapani, S.

J. A. Lofgren, S. Dhandapani, J. J. Pennucci, C. M. Abbott, D. T. Mytych, A. Kaliyaperumal, S. J. Swanson, and M. C. Mullenix, “Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab,” J. Immunol. 178, 7467–7472 (2007).

Dietler, G.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).

Dorofeenko, A. V.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical tamm states in one-dimensional magnetophotonic structure,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef]

Elkind, J. L.

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuators, B 91, 266–274 (2003).
[CrossRef]

Fedyanin, A. A.

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103, 061112 (2013).
[CrossRef]

Gaspar-Armenta, J. A.

F. Villa and J. A. Gaspar-Armenta, “Electromagnetic surface waves: photonic crystal-photonic crystal interface,” Opt. Commun. 223, 109–115 (2003).
[CrossRef]

Gauglitz, G.

I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators, B 54, 98–105 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54, 3–15 (1999).
[CrossRef]

Gerken, M.

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics 5, 601–616 (2012).
[CrossRef]

Golden, J. P.

C. R. Taitt, J. P. Golden, Y. S. Shubin, L. C. Shriver-Lake, K. E. Sapsford, A. Rasooly, and F. S. Ligler, “A portable array biosensor for detecting multiple analytes in complex samples,” Microb. Ecol. 47, 175–185 (2004).
[CrossRef]

Goto, T.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical tamm states in one-dimensional magnetophotonic structure,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef]

Granovsky, A. B.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical tamm states in one-dimensional magnetophotonic structure,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef]

Granzow, R.

A. Szabo, L. Stolz, and R. Granzow, “Surface plasmon resonance and its use in biomolecular interaction analysis (BIA),” Curr. Opin. Struct. Biol. 5, 699–705 (1995).
[CrossRef]

Hodges, J. R.

P. J. Nestor, P. Scheltens, and J. R. Hodges, “Advances in the early detection of Alzheimer’s disease,” Nat. Rev. Neurosci. 10, S34–S41 (2004).
[CrossRef]

Homola, J.

M. Piliarik, L. Párová, and J. Homola, “High-throughput SPR sensor for food safety,” Biosens. Bioelectron. 24, 1399–1404 (2009).
[CrossRef]

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24, 3430–3435 (2009).
[CrossRef]

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505–16517 (2009).
[CrossRef]

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038–2046 (2002).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54, 3–15 (1999).
[CrossRef]

J. Homola, Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors (Springer-Verlag, 2006).

Hong, C.-S.

Inoue, M.

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Plasmonic photonic-crystal slab as an ultrasensitive and robust optical biosensor,” Proc. SPIE 8632, 863209 (2013).
[CrossRef]

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Efficiency of optical sensing by a plasmonic photonic-crystal slab,” J. Phys. D 46, 125107 (2013).
[CrossRef]

A. V. Baryshev, K. Kawasaki, P. B. Lim, and M. Inoue, “Interplay of surface resonances in one-dimensional plasmonic magnetophotonic crystal slabs,” Phys. Rev. B 85, 205130 (2012).
[CrossRef]

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical tamm states in one-dimensional magnetophotonic structure,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef]

Iorsh, I.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Kaiser, R.

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuators, B 91, 266–274 (2003).
[CrossRef]

Kaliteevski, M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Kaliyaperumal, A.

J. A. Lofgren, S. Dhandapani, J. J. Pennucci, C. M. Abbott, D. T. Mytych, A. Kaliyaperumal, S. J. Swanson, and M. C. Mullenix, “Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab,” J. Immunol. 178, 7467–7472 (2007).

Karakouz, T.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).

Kavokin, A.

A. Kavokin, I. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[CrossRef]

Kavokin, A. V.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Kawasaki, K.

A. V. Baryshev, K. Kawasaki, P. B. Lim, and M. Inoue, “Interplay of surface resonances in one-dimensional plasmonic magnetophotonic crystal slabs,” Phys. Rev. B 85, 205130 (2012).
[CrossRef]

Kivshar, Y. S.

A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006).
[CrossRef]

Konopsky, V. N.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).

V. N. Konopsky and E. V. Alieva, “A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index,” Biosens. Bioelectron. 25, 1212–1216 (2010).
[CrossRef]

V. N. Konopsky and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Phys. Rev. Lett. 97, 253904 (2006).
[CrossRef]

Koren, E.

A. Patton, M. C. Mullenix, S. J. Swanson, and E. Koren, “An acid dissociation bridging ELISA for detection of antibodies directed against therapeutic proteins in the presence of antigen,” J. Immunol. Methods 304, 189–195 (2005).
[CrossRef]

Ligler, F. S.

C. R. Taitt, J. P. Golden, Y. S. Shubin, L. C. Shriver-Lake, K. E. Sapsford, A. Rasooly, and F. S. Ligler, “A portable array biosensor for detecting multiple analytes in complex samples,” Microb. Ecol. 47, 175–185 (2004).
[CrossRef]

Lim, P. B.

A. V. Baryshev, K. Kawasaki, P. B. Lim, and M. Inoue, “Interplay of surface resonances in one-dimensional plasmonic magnetophotonic crystal slabs,” Phys. Rev. B 85, 205130 (2012).
[CrossRef]

Liotta, L. A.

J. D. Wulfkuhle, L. A. Liotta, and E. F. Petricoin, “Proteomic applications for the early detection of cancer,” Nat. Rev. Cancer 3, 267–275 (2003).

Lisyansky, A. A.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical tamm states in one-dimensional magnetophotonic structure,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef]

Lofgren, J. A.

J. A. Lofgren, S. Dhandapani, J. J. Pennucci, C. M. Abbott, D. T. Mytych, A. Kaliyaperumal, S. J. Swanson, and M. C. Mullenix, “Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab,” J. Immunol. 178, 7467–7472 (2007).

Malpuech, G.

A. Kavokin, I. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[CrossRef]

May, M. S.

W. M. Robertson and M. S. May, “Surface electromagnetic waves on one-dimensional photonic band gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
[CrossRef]

Merzlikin, A. M.

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Efficiency of optical sensing by a plasmonic photonic-crystal slab,” J. Phys. D 46, 125107 (2013).
[CrossRef]

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Plasmonic photonic-crystal slab as an ultrasensitive and robust optical biosensor,” Proc. SPIE 8632, 863209 (2013).
[CrossRef]

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical tamm states in one-dimensional magnetophotonic structure,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef]

Mullenix, M. C.

J. A. Lofgren, S. Dhandapani, J. J. Pennucci, C. M. Abbott, D. T. Mytych, A. Kaliyaperumal, S. J. Swanson, and M. C. Mullenix, “Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab,” J. Immunol. 178, 7467–7472 (2007).

A. Patton, M. C. Mullenix, S. J. Swanson, and E. Koren, “An acid dissociation bridging ELISA for detection of antibodies directed against therapeutic proteins in the presence of antigen,” J. Immunol. Methods 304, 189–195 (2005).
[CrossRef]

Mytych, D. T.

J. A. Lofgren, S. Dhandapani, J. J. Pennucci, C. M. Abbott, D. T. Mytych, A. Kaliyaperumal, S. J. Swanson, and M. C. Mullenix, “Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab,” J. Immunol. 178, 7467–7472 (2007).

Namdar, A.

A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006).
[CrossRef]

Nazirizadeh, Y.

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics 5, 601–616 (2012).
[CrossRef]

Nenninger, G. G.

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038–2046 (2002).
[CrossRef]

Nestor, P. J.

P. J. Nestor, P. Scheltens, and J. R. Hodges, “Advances in the early detection of Alzheimer’s disease,” Nat. Rev. Neurosci. 10, S34–S41 (2004).
[CrossRef]

Nikulin, A. A.

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103, 061112 (2013).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1991).

Pao, M. C.

Párová, L.

M. Piliarik, L. Párová, and J. Homola, “High-throughput SPR sensor for food safety,” Biosens. Bioelectron. 24, 1399–1404 (2009).
[CrossRef]

Patton, A.

A. Patton, M. C. Mullenix, S. J. Swanson, and E. Koren, “An acid dissociation bridging ELISA for detection of antibodies directed against therapeutic proteins in the presence of antigen,” J. Immunol. Methods 304, 189–195 (2005).
[CrossRef]

Pennucci, J. J.

J. A. Lofgren, S. Dhandapani, J. J. Pennucci, C. M. Abbott, D. T. Mytych, A. Kaliyaperumal, S. J. Swanson, and M. C. Mullenix, “Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab,” J. Immunol. 178, 7467–7472 (2007).

Petricoin, E. F.

J. D. Wulfkuhle, L. A. Liotta, and E. F. Petricoin, “Proteomic applications for the early detection of cancer,” Nat. Rev. Cancer 3, 267–275 (2003).

Piliarik, M.

M. Piliarik, L. Párová, and J. Homola, “High-throughput SPR sensor for food safety,” Biosens. Bioelectron. 24, 1399–1404 (2009).
[CrossRef]

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express 17, 16505–16517 (2009).
[CrossRef]

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24, 3430–3435 (2009).
[CrossRef]

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038–2046 (2002).
[CrossRef]

Quinn, J. G.

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuators, B 91, 266–274 (2003).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons (Springer, 1988).

Rasooly, A.

C. R. Taitt, J. P. Golden, Y. S. Shubin, L. C. Shriver-Lake, K. E. Sapsford, A. Rasooly, and F. S. Ligler, “A portable array biosensor for detecting multiple analytes in complex samples,” Microb. Ecol. 47, 175–185 (2004).
[CrossRef]

Robertson, W. M.

W. M. Robertson and M. S. May, “Surface electromagnetic waves on one-dimensional photonic band gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
[CrossRef]

Robinson, G.

G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators 29, 31–36 (1995).
[CrossRef]

Roger, G.

F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron. 24, 2100–2105 (2009).
[CrossRef]

Sapsford, K. E.

C. R. Taitt, J. P. Golden, Y. S. Shubin, L. C. Shriver-Lake, K. E. Sapsford, A. Rasooly, and F. S. Ligler, “A portable array biosensor for detecting multiple analytes in complex samples,” Microb. Ecol. 47, 175–185 (2004).
[CrossRef]

Scheltens, P.

P. J. Nestor, P. Scheltens, and J. R. Hodges, “Advances in the early detection of Alzheimer’s disease,” Nat. Rev. Neurosci. 10, S34–S41 (2004).
[CrossRef]

Sekatskii, S. K.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).

Shadrivov, I. V.

A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006).
[CrossRef]

Shelykh, I.

A. Kavokin, I. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[CrossRef]

Shelykh, I. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Shriver-Lake, L. C.

C. R. Taitt, J. P. Golden, Y. S. Shubin, L. C. Shriver-Lake, K. E. Sapsford, A. Rasooly, and F. S. Ligler, “A portable array biosensor for detecting multiple analytes in complex samples,” Microb. Ecol. 47, 175–185 (2004).
[CrossRef]

Shubin, Y. S.

C. R. Taitt, J. P. Golden, Y. S. Shubin, L. C. Shriver-Lake, K. E. Sapsford, A. Rasooly, and F. S. Ligler, “A portable array biosensor for detecting multiple analytes in complex samples,” Microb. Ecol. 47, 175–185 (2004).
[CrossRef]

Stemmler, I.

I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators, B 54, 98–105 (1999).
[CrossRef]

Stolz, L.

A. Szabo, L. Stolz, and R. Granzow, “Surface plasmon resonance and its use in biomolecular interaction analysis (BIA),” Curr. Opin. Struct. Biol. 5, 699–705 (1995).
[CrossRef]

Swanson, S. J.

J. A. Lofgren, S. Dhandapani, J. J. Pennucci, C. M. Abbott, D. T. Mytych, A. Kaliyaperumal, S. J. Swanson, and M. C. Mullenix, “Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab,” J. Immunol. 178, 7467–7472 (2007).

A. Patton, M. C. Mullenix, S. J. Swanson, and E. Koren, “An acid dissociation bridging ELISA for detection of antibodies directed against therapeutic proteins in the presence of antigen,” J. Immunol. Methods 304, 189–195 (2005).
[CrossRef]

Szabo, A.

A. Szabo, L. Stolz, and R. Granzow, “Surface plasmon resonance and its use in biomolecular interaction analysis (BIA),” Curr. Opin. Struct. Biol. 5, 699–705 (1995).
[CrossRef]

Taitt, C. R.

C. R. Taitt, J. P. Golden, Y. S. Shubin, L. C. Shriver-Lake, K. E. Sapsford, A. Rasooly, and F. S. Ligler, “A portable array biosensor for detecting multiple analytes in complex samples,” Microb. Ecol. 47, 175–185 (2004).
[CrossRef]

Thirstrup, C.

C. Thirstrup and W. Zong, “Data analysis for surface plasmon resonance sensors using dynamic baseline algorithm,” Sens. Actuators, B 106, 796–802 (2005).
[CrossRef]

Threm, D.

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics 5, 601–616 (2012).
[CrossRef]

Tichý, I.

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24, 3430–3435 (2009).
[CrossRef]

Vala, M.

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24, 3430–3435 (2009).
[CrossRef]

Vicario, C.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).

Villa, F.

F. Villa and J. A. Gaspar-Armenta, “Electromagnetic surface waves: photonic crystal-photonic crystal interface,” Opt. Commun. 223, 109–115 (2003).
[CrossRef]

Vinogradov, A. P.

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical tamm states in one-dimensional magnetophotonic structure,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef]

Wu, C. M.

Wulfkuhle, J. D.

J. D. Wulfkuhle, L. A. Liotta, and E. F. Petricoin, “Proteomic applications for the early detection of cancer,” Nat. Rev. Cancer 3, 267–275 (2003).

Yariv, A.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54, 3–15 (1999).
[CrossRef]

Yeh, P.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
[CrossRef]

Zong, W.

C. Thirstrup and W. Zong, “Data analysis for surface plasmon resonance sensors using dynamic baseline algorithm,” Sens. Actuators, B 106, 796–802 (2005).
[CrossRef]

Appl. Phys. Lett. (4)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

W. M. Robertson and M. S. May, “Surface electromagnetic waves on one-dimensional photonic band gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
[CrossRef]

A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006).
[CrossRef]

B. I. Afinogenov, V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, “Observation of hybrid state of Tamm and surface plasmon-polaritons in one-dimensional photonic crystals,” Appl. Phys. Lett. 103, 061112 (2013).
[CrossRef]

Biosens. Bioelectron. (4)

V. N. Konopsky and E. V. Alieva, “A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index,” Biosens. Bioelectron. 25, 1212–1216 (2010).
[CrossRef]

F. Bardin, A. Bellemain, G. Roger, and M. Canva, “Surface plasmon resonance spectro-imaging sensor for biomolecular surface interaction characterization,” Biosens. Bioelectron. 24, 2100–2105 (2009).
[CrossRef]

M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24, 3430–3435 (2009).
[CrossRef]

M. Piliarik, L. Párová, and J. Homola, “High-throughput SPR sensor for food safety,” Biosens. Bioelectron. 24, 1399–1404 (2009).
[CrossRef]

Curr. Opin. Struct. Biol. (1)

A. Szabo, L. Stolz, and R. Granzow, “Surface plasmon resonance and its use in biomolecular interaction analysis (BIA),” Curr. Opin. Struct. Biol. 5, 699–705 (1995).
[CrossRef]

J. Biophotonics (1)

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics 5, 601–616 (2012).
[CrossRef]

J. Immunol. (1)

J. A. Lofgren, S. Dhandapani, J. J. Pennucci, C. M. Abbott, D. T. Mytych, A. Kaliyaperumal, S. J. Swanson, and M. C. Mullenix, “Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab,” J. Immunol. 178, 7467–7472 (2007).

J. Immunol. Methods (1)

A. Patton, M. C. Mullenix, S. J. Swanson, and E. Koren, “An acid dissociation bridging ELISA for detection of antibodies directed against therapeutic proteins in the presence of antigen,” J. Immunol. Methods 304, 189–195 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. D (1)

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Efficiency of optical sensing by a plasmonic photonic-crystal slab,” J. Phys. D 46, 125107 (2013).
[CrossRef]

Meas. Sci. Technol. (1)

G. G. Nenninger, M. Piliarik, and J. Homola, “Data analysis for optical sensors based on spectroscopy of surface plasmons,” Meas. Sci. Technol. 13, 2038–2046 (2002).
[CrossRef]

Microb. Ecol. (1)

C. R. Taitt, J. P. Golden, Y. S. Shubin, L. C. Shriver-Lake, K. E. Sapsford, A. Rasooly, and F. S. Ligler, “A portable array biosensor for detecting multiple analytes in complex samples,” Microb. Ecol. 47, 175–185 (2004).
[CrossRef]

Nat. Rev. Cancer (1)

J. D. Wulfkuhle, L. A. Liotta, and E. F. Petricoin, “Proteomic applications for the early detection of cancer,” Nat. Rev. Cancer 3, 267–275 (2003).

Nat. Rev. Neurosci. (1)

P. J. Nestor, P. Scheltens, and J. R. Hodges, “Advances in the early detection of Alzheimer’s disease,” Nat. Rev. Neurosci. 10, S34–S41 (2004).
[CrossRef]

Opt. Commun. (1)

F. Villa and J. A. Gaspar-Armenta, “Electromagnetic surface waves: photonic crystal-photonic crystal interface,” Opt. Commun. 223, 109–115 (2003).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (3)

A. Kavokin, I. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[CrossRef]

A. V. Baryshev, K. Kawasaki, P. B. Lim, and M. Inoue, “Interplay of surface resonances in one-dimensional plasmonic magnetophotonic crystal slabs,” Phys. Rev. B 85, 205130 (2012).
[CrossRef]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

V. N. Konopsky and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Phys. Rev. Lett. 97, 253904 (2006).
[CrossRef]

T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical tamm states in one-dimensional magnetophotonic structure,” Phys. Rev. Lett. 101, 113902 (2008).
[CrossRef]

Proc. SPIE (1)

A. V. Baryshev, A. M. Merzlikin, and M. Inoue, “Plasmonic photonic-crystal slab as an ultrasensitive and robust optical biosensor,” Proc. SPIE 8632, 863209 (2013).
[CrossRef]

Sens. Actuators (1)

G. Robinson, “The commercial development of planar optical biosensors,” Sens. Actuators 29, 31–36 (1995).
[CrossRef]

Sens. Actuators, B (4)

I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. Actuators, B 54, 98–105 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators, B 54, 3–15 (1999).
[CrossRef]

C. Thirstrup and W. Zong, “Data analysis for surface plasmon resonance sensors using dynamic baseline algorithm,” Sens. Actuators, B 106, 796–802 (2005).
[CrossRef]

T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser, and J. L. Elkind, “Performance of the Spreeta 2000 integrated surface plasmon resonance affinity sensor,” Sens. Actuators, B 91, 266–274 (2003).
[CrossRef]

Sensors (1)

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).

Other (4)

J. Homola, Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors (Springer-Verlag, 2006).

H. Raether, Surface Plasmons (Springer, 1988).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1991).

Landolt-Bornstein Database ( http://www.springermaterials.com ).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Geometry of analysis with a schematic distribution of the E-field for a resonant wave inside a PPhC slab. (b) Curves 1–3 show p-polarized reflection spectra of (Ta2O5/SiO2)10PhC (dashed line), (Ta2O5/SiO2)10/Au/SiO2 PPhC slab comprising 10-nm-thick Au layer (solid line), and (Ta2O5/SiO2)10/Au/SiO2PhC slab having 40-nm-thick Au layer (circles). Spectra plotted in (b) were calculated for the angle of incidence α=63°.

Fig. 2.
Fig. 2.

Shifts of the SWR peak in reflection spectra of PPhC-based sensors comprising an Au layer with thicknesses from 5, 10, and 15 nm (from left to right): thin lines (n=1.33) and thick lines (n+Δn=1.331). Spectra are calculated for α=61.8°.

Fig. 3.
Fig. 3.

Reflected light intensity dependent on the angle of incidence for Ag, Cu, Cr, and Ni single films (solid lines). Wavelength of incident p-polarized light was 800 nm. Spectra 1–6 correspond to D=5, 10, 20, 30, 40, and 50 nm. S-polarized spectra of metal films are given by dashed lines: Ag (50 nm), Cu (50 nm), Cr (20 nm), and Ni (20 nm).

Fig. 4.
Fig. 4.

Shifts of the SWR peak in reflection spectra of the PPhC-based sensors comprising (a) a Cu layer and (b) a Ni layer with different thicknesses: pairs of lines correspond to a fluctuation of the refractive index of water, Δn=103. Spectra are calculated for α=61.8°.

Fig. 5.
Fig. 5.

Maximum response of PPhC-based sensors made of different metals versus the angle of incidence. For reference, the black line shows the response of an SPR sensor (single 40-nm-thick Au film) and the squares illustrate the response of a (Ta2O5/SiO2)10 multilayer-based SWR sensor with absorption of k=103 homogeneously introduced into each layer.

Metrics