Abstract

To expand and investigate the potential of spectral imaging, we developed a portable multispectral system using light-emitting diodes. This system recovers spectral information from the UV to the near IR over a large area using two different image sensors synchronized with 23 bands of illumination. The system was assessed for spectral reconstruction through simulations and experimental measurements by means of two methods of spectral reconstruction and three different evaluation metrics. The results over a Macbeth ColorChecker chart and other samples, including pigments usually employed in art paintings, are compared and discussed. The portable multispectral system using LEDs constitutes a cost-effective and versatile method for spectral imaging.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Weng, ed., Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications (CRC Press, 2011), p. 610.
  2. R. Shrestha, J. Y. Hardeberg, and A. Mansouri, “One-shot multispectral color imaging with a stereo camera,” Proc. SPIE 7876, 787609 (2011).
    [CrossRef]
  3. N. L. Everdell, I. B. Styles, A. S. Calcagni, J. Gibson, J. C. Hebden, and E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum. 81, 093706 (2010).
    [CrossRef]
  4. M. B. Bouchard, B. R. Chen, S. Burgess, and E. M. C. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17, 15670–15678 (2009).
    [CrossRef]
  5. M. Vilaseca, R. Mercadal, J. Pujol, M. Arjona, M. de Lasarte, R. Huertas, M. Melgosa, and F. H. Imai, “Characterization of the human iris spectral reflectance with a multispectral imaging system,” Appl. Opt. 47, 5622–5630 (2008).
    [CrossRef]
  6. A. Basiri, M. Nabili, S. Mathews, A. Libin, S. Groah, H. J. Noordmans, and J. C. Ramella-Roman, “Use of a multi-spectral camera in the characterization of skin wounds,” Opt. Express 18, 3244–3257 (2010).
    [CrossRef]
  7. V. C. Paquit, K. W. Tobin, J. R. Price, and F. Mèriaudeau, “3D and multispectral imaging for subcutaneous veins detection,” Opt. Express 17, 11360–11365 (2009).
    [CrossRef]
  8. M. Kubik, “Hyperspectral imaging: a new technique for the non-invasive study of artworks,” in Physical Techniques in the Study of Art, Archaeology and Cultural Heritage, D. Creagh and D. Bradley, eds. (Elsevier, 2007), Vol. 2, pp. 199–259.
  9. R. Padoan, T. A. G. Steemers, M. E. Klein, B. J. Aalderink, and G. de Bruin, “Quantitative hyperspectral imaging of historical documents: technique and applications,” in 9th International Conference on NDT of Art (2008), pp. 25–30.
  10. E. Marengo, M. Manfredi, O. Zerbinati, E. Robotti, E. Mazzucco, F. Gosetti, G. Bearman, F. France, and P. Shor, “Technique based on LED multispectral imaging and multivariate analysis for monitoring the conservation state of the Dead Sea Scroll,” Anal. Chem. 83, 6609–6618 (2011).
    [CrossRef]
  11. R. Lu and Y. Peng, “Development of a multispectral imaging prototype for real-time detection of apple fruit firmness,” Opt. Eng. 46, 123201 (2007).
    [CrossRef]
  12. D. F. Barbin, G. ElMasry, D.-W. Sun, and P. Allen, “Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging,” Anal. Chim. Acta 719, 30–42 (2012).
    [CrossRef]
  13. C. Bonifazzi, P. Carcagnì, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, and D. Bencini, “A scanning device for VIS–NIR multispectral imaging of paintings,” J. Opt. A Pure Appl. Opt. 10, 064011 (2008).
  14. M. Vilaseca, J. Pujol, M. Arjona, and M. de Lasarte, “Multispectral system for reflectance reconstruction in the near-infrared region,” Appl. Opt. 45, 4241–4253 (2006).
    [CrossRef]
  15. L. Kong, D. Yi, S. Sprigle, F. Wang, C. Wang, F. Liu, A. Adibi, and R. Tummala, “Single sensor that outputs narrowband multispectral images,” J. Biomed. Opt. 15, 010502 (2010).
    [CrossRef]
  16. S. Mathews, “Design and fabrication of a low-cost, multispectral imaging system,” Appl. Opt. 47, F71–F76 (2008).
    [CrossRef]
  17. J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002).
    [CrossRef]
  18. C. D. Tran, “Principles, instrumentation, and applications of infrared multispectral imaging, an overview,” Anal.Lett. Part B 38, 735–752 (2005).
  19. M. Brydegaard, A. Merdasa, H. Jayaweera, J. Ålebring, and S. Svanberg, “Versatile multispectral microscope based on light emitting diodes,” Rev. Sci. Instrum. 82, 123106 (2011).
    [CrossRef]
  20. D. Kapsokalyvas, N. Bruscino, D. Alfieri, V. de Giorgi, G. Cannarozzo, R. Cicchi, D. Massi, N. Pimpinelli, and F. S. Pavone, “Spectral morphological analysis of skin lesions with a polarization multispectral dermoscope,” Opt. Express 21, 4826–4840 (2013).
    [CrossRef]
  21. L. Fauch, E. Nippolainen, and A. A. Kamshilin, “Accuracy of the reflectance spectrum recovery in a light-emitting diode-based multispectral imaging system,” Opt. Eng. 51, 053201 (2012).
    [CrossRef]
  22. J. Li and R. K. Y. Chan, “Toward a UV-visible-near-infrared hyperspectral imaging platform for fast multiplex reflection spectroscopy,” Opt. Lett. 35, 3330–3332 (2010).
    [CrossRef]
  23. J. K. Delaney, J. G. Zeibel, M. Thoury, R. Littleton, M. Palmer, K. M. Morales, E. R. de la Rie, and A. Hoenigswald, “Visible and infrared imaging spectroscopy of Picasso’s Harlequin musician: mapping and identification of artist materials in situ,” Appl. Spectrosc. 64, 584–594 (2010).
    [CrossRef]
  24. H.-L. Shen, J. H. Xin, and S.-J. Shao, “Improved reflectance reconstruction for multispectral imaging by combining different techniques,” Opt. Express 15, 5531–5536 (2007).
    [CrossRef]
  25. H. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. 26, 508–517 (1978).
    [CrossRef]
  26. J. Kiusalaas, Numerical Methods in Engineering with MATLAB (Cambridge University, 2005).
  27. M. Melgosa, A. Trémeau, and G. Cui, “Colour difference evaluation,” in Advanced Color Image Processing and Analysis, C. Fernandez-Maloigne, ed. (Springer, 2013), pp. 65–85.
  28. G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations,” Color Res. Appl. 30, 21–30 (2005).
    [CrossRef]
  29. M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
    [CrossRef]
  30. J. Hernández-Andrés, J. Romero, and R. L. Lee, “Colorimetric and spectroradiometric characteristics of narrow-field-of-view clear skylight in Granada, Spain.,” J. Opt. Soc. Am. A 18, 412–420 (2001).
    [CrossRef]
  31. F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparative study of metrics for spectral match quality,” in Proceedings of the First European Conference on Colour in Graphics, Imaging and Vision (2002), pp. 492–496.
  32. A. Kimachi, H. Ikuta, Y. Fujiwara, M. Masumoto, and H. Matsuyama, “Spectral matching imager using amplitude-modulation-coded multispectral light-emitting diode illumination,” Opt. Eng. 43, 975–985 (2004).
    [CrossRef]
  33. T. Nägele, “White light LEDs—importance of accepted measurement standards,” LED Prof. Rev. (10) 22–26 (2008).
  34. Ó. Martínez, M. Vilaseca, M. Arjona, C. Pizarro, and J. Pujol, “Use of light-emitting diodes in multispectral systems design: variability of spectral power distribution according to angle and time of usage,” J. Imaging Sci. Technol. 55, 050501 (2011).
    [CrossRef]
  35. M. de Lasarte, J. Pujol, M. Arjona, and M. Vilaseca, “Optimized algorithm for the spatial nonuniformity correction of an imaging system based on a charge-coupled device color camera,” Appl. Opt. 46, 167–174 (2007).
    [CrossRef]
  36. N. Shimano, K. Terai, and M. Hironaga, “Recovery of spectral reflectances of objects being imaged by multispectral cameras,” J. Opt. Soc. Am. A 24, 3211–3219 (2007).
    [CrossRef]
  37. R. Shrestha, A. Mansouri, and J. Y. Hardeberg, “Multispectral imaging using a stereo camera: concept, design and assessment,” EURASIP J. Adv. Signal Process. 2011, 57–71 (2011).
    [CrossRef]
  38. K. Barnard and B. Funt, “Camera characterization for color research,” Color Res. Appl. 27, 152–163 (2002).
    [CrossRef]
  39. J. Sarvaiya, S. Patnaik, and K. Kothari, “Image registration using log polar transform and phase correlation to recover higher scale,” J. Pattern Recogn. Res. 7, 90–105 (2012).
  40. R. C. Hardie, M. M. Hayat, E. Armstrong, and B. Yasuda, “Scene-based nonuniformity correction with video sequences and registration,” Appl. Opt. 39, 1241–1250 (2000).
    [CrossRef]

2013 (1)

2012 (3)

J. Sarvaiya, S. Patnaik, and K. Kothari, “Image registration using log polar transform and phase correlation to recover higher scale,” J. Pattern Recogn. Res. 7, 90–105 (2012).

D. F. Barbin, G. ElMasry, D.-W. Sun, and P. Allen, “Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging,” Anal. Chim. Acta 719, 30–42 (2012).
[CrossRef]

L. Fauch, E. Nippolainen, and A. A. Kamshilin, “Accuracy of the reflectance spectrum recovery in a light-emitting diode-based multispectral imaging system,” Opt. Eng. 51, 053201 (2012).
[CrossRef]

2011 (5)

Ó. Martínez, M. Vilaseca, M. Arjona, C. Pizarro, and J. Pujol, “Use of light-emitting diodes in multispectral systems design: variability of spectral power distribution according to angle and time of usage,” J. Imaging Sci. Technol. 55, 050501 (2011).
[CrossRef]

R. Shrestha, A. Mansouri, and J. Y. Hardeberg, “Multispectral imaging using a stereo camera: concept, design and assessment,” EURASIP J. Adv. Signal Process. 2011, 57–71 (2011).
[CrossRef]

M. Brydegaard, A. Merdasa, H. Jayaweera, J. Ålebring, and S. Svanberg, “Versatile multispectral microscope based on light emitting diodes,” Rev. Sci. Instrum. 82, 123106 (2011).
[CrossRef]

R. Shrestha, J. Y. Hardeberg, and A. Mansouri, “One-shot multispectral color imaging with a stereo camera,” Proc. SPIE 7876, 787609 (2011).
[CrossRef]

E. Marengo, M. Manfredi, O. Zerbinati, E. Robotti, E. Mazzucco, F. Gosetti, G. Bearman, F. France, and P. Shor, “Technique based on LED multispectral imaging and multivariate analysis for monitoring the conservation state of the Dead Sea Scroll,” Anal. Chem. 83, 6609–6618 (2011).
[CrossRef]

2010 (5)

2009 (2)

2008 (3)

2007 (4)

2006 (1)

2005 (2)

C. D. Tran, “Principles, instrumentation, and applications of infrared multispectral imaging, an overview,” Anal.Lett. Part B 38, 735–752 (2005).

G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations,” Color Res. Appl. 30, 21–30 (2005).
[CrossRef]

2004 (1)

A. Kimachi, H. Ikuta, Y. Fujiwara, M. Masumoto, and H. Matsuyama, “Spectral matching imager using amplitude-modulation-coded multispectral light-emitting diode illumination,” Opt. Eng. 43, 975–985 (2004).
[CrossRef]

2002 (2)

K. Barnard and B. Funt, “Camera characterization for color research,” Color Res. Appl. 27, 152–163 (2002).
[CrossRef]

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002).
[CrossRef]

2001 (2)

2000 (1)

1978 (1)

H. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. 26, 508–517 (1978).
[CrossRef]

Aalderink, B. J.

R. Padoan, T. A. G. Steemers, M. E. Klein, B. J. Aalderink, and G. de Bruin, “Quantitative hyperspectral imaging of historical documents: technique and applications,” in 9th International Conference on NDT of Art (2008), pp. 25–30.

Adibi, A.

L. Kong, D. Yi, S. Sprigle, F. Wang, C. Wang, F. Liu, A. Adibi, and R. Tummala, “Single sensor that outputs narrowband multispectral images,” J. Biomed. Opt. 15, 010502 (2010).
[CrossRef]

Ålebring, J.

M. Brydegaard, A. Merdasa, H. Jayaweera, J. Ålebring, and S. Svanberg, “Versatile multispectral microscope based on light emitting diodes,” Rev. Sci. Instrum. 82, 123106 (2011).
[CrossRef]

Alfieri, D.

Allen, P.

D. F. Barbin, G. ElMasry, D.-W. Sun, and P. Allen, “Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging,” Anal. Chim. Acta 719, 30–42 (2012).
[CrossRef]

Andrews, H.

H. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. 26, 508–517 (1978).
[CrossRef]

Arjona, M.

Armstrong, E.

Barbin, D. F.

D. F. Barbin, G. ElMasry, D.-W. Sun, and P. Allen, “Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging,” Anal. Chim. Acta 719, 30–42 (2012).
[CrossRef]

Barnard, K.

K. Barnard and B. Funt, “Camera characterization for color research,” Color Res. Appl. 27, 152–163 (2002).
[CrossRef]

Basiri, A.

Bearman, G.

E. Marengo, M. Manfredi, O. Zerbinati, E. Robotti, E. Mazzucco, F. Gosetti, G. Bearman, F. France, and P. Shor, “Technique based on LED multispectral imaging and multivariate analysis for monitoring the conservation state of the Dead Sea Scroll,” Anal. Chem. 83, 6609–6618 (2011).
[CrossRef]

Bencini, D.

C. Bonifazzi, P. Carcagnì, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, and D. Bencini, “A scanning device for VIS–NIR multispectral imaging of paintings,” J. Opt. A Pure Appl. Opt. 10, 064011 (2008).

Berns, R. S.

F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparative study of metrics for spectral match quality,” in Proceedings of the First European Conference on Colour in Graphics, Imaging and Vision (2002), pp. 492–496.

Bonifazzi, C.

C. Bonifazzi, P. Carcagnì, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, and D. Bencini, “A scanning device for VIS–NIR multispectral imaging of paintings,” J. Opt. A Pure Appl. Opt. 10, 064011 (2008).

Bouchard, M. B.

Brettel, H.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002).
[CrossRef]

Bruscino, N.

Brydegaard, M.

M. Brydegaard, A. Merdasa, H. Jayaweera, J. Ålebring, and S. Svanberg, “Versatile multispectral microscope based on light emitting diodes,” Rev. Sci. Instrum. 82, 123106 (2011).
[CrossRef]

Burgess, S.

Calcagni, A. S.

N. L. Everdell, I. B. Styles, A. S. Calcagni, J. Gibson, J. C. Hebden, and E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum. 81, 093706 (2010).
[CrossRef]

Cannarozzo, G.

Carcagnì, P.

C. Bonifazzi, P. Carcagnì, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, and D. Bencini, “A scanning device for VIS–NIR multispectral imaging of paintings,” J. Opt. A Pure Appl. Opt. 10, 064011 (2008).

Chan, R. K. Y.

Chen, B. R.

Cicchi, R.

Claridge, E.

N. L. Everdell, I. B. Styles, A. S. Calcagni, J. Gibson, J. C. Hebden, and E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum. 81, 093706 (2010).
[CrossRef]

Cui, G.

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

M. Melgosa, A. Trémeau, and G. Cui, “Colour difference evaluation,” in Advanced Color Image Processing and Analysis, C. Fernandez-Maloigne, ed. (Springer, 2013), pp. 65–85.

Dalal, E. N.

G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations,” Color Res. Appl. 30, 21–30 (2005).
[CrossRef]

de Bruin, G.

R. Padoan, T. A. G. Steemers, M. E. Klein, B. J. Aalderink, and G. de Bruin, “Quantitative hyperspectral imaging of historical documents: technique and applications,” in 9th International Conference on NDT of Art (2008), pp. 25–30.

de Giorgi, V.

de la Rie, E. R.

de Lasarte, M.

Delaney, J. K.

ElMasry, G.

D. F. Barbin, G. ElMasry, D.-W. Sun, and P. Allen, “Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging,” Anal. Chim. Acta 719, 30–42 (2012).
[CrossRef]

Everdell, N. L.

N. L. Everdell, I. B. Styles, A. S. Calcagni, J. Gibson, J. C. Hebden, and E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum. 81, 093706 (2010).
[CrossRef]

Fauch, L.

L. Fauch, E. Nippolainen, and A. A. Kamshilin, “Accuracy of the reflectance spectrum recovery in a light-emitting diode-based multispectral imaging system,” Opt. Eng. 51, 053201 (2012).
[CrossRef]

Fontana, R.

C. Bonifazzi, P. Carcagnì, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, and D. Bencini, “A scanning device for VIS–NIR multispectral imaging of paintings,” J. Opt. A Pure Appl. Opt. 10, 064011 (2008).

France, F.

E. Marengo, M. Manfredi, O. Zerbinati, E. Robotti, E. Mazzucco, F. Gosetti, G. Bearman, F. France, and P. Shor, “Technique based on LED multispectral imaging and multivariate analysis for monitoring the conservation state of the Dead Sea Scroll,” Anal. Chem. 83, 6609–6618 (2011).
[CrossRef]

Fujiwara, Y.

A. Kimachi, H. Ikuta, Y. Fujiwara, M. Masumoto, and H. Matsuyama, “Spectral matching imager using amplitude-modulation-coded multispectral light-emitting diode illumination,” Opt. Eng. 43, 975–985 (2004).
[CrossRef]

Funt, B.

K. Barnard and B. Funt, “Camera characterization for color research,” Color Res. Appl. 27, 152–163 (2002).
[CrossRef]

Gibson, J.

N. L. Everdell, I. B. Styles, A. S. Calcagni, J. Gibson, J. C. Hebden, and E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum. 81, 093706 (2010).
[CrossRef]

Gosetti, F.

E. Marengo, M. Manfredi, O. Zerbinati, E. Robotti, E. Mazzucco, F. Gosetti, G. Bearman, F. France, and P. Shor, “Technique based on LED multispectral imaging and multivariate analysis for monitoring the conservation state of the Dead Sea Scroll,” Anal. Chem. 83, 6609–6618 (2011).
[CrossRef]

Greco, M.

C. Bonifazzi, P. Carcagnì, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, and D. Bencini, “A scanning device for VIS–NIR multispectral imaging of paintings,” J. Opt. A Pure Appl. Opt. 10, 064011 (2008).

Groah, S.

Hardeberg, J. Y.

R. Shrestha, A. Mansouri, and J. Y. Hardeberg, “Multispectral imaging using a stereo camera: concept, design and assessment,” EURASIP J. Adv. Signal Process. 2011, 57–71 (2011).
[CrossRef]

R. Shrestha, J. Y. Hardeberg, and A. Mansouri, “One-shot multispectral color imaging with a stereo camera,” Proc. SPIE 7876, 787609 (2011).
[CrossRef]

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002).
[CrossRef]

Hardie, R. C.

Hayat, M. M.

Hebden, J. C.

N. L. Everdell, I. B. Styles, A. S. Calcagni, J. Gibson, J. C. Hebden, and E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum. 81, 093706 (2010).
[CrossRef]

Hernández-Andrés, J.

Hillman, E. M. C.

Hironaga, M.

Hoenigswald, A.

Huertas, R.

Ikuta, H.

A. Kimachi, H. Ikuta, Y. Fujiwara, M. Masumoto, and H. Matsuyama, “Spectral matching imager using amplitude-modulation-coded multispectral light-emitting diode illumination,” Opt. Eng. 43, 975–985 (2004).
[CrossRef]

Imai, F. H.

M. Vilaseca, R. Mercadal, J. Pujol, M. Arjona, M. de Lasarte, R. Huertas, M. Melgosa, and F. H. Imai, “Characterization of the human iris spectral reflectance with a multispectral imaging system,” Appl. Opt. 47, 5622–5630 (2008).
[CrossRef]

F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparative study of metrics for spectral match quality,” in Proceedings of the First European Conference on Colour in Graphics, Imaging and Vision (2002), pp. 492–496.

Jayaweera, H.

M. Brydegaard, A. Merdasa, H. Jayaweera, J. Ålebring, and S. Svanberg, “Versatile multispectral microscope based on light emitting diodes,” Rev. Sci. Instrum. 82, 123106 (2011).
[CrossRef]

Kamshilin, A. A.

L. Fauch, E. Nippolainen, and A. A. Kamshilin, “Accuracy of the reflectance spectrum recovery in a light-emitting diode-based multispectral imaging system,” Opt. Eng. 51, 053201 (2012).
[CrossRef]

Kapsokalyvas, D.

Kimachi, A.

A. Kimachi, H. Ikuta, Y. Fujiwara, M. Masumoto, and H. Matsuyama, “Spectral matching imager using amplitude-modulation-coded multispectral light-emitting diode illumination,” Opt. Eng. 43, 975–985 (2004).
[CrossRef]

Kiusalaas, J.

J. Kiusalaas, Numerical Methods in Engineering with MATLAB (Cambridge University, 2005).

Klein, M. E.

R. Padoan, T. A. G. Steemers, M. E. Klein, B. J. Aalderink, and G. de Bruin, “Quantitative hyperspectral imaging of historical documents: technique and applications,” in 9th International Conference on NDT of Art (2008), pp. 25–30.

Kong, L.

L. Kong, D. Yi, S. Sprigle, F. Wang, C. Wang, F. Liu, A. Adibi, and R. Tummala, “Single sensor that outputs narrowband multispectral images,” J. Biomed. Opt. 15, 010502 (2010).
[CrossRef]

Kothari, K.

J. Sarvaiya, S. Patnaik, and K. Kothari, “Image registration using log polar transform and phase correlation to recover higher scale,” J. Pattern Recogn. Res. 7, 90–105 (2012).

Kubik, M.

M. Kubik, “Hyperspectral imaging: a new technique for the non-invasive study of artworks,” in Physical Techniques in the Study of Art, Archaeology and Cultural Heritage, D. Creagh and D. Bradley, eds. (Elsevier, 2007), Vol. 2, pp. 199–259.

Lee, R. L.

Li, J.

Libin, A.

Littleton, R.

Liu, F.

L. Kong, D. Yi, S. Sprigle, F. Wang, C. Wang, F. Liu, A. Adibi, and R. Tummala, “Single sensor that outputs narrowband multispectral images,” J. Biomed. Opt. 15, 010502 (2010).
[CrossRef]

Lu, R.

R. Lu and Y. Peng, “Development of a multispectral imaging prototype for real-time detection of apple fruit firmness,” Opt. Eng. 46, 123201 (2007).
[CrossRef]

Luo, M. R.

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

Manfredi, M.

E. Marengo, M. Manfredi, O. Zerbinati, E. Robotti, E. Mazzucco, F. Gosetti, G. Bearman, F. France, and P. Shor, “Technique based on LED multispectral imaging and multivariate analysis for monitoring the conservation state of the Dead Sea Scroll,” Anal. Chem. 83, 6609–6618 (2011).
[CrossRef]

Mansouri, A.

R. Shrestha, A. Mansouri, and J. Y. Hardeberg, “Multispectral imaging using a stereo camera: concept, design and assessment,” EURASIP J. Adv. Signal Process. 2011, 57–71 (2011).
[CrossRef]

R. Shrestha, J. Y. Hardeberg, and A. Mansouri, “One-shot multispectral color imaging with a stereo camera,” Proc. SPIE 7876, 787609 (2011).
[CrossRef]

Marengo, E.

E. Marengo, M. Manfredi, O. Zerbinati, E. Robotti, E. Mazzucco, F. Gosetti, G. Bearman, F. France, and P. Shor, “Technique based on LED multispectral imaging and multivariate analysis for monitoring the conservation state of the Dead Sea Scroll,” Anal. Chem. 83, 6609–6618 (2011).
[CrossRef]

Martínez, Ó.

Ó. Martínez, M. Vilaseca, M. Arjona, C. Pizarro, and J. Pujol, “Use of light-emitting diodes in multispectral systems design: variability of spectral power distribution according to angle and time of usage,” J. Imaging Sci. Technol. 55, 050501 (2011).
[CrossRef]

Massi, D.

Mastroianni, M.

C. Bonifazzi, P. Carcagnì, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, and D. Bencini, “A scanning device for VIS–NIR multispectral imaging of paintings,” J. Opt. A Pure Appl. Opt. 10, 064011 (2008).

Masumoto, M.

A. Kimachi, H. Ikuta, Y. Fujiwara, M. Masumoto, and H. Matsuyama, “Spectral matching imager using amplitude-modulation-coded multispectral light-emitting diode illumination,” Opt. Eng. 43, 975–985 (2004).
[CrossRef]

Materazzi, M.

C. Bonifazzi, P. Carcagnì, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, and D. Bencini, “A scanning device for VIS–NIR multispectral imaging of paintings,” J. Opt. A Pure Appl. Opt. 10, 064011 (2008).

Mathews, S.

Matsuyama, H.

A. Kimachi, H. Ikuta, Y. Fujiwara, M. Masumoto, and H. Matsuyama, “Spectral matching imager using amplitude-modulation-coded multispectral light-emitting diode illumination,” Opt. Eng. 43, 975–985 (2004).
[CrossRef]

Mazzucco, E.

E. Marengo, M. Manfredi, O. Zerbinati, E. Robotti, E. Mazzucco, F. Gosetti, G. Bearman, F. France, and P. Shor, “Technique based on LED multispectral imaging and multivariate analysis for monitoring the conservation state of the Dead Sea Scroll,” Anal. Chem. 83, 6609–6618 (2011).
[CrossRef]

Melgosa, M.

M. Vilaseca, R. Mercadal, J. Pujol, M. Arjona, M. de Lasarte, R. Huertas, M. Melgosa, and F. H. Imai, “Characterization of the human iris spectral reflectance with a multispectral imaging system,” Appl. Opt. 47, 5622–5630 (2008).
[CrossRef]

M. Melgosa, A. Trémeau, and G. Cui, “Colour difference evaluation,” in Advanced Color Image Processing and Analysis, C. Fernandez-Maloigne, ed. (Springer, 2013), pp. 65–85.

Mercadal, R.

Merdasa, A.

M. Brydegaard, A. Merdasa, H. Jayaweera, J. Ålebring, and S. Svanberg, “Versatile multispectral microscope based on light emitting diodes,” Rev. Sci. Instrum. 82, 123106 (2011).
[CrossRef]

Mèriaudeau, F.

Morales, K. M.

Nabili, M.

Nägele, T.

T. Nägele, “White light LEDs—importance of accepted measurement standards,” LED Prof. Rev. (10) 22–26 (2008).

Nippolainen, E.

L. Fauch, E. Nippolainen, and A. A. Kamshilin, “Accuracy of the reflectance spectrum recovery in a light-emitting diode-based multispectral imaging system,” Opt. Eng. 51, 053201 (2012).
[CrossRef]

Noordmans, H. J.

Padoan, R.

R. Padoan, T. A. G. Steemers, M. E. Klein, B. J. Aalderink, and G. de Bruin, “Quantitative hyperspectral imaging of historical documents: technique and applications,” in 9th International Conference on NDT of Art (2008), pp. 25–30.

Palmer, M.

Pampaloni, E.

C. Bonifazzi, P. Carcagnì, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, and D. Bencini, “A scanning device for VIS–NIR multispectral imaging of paintings,” J. Opt. A Pure Appl. Opt. 10, 064011 (2008).

Paquit, V. C.

Patnaik, S.

J. Sarvaiya, S. Patnaik, and K. Kothari, “Image registration using log polar transform and phase correlation to recover higher scale,” J. Pattern Recogn. Res. 7, 90–105 (2012).

Pavone, F. S.

Peng, Y.

R. Lu and Y. Peng, “Development of a multispectral imaging prototype for real-time detection of apple fruit firmness,” Opt. Eng. 46, 123201 (2007).
[CrossRef]

Pezzati, L.

C. Bonifazzi, P. Carcagnì, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, and D. Bencini, “A scanning device for VIS–NIR multispectral imaging of paintings,” J. Opt. A Pure Appl. Opt. 10, 064011 (2008).

Pimpinelli, N.

Pizarro, C.

Ó. Martínez, M. Vilaseca, M. Arjona, C. Pizarro, and J. Pujol, “Use of light-emitting diodes in multispectral systems design: variability of spectral power distribution according to angle and time of usage,” J. Imaging Sci. Technol. 55, 050501 (2011).
[CrossRef]

Price, J. R.

Pujol, J.

Ramella-Roman, J. C.

Rigg, B.

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

Robotti, E.

E. Marengo, M. Manfredi, O. Zerbinati, E. Robotti, E. Mazzucco, F. Gosetti, G. Bearman, F. France, and P. Shor, “Technique based on LED multispectral imaging and multivariate analysis for monitoring the conservation state of the Dead Sea Scroll,” Anal. Chem. 83, 6609–6618 (2011).
[CrossRef]

Romero, J.

Rosen, M. R.

F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparative study of metrics for spectral match quality,” in Proceedings of the First European Conference on Colour in Graphics, Imaging and Vision (2002), pp. 492–496.

Sarvaiya, J.

J. Sarvaiya, S. Patnaik, and K. Kothari, “Image registration using log polar transform and phase correlation to recover higher scale,” J. Pattern Recogn. Res. 7, 90–105 (2012).

Schmitt, F.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002).
[CrossRef]

Shao, S.-J.

Sharma, G.

G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations,” Color Res. Appl. 30, 21–30 (2005).
[CrossRef]

Shen, H.-L.

Shimano, N.

Shor, P.

E. Marengo, M. Manfredi, O. Zerbinati, E. Robotti, E. Mazzucco, F. Gosetti, G. Bearman, F. France, and P. Shor, “Technique based on LED multispectral imaging and multivariate analysis for monitoring the conservation state of the Dead Sea Scroll,” Anal. Chem. 83, 6609–6618 (2011).
[CrossRef]

Shrestha, R.

R. Shrestha, A. Mansouri, and J. Y. Hardeberg, “Multispectral imaging using a stereo camera: concept, design and assessment,” EURASIP J. Adv. Signal Process. 2011, 57–71 (2011).
[CrossRef]

R. Shrestha, J. Y. Hardeberg, and A. Mansouri, “One-shot multispectral color imaging with a stereo camera,” Proc. SPIE 7876, 787609 (2011).
[CrossRef]

Sprigle, S.

L. Kong, D. Yi, S. Sprigle, F. Wang, C. Wang, F. Liu, A. Adibi, and R. Tummala, “Single sensor that outputs narrowband multispectral images,” J. Biomed. Opt. 15, 010502 (2010).
[CrossRef]

Steemers, T. A. G.

R. Padoan, T. A. G. Steemers, M. E. Klein, B. J. Aalderink, and G. de Bruin, “Quantitative hyperspectral imaging of historical documents: technique and applications,” in 9th International Conference on NDT of Art (2008), pp. 25–30.

Styles, I. B.

N. L. Everdell, I. B. Styles, A. S. Calcagni, J. Gibson, J. C. Hebden, and E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum. 81, 093706 (2010).
[CrossRef]

Sun, D.-W.

D. F. Barbin, G. ElMasry, D.-W. Sun, and P. Allen, “Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging,” Anal. Chim. Acta 719, 30–42 (2012).
[CrossRef]

Svanberg, S.

M. Brydegaard, A. Merdasa, H. Jayaweera, J. Ålebring, and S. Svanberg, “Versatile multispectral microscope based on light emitting diodes,” Rev. Sci. Instrum. 82, 123106 (2011).
[CrossRef]

Terai, K.

Thoury, M.

Tobin, K. W.

Tran, C. D.

C. D. Tran, “Principles, instrumentation, and applications of infrared multispectral imaging, an overview,” Anal.Lett. Part B 38, 735–752 (2005).

Trémeau, A.

M. Melgosa, A. Trémeau, and G. Cui, “Colour difference evaluation,” in Advanced Color Image Processing and Analysis, C. Fernandez-Maloigne, ed. (Springer, 2013), pp. 65–85.

Tummala, R.

L. Kong, D. Yi, S. Sprigle, F. Wang, C. Wang, F. Liu, A. Adibi, and R. Tummala, “Single sensor that outputs narrowband multispectral images,” J. Biomed. Opt. 15, 010502 (2010).
[CrossRef]

Vilaseca, M.

Wang, C.

L. Kong, D. Yi, S. Sprigle, F. Wang, C. Wang, F. Liu, A. Adibi, and R. Tummala, “Single sensor that outputs narrowband multispectral images,” J. Biomed. Opt. 15, 010502 (2010).
[CrossRef]

Wang, F.

L. Kong, D. Yi, S. Sprigle, F. Wang, C. Wang, F. Liu, A. Adibi, and R. Tummala, “Single sensor that outputs narrowband multispectral images,” J. Biomed. Opt. 15, 010502 (2010).
[CrossRef]

Wu, W.

G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations,” Color Res. Appl. 30, 21–30 (2005).
[CrossRef]

Xin, J. H.

Yasuda, B.

Yi, D.

L. Kong, D. Yi, S. Sprigle, F. Wang, C. Wang, F. Liu, A. Adibi, and R. Tummala, “Single sensor that outputs narrowband multispectral images,” J. Biomed. Opt. 15, 010502 (2010).
[CrossRef]

Zeibel, J. G.

Zerbinati, O.

E. Marengo, M. Manfredi, O. Zerbinati, E. Robotti, E. Mazzucco, F. Gosetti, G. Bearman, F. France, and P. Shor, “Technique based on LED multispectral imaging and multivariate analysis for monitoring the conservation state of the Dead Sea Scroll,” Anal. Chem. 83, 6609–6618 (2011).
[CrossRef]

Anal. Chem. (1)

E. Marengo, M. Manfredi, O. Zerbinati, E. Robotti, E. Mazzucco, F. Gosetti, G. Bearman, F. France, and P. Shor, “Technique based on LED multispectral imaging and multivariate analysis for monitoring the conservation state of the Dead Sea Scroll,” Anal. Chem. 83, 6609–6618 (2011).
[CrossRef]

Anal. Chim. Acta (1)

D. F. Barbin, G. ElMasry, D.-W. Sun, and P. Allen, “Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging,” Anal. Chim. Acta 719, 30–42 (2012).
[CrossRef]

Anal.Lett. Part B (1)

C. D. Tran, “Principles, instrumentation, and applications of infrared multispectral imaging, an overview,” Anal.Lett. Part B 38, 735–752 (2005).

Appl. Opt. (5)

Appl. Spectrosc. (1)

Color Res. Appl. (3)

G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations,” Color Res. Appl. 30, 21–30 (2005).
[CrossRef]

M. R. Luo, G. Cui, and B. Rigg, “The development of the CIE 2000 colour-difference formula: CIEDE2000,” Color Res. Appl. 26, 340–350 (2001).
[CrossRef]

K. Barnard and B. Funt, “Camera characterization for color research,” Color Res. Appl. 27, 152–163 (2002).
[CrossRef]

EURASIP J. Adv. Signal Process. (1)

R. Shrestha, A. Mansouri, and J. Y. Hardeberg, “Multispectral imaging using a stereo camera: concept, design and assessment,” EURASIP J. Adv. Signal Process. 2011, 57–71 (2011).
[CrossRef]

IEEE Trans. Acoust. (1)

H. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. 26, 508–517 (1978).
[CrossRef]

J. Biomed. Opt. (1)

L. Kong, D. Yi, S. Sprigle, F. Wang, C. Wang, F. Liu, A. Adibi, and R. Tummala, “Single sensor that outputs narrowband multispectral images,” J. Biomed. Opt. 15, 010502 (2010).
[CrossRef]

J. Imaging Sci. Technol. (1)

Ó. Martínez, M. Vilaseca, M. Arjona, C. Pizarro, and J. Pujol, “Use of light-emitting diodes in multispectral systems design: variability of spectral power distribution according to angle and time of usage,” J. Imaging Sci. Technol. 55, 050501 (2011).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

C. Bonifazzi, P. Carcagnì, R. Fontana, M. Greco, M. Mastroianni, M. Materazzi, E. Pampaloni, L. Pezzati, and D. Bencini, “A scanning device for VIS–NIR multispectral imaging of paintings,” J. Opt. A Pure Appl. Opt. 10, 064011 (2008).

J. Opt. Soc. Am. A (2)

J. Pattern Recogn. Res. (1)

J. Sarvaiya, S. Patnaik, and K. Kothari, “Image registration using log polar transform and phase correlation to recover higher scale,” J. Pattern Recogn. Res. 7, 90–105 (2012).

Opt. Eng. (4)

A. Kimachi, H. Ikuta, Y. Fujiwara, M. Masumoto, and H. Matsuyama, “Spectral matching imager using amplitude-modulation-coded multispectral light-emitting diode illumination,” Opt. Eng. 43, 975–985 (2004).
[CrossRef]

R. Lu and Y. Peng, “Development of a multispectral imaging prototype for real-time detection of apple fruit firmness,” Opt. Eng. 46, 123201 (2007).
[CrossRef]

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41, 2532–2548 (2002).
[CrossRef]

L. Fauch, E. Nippolainen, and A. A. Kamshilin, “Accuracy of the reflectance spectrum recovery in a light-emitting diode-based multispectral imaging system,” Opt. Eng. 51, 053201 (2012).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Proc. SPIE (1)

R. Shrestha, J. Y. Hardeberg, and A. Mansouri, “One-shot multispectral color imaging with a stereo camera,” Proc. SPIE 7876, 787609 (2011).
[CrossRef]

Rev. Sci. Instrum. (2)

N. L. Everdell, I. B. Styles, A. S. Calcagni, J. Gibson, J. C. Hebden, and E. Claridge, “Multispectral imaging of the ocular fundus using light emitting diode illumination,” Rev. Sci. Instrum. 81, 093706 (2010).
[CrossRef]

M. Brydegaard, A. Merdasa, H. Jayaweera, J. Ålebring, and S. Svanberg, “Versatile multispectral microscope based on light emitting diodes,” Rev. Sci. Instrum. 82, 123106 (2011).
[CrossRef]

Other (7)

Q. Weng, ed., Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications (CRC Press, 2011), p. 610.

J. Kiusalaas, Numerical Methods in Engineering with MATLAB (Cambridge University, 2005).

M. Melgosa, A. Trémeau, and G. Cui, “Colour difference evaluation,” in Advanced Color Image Processing and Analysis, C. Fernandez-Maloigne, ed. (Springer, 2013), pp. 65–85.

M. Kubik, “Hyperspectral imaging: a new technique for the non-invasive study of artworks,” in Physical Techniques in the Study of Art, Archaeology and Cultural Heritage, D. Creagh and D. Bradley, eds. (Elsevier, 2007), Vol. 2, pp. 199–259.

R. Padoan, T. A. G. Steemers, M. E. Klein, B. J. Aalderink, and G. de Bruin, “Quantitative hyperspectral imaging of historical documents: technique and applications,” in 9th International Conference on NDT of Art (2008), pp. 25–30.

T. Nägele, “White light LEDs—importance of accepted measurement standards,” LED Prof. Rev. (10) 22–26 (2008).

F. H. Imai, M. R. Rosen, and R. S. Berns, “Comparative study of metrics for spectral match quality,” in Proceedings of the First European Conference on Colour in Graphics, Imaging and Vision (2002), pp. 492–496.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Portable multispectral system setup.

Fig. 2.
Fig. 2.

Emission spectra of LEDs. (a) of module 1 and (b) of module 2. Measurements were carried out with commercial scanning spectrometer model Spectro 320 R5 of Instrument Systems.

Fig. 3.
Fig. 3.

Distribution of the LEDs in the illumination module (a) picture of one of the modules of the prototype and (b) illustrative sketch of the distribution of the LEDs according to their emission wavelength.

Fig. 4.
Fig. 4.

Spectral curves of the classic Macbeth ColorChecker (CCCR) divided into two groups of 12 samples (a), (c) the spectral range of module 1, (b), (d) the spectral range of module 2. The curves were measured with commercial scanning spectrometer model Spectro 320 R5 of Instrument Systems.

Fig. 5.
Fig. 5.

Spectral reflectances of the cyan color patch in simulations under ideal, quantization, and joint additive random and quantization noise conditions. (a) Results for module 1 using the pseudoinverse reconstruction method, (b) results for module 2 using the pseudoinverse reconstruction method, (c) results for module 1 using the spline interpolation method, and (d) results for module 2 using the spline interpolation method. Real curves were obtained with commercial scanning spectrometer model Spectro 320 R5 of Instrument Systems. Ideal curves are not visible, since they are exactly located under the quantization ones.

Fig. 6.
Fig. 6.

RGB image and the 23 spectral images from the CCCR chart obtained with the study system.

Fig. 7.
Fig. 7.

Spectral reflectances of the cyan color patch in experimental measurements: (a) results for module 1, (b) results for module 2. Real curves were obtained with commercial scanning spectrometer model Spectro 320 R5 of Instrument Systems.

Fig. 8.
Fig. 8.

Palette of pigments built emulating the fresco technique applied in wall paintings.

Fig. 9.
Fig. 9.

Spectral reflectance reconstruction for two real samples with green and red pigments using spline interpolation (Interp.) and pseudoinverse (PSE) with the CCCR chart spectral reflectances as the training set. (a) Result for module 1, (b) result for module 2. Real curves were obtained with commercial scanning spectrometer model Spectro 320 R5 of Instrument Systems.

Tables (5)

Tables Icon

Table 1. Evaluation Metric Results in Simulations under Ideal Conditions for the CCCR Color Patchesa

Tables Icon

Table 2. Evaluation Metric Results in Simulations under Quantization Noise Influence for the CCCR Color Patchesa

Tables Icon

Table 3. Evaluation Metrics in Simulations under the Influence of Quantization and Additive Random Noise for the CCCR Color Patchesa

Tables Icon

Table 4. Evaluation Metrics of Spectral Reconstruction of the CCCR in Real Measurementsa

Tables Icon

Table 5. Evaluation Metrics for the Red and Green Samples to test the Spectral Reconstruction Using Pseudoinverse Method with a Different Training Seta

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Xi=λIi(λ)R(λ)S(λ)dλ,
x=CTr,
D=RtXtT(XtXtT)1,
GFC=|jro(λj)r(λj)|{j[ro(λj)]2j[r(λj)]2}1/2,

Metrics