Abstract

An octagonal photonic crystal fiber (PCF) with an elliptical shape in the center core is numerically investigated for residual dispersion compensation in the wavelength range 1460–1675 nm. The designed fiber exhibits flattened negative dispersion over the S + C + L + U wavelength bands and an average dispersion of 465.5ps/(nm·km) with an absolute dispersion variation of 10.5ps/(nm·km). In addition, the proposed PCF shows a high birefringence of 2.68×102 at the operating wavelength 1550 nm, which meets the requirement of high birefringence. Moreover, the variation of two air holes in the first ring up to 5% ensures an average dispersion of 491.5ps/(nm·km) with a dispersion variation of 13ps/(nm·km), and birefringence reaches up to 3×102. Furthermore, to evaluate the sensitivity of the fiber dispersion properties, ±5% variation in the optimum parameters is studied.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. A. Razzak, Y. Namihira, and F. Begum, “Ultra flattened dispersion photonic crystal fiber,” Electron. Lett. 43, 615–617 (2007).
    [CrossRef]
  2. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852 (2003).
    [CrossRef]
  3. T. Matsui, J. Zhou, K. Nakajima, and I. Sankawa, “Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss,” J. Lightwave Technol. 23, 4178–4183 (2005).
    [CrossRef]
  4. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002), pp. 15–64.
  5. M. Koshiba and K. Saitoh, “Structural dependence of effective area and mode field diameter for holey fibers,” Opt. Express 11, 1746–1756 (2003).
    [CrossRef]
  6. S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, “Numerical investigation and optimization of a photonic crystal fiber for simultaneous dispersion compensation over S + C + L wavelength bands,” Opt. Commun. 274, 74–79 (2007).
    [CrossRef]
  7. J. P. da Silva, D. S. Bezerra, V. F. R. Esquerre, I. E. Fonseca, and H. E. H. Figueroa, “Ge-doped defect-core microstructured fiber design by genetic algorithm for residual dispersion compensation,” IEEE Photon. Technol. Lett. 22, 1337–1339 (2010).
    [CrossRef]
  8. M. A. R. Franco, V. A. Serrão, and F. Sircilli, “Microstructured optical fiber for residual dispersion compensation over S + C + L + U wavelength bands,” IEEE Photon. Technol. Lett. 20, 751–753 (2008).
    [CrossRef]
  9. M. A. Islam and M. S. Alam, “Design of a polarization-maintaining equiangular spiral photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands,” IEEE Photon. Technol. Lett. 24, 930–932 (2012).
    [CrossRef]
  10. M. A. Islam and M. S. Alam, “Design optimization of equiangular spiral photonic crystal fiber for large negative flat dispersion and high birefringence,” J. Lightwave Technol. 30, 3545–3551 (2012).
    [CrossRef]
  11. D. C. Tee, M. H. A. Bakar, N. Tamchek, and F. R. M. Adikan, “Photonic crystal fiber in photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands,” IEEE Photon. J. 5, 7200607 (2013).
    [CrossRef]
  12. M. Selim Habib, M. Samiul Habib, S. M. A. Razzak, and M. A. Hossain, “Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber,” Opt. Fiber Technol. 19, 461–467 (2013).
    [CrossRef]
  13. S. M. A. Razzak and Y. Namihira, “Tailoring dispersion and confinement losses of photonic crystal fibers using hybrid cladding,” J. Lightwave Technol. 26, 1909–1914 (2008).
    [CrossRef]
  14. S. M. A. Razzak, Y. Namihira, A. Y. Saber, and M. A. G. Khan, “Dispersion tolerance of various photonic crystal fibers,” Int. J. Optomechatron. 1, 359–368 (2007).
    [CrossRef]
  15. S. M. A. Razzak and Y. Namihira, “Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers,” IEEE Photon. Technol. Lett. 20, 249–251 (2008).
    [CrossRef]
  16. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28, 989–991 (2003).
    [CrossRef]
  17. A. Agrawal, N. Kejalakshmy, J. Chen, B. M. A. Rahman, and K. T. V. Grattan, “Golden spiral photonic crystal fiber: polarization and dispersion properties,” Opt. Lett. 33, 2716–2718 (2008).
    [CrossRef]
  18. J. Ju, W. Jin, and M. S. Demokan, “Design of a single polarization single mode photonic crystal fiber at 1.30 and 1.55  μm,” J. Lightwave Technol. 24, 825–830 (2006).
    [CrossRef]
  19. T. Ritari and H. Ludvigsen, “Experimental study of polarization properties of highly birefringent photonic crystal fibers,” Opt. Express 12, 5931–5939 (2004).
    [CrossRef]
  20. L. Xiao, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett. 32, 115–117 (2007).
    [CrossRef]
  21. S. G. L. Saval, T. A. Birks, N. Y. Joy, A. K. George, W. J. Wadsworth, G. Kakarantzas, and P. St. J. Rusell, “Splice-free interfacing of photonic crystal fibers,” Opt. Lett. 30, 1629–1631 (2005).
    [CrossRef]
  22. M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. A. Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20, 32–38 (2014).
    [CrossRef]
  23. S. Kim, C. S. Kee, and C. G. Lee, “Modified rectangular lattice photonic crystal fibers with high birefringence and negative dispersion,” Opt. Express 17, 7952–7957 (2009).
    [CrossRef]
  24. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and P. Hansen, “Modal cutoff and the V parameter in photonic crystal fibers,” Opt. Lett. 28, 1879–1881 (2003).
    [CrossRef]
  25. R. K. Gangwar, S. S. Mishra, and V. K. Singh, “Designing of endlessly single mode polarization maintaining highly birefringent nonlinear micro-structure fiber at telecommunication window by FV-FEM,” Optik 125, 1641–1645 (2014).
    [CrossRef]

2014 (2)

M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. A. Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20, 32–38 (2014).
[CrossRef]

R. K. Gangwar, S. S. Mishra, and V. K. Singh, “Designing of endlessly single mode polarization maintaining highly birefringent nonlinear micro-structure fiber at telecommunication window by FV-FEM,” Optik 125, 1641–1645 (2014).
[CrossRef]

2013 (2)

D. C. Tee, M. H. A. Bakar, N. Tamchek, and F. R. M. Adikan, “Photonic crystal fiber in photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands,” IEEE Photon. J. 5, 7200607 (2013).
[CrossRef]

M. Selim Habib, M. Samiul Habib, S. M. A. Razzak, and M. A. Hossain, “Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber,” Opt. Fiber Technol. 19, 461–467 (2013).
[CrossRef]

2012 (2)

M. A. Islam and M. S. Alam, “Design of a polarization-maintaining equiangular spiral photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands,” IEEE Photon. Technol. Lett. 24, 930–932 (2012).
[CrossRef]

M. A. Islam and M. S. Alam, “Design optimization of equiangular spiral photonic crystal fiber for large negative flat dispersion and high birefringence,” J. Lightwave Technol. 30, 3545–3551 (2012).
[CrossRef]

2010 (1)

J. P. da Silva, D. S. Bezerra, V. F. R. Esquerre, I. E. Fonseca, and H. E. H. Figueroa, “Ge-doped defect-core microstructured fiber design by genetic algorithm for residual dispersion compensation,” IEEE Photon. Technol. Lett. 22, 1337–1339 (2010).
[CrossRef]

2009 (1)

2008 (4)

S. M. A. Razzak and Y. Namihira, “Tailoring dispersion and confinement losses of photonic crystal fibers using hybrid cladding,” J. Lightwave Technol. 26, 1909–1914 (2008).
[CrossRef]

A. Agrawal, N. Kejalakshmy, J. Chen, B. M. A. Rahman, and K. T. V. Grattan, “Golden spiral photonic crystal fiber: polarization and dispersion properties,” Opt. Lett. 33, 2716–2718 (2008).
[CrossRef]

M. A. R. Franco, V. A. Serrão, and F. Sircilli, “Microstructured optical fiber for residual dispersion compensation over S + C + L + U wavelength bands,” IEEE Photon. Technol. Lett. 20, 751–753 (2008).
[CrossRef]

S. M. A. Razzak and Y. Namihira, “Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers,” IEEE Photon. Technol. Lett. 20, 249–251 (2008).
[CrossRef]

2007 (4)

S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, “Numerical investigation and optimization of a photonic crystal fiber for simultaneous dispersion compensation over S + C + L wavelength bands,” Opt. Commun. 274, 74–79 (2007).
[CrossRef]

S. M. A. Razzak, Y. Namihira, A. Y. Saber, and M. A. G. Khan, “Dispersion tolerance of various photonic crystal fibers,” Int. J. Optomechatron. 1, 359–368 (2007).
[CrossRef]

S. M. A. Razzak, Y. Namihira, and F. Begum, “Ultra flattened dispersion photonic crystal fiber,” Electron. Lett. 43, 615–617 (2007).
[CrossRef]

L. Xiao, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett. 32, 115–117 (2007).
[CrossRef]

2006 (1)

2005 (2)

2004 (1)

2003 (4)

Adikan, F. R. M.

D. C. Tee, M. H. A. Bakar, N. Tamchek, and F. R. M. Adikan, “Photonic crystal fiber in photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands,” IEEE Photon. J. 5, 7200607 (2013).
[CrossRef]

Agrawal, A.

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002), pp. 15–64.

Alam, M. S.

M. A. Islam and M. S. Alam, “Design of a polarization-maintaining equiangular spiral photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands,” IEEE Photon. Technol. Lett. 24, 930–932 (2012).
[CrossRef]

M. A. Islam and M. S. Alam, “Design optimization of equiangular spiral photonic crystal fiber for large negative flat dispersion and high birefringence,” J. Lightwave Technol. 30, 3545–3551 (2012).
[CrossRef]

Bakar, M. H. A.

D. C. Tee, M. H. A. Bakar, N. Tamchek, and F. R. M. Adikan, “Photonic crystal fiber in photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands,” IEEE Photon. J. 5, 7200607 (2013).
[CrossRef]

Begum, F.

S. M. A. Razzak, Y. Namihira, and F. Begum, “Ultra flattened dispersion photonic crystal fiber,” Electron. Lett. 43, 615–617 (2007).
[CrossRef]

Bezerra, D. S.

J. P. da Silva, D. S. Bezerra, V. F. R. Esquerre, I. E. Fonseca, and H. E. H. Figueroa, “Ge-doped defect-core microstructured fiber design by genetic algorithm for residual dispersion compensation,” IEEE Photon. Technol. Lett. 22, 1337–1339 (2010).
[CrossRef]

Birks, T. A.

Chen, J.

da Silva, J. P.

J. P. da Silva, D. S. Bezerra, V. F. R. Esquerre, I. E. Fonseca, and H. E. H. Figueroa, “Ge-doped defect-core microstructured fiber design by genetic algorithm for residual dispersion compensation,” IEEE Photon. Technol. Lett. 22, 1337–1339 (2010).
[CrossRef]

Demokan, M. S.

Esquerre, V. F. R.

J. P. da Silva, D. S. Bezerra, V. F. R. Esquerre, I. E. Fonseca, and H. E. H. Figueroa, “Ge-doped defect-core microstructured fiber design by genetic algorithm for residual dispersion compensation,” IEEE Photon. Technol. Lett. 22, 1337–1339 (2010).
[CrossRef]

Figueroa, H. E. H.

J. P. da Silva, D. S. Bezerra, V. F. R. Esquerre, I. E. Fonseca, and H. E. H. Figueroa, “Ge-doped defect-core microstructured fiber design by genetic algorithm for residual dispersion compensation,” IEEE Photon. Technol. Lett. 22, 1337–1339 (2010).
[CrossRef]

Florous, N. J.

S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, “Numerical investigation and optimization of a photonic crystal fiber for simultaneous dispersion compensation over S + C + L wavelength bands,” Opt. Commun. 274, 74–79 (2007).
[CrossRef]

Folkenberg, J. R.

Fonseca, I. E.

J. P. da Silva, D. S. Bezerra, V. F. R. Esquerre, I. E. Fonseca, and H. E. H. Figueroa, “Ge-doped defect-core microstructured fiber design by genetic algorithm for residual dispersion compensation,” IEEE Photon. Technol. Lett. 22, 1337–1339 (2010).
[CrossRef]

Franco, M. A. R.

M. A. R. Franco, V. A. Serrão, and F. Sircilli, “Microstructured optical fiber for residual dispersion compensation over S + C + L + U wavelength bands,” IEEE Photon. Technol. Lett. 20, 751–753 (2008).
[CrossRef]

Fujisawa, T.

S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, “Numerical investigation and optimization of a photonic crystal fiber for simultaneous dispersion compensation over S + C + L wavelength bands,” Opt. Commun. 274, 74–79 (2007).
[CrossRef]

Gangwar, R. K.

R. K. Gangwar, S. S. Mishra, and V. K. Singh, “Designing of endlessly single mode polarization maintaining highly birefringent nonlinear micro-structure fiber at telecommunication window by FV-FEM,” Optik 125, 1641–1645 (2014).
[CrossRef]

George, A. K.

Grattan, K. T. V.

Hansen, P.

Hasan, M. I.

M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. A. Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20, 32–38 (2014).
[CrossRef]

Hasegawa, T.

Hossain, M. A.

M. Selim Habib, M. Samiul Habib, S. M. A. Razzak, and M. A. Hossain, “Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber,” Opt. Fiber Technol. 19, 461–467 (2013).
[CrossRef]

Islam, M. A.

M. A. Islam and M. S. Alam, “Design optimization of equiangular spiral photonic crystal fiber for large negative flat dispersion and high birefringence,” J. Lightwave Technol. 30, 3545–3551 (2012).
[CrossRef]

M. A. Islam and M. S. Alam, “Design of a polarization-maintaining equiangular spiral photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands,” IEEE Photon. Technol. Lett. 24, 930–932 (2012).
[CrossRef]

Jin, W.

Joy, N. Y.

Ju, J.

Kakarantzas, G.

Kee, C. S.

Kejalakshmy, N.

Khan, M. A. G.

S. M. A. Razzak, Y. Namihira, A. Y. Saber, and M. A. G. Khan, “Dispersion tolerance of various photonic crystal fibers,” Int. J. Optomechatron. 1, 359–368 (2007).
[CrossRef]

Kim, S.

Koshiba, M.

S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, “Numerical investigation and optimization of a photonic crystal fiber for simultaneous dispersion compensation over S + C + L wavelength bands,” Opt. Commun. 274, 74–79 (2007).
[CrossRef]

M. Koshiba and K. Saitoh, “Structural dependence of effective area and mode field diameter for holey fibers,” Opt. Express 11, 1746–1756 (2003).
[CrossRef]

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852 (2003).
[CrossRef]

Kuhlmey, B.

Lee, C. G.

Ludvigsen, H.

Matsui, T.

McPhedran, R.

Mishra, S. S.

R. K. Gangwar, S. S. Mishra, and V. K. Singh, “Designing of endlessly single mode polarization maintaining highly birefringent nonlinear micro-structure fiber at telecommunication window by FV-FEM,” Optik 125, 1641–1645 (2014).
[CrossRef]

Mortensen, N. A.

Nakajima, K.

Namihira, Y.

S. M. A. Razzak and Y. Namihira, “Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers,” IEEE Photon. Technol. Lett. 20, 249–251 (2008).
[CrossRef]

S. M. A. Razzak and Y. Namihira, “Tailoring dispersion and confinement losses of photonic crystal fibers using hybrid cladding,” J. Lightwave Technol. 26, 1909–1914 (2008).
[CrossRef]

S. M. A. Razzak, Y. Namihira, A. Y. Saber, and M. A. G. Khan, “Dispersion tolerance of various photonic crystal fibers,” Int. J. Optomechatron. 1, 359–368 (2007).
[CrossRef]

S. M. A. Razzak, Y. Namihira, and F. Begum, “Ultra flattened dispersion photonic crystal fiber,” Electron. Lett. 43, 615–617 (2007).
[CrossRef]

Nielsen, M. D.

Rahman, B. M. A.

Razzak, S. M. A.

M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. A. Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20, 32–38 (2014).
[CrossRef]

M. Selim Habib, M. Samiul Habib, S. M. A. Razzak, and M. A. Hossain, “Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber,” Opt. Fiber Technol. 19, 461–467 (2013).
[CrossRef]

S. M. A. Razzak and Y. Namihira, “Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers,” IEEE Photon. Technol. Lett. 20, 249–251 (2008).
[CrossRef]

S. M. A. Razzak and Y. Namihira, “Tailoring dispersion and confinement losses of photonic crystal fibers using hybrid cladding,” J. Lightwave Technol. 26, 1909–1914 (2008).
[CrossRef]

S. M. A. Razzak, Y. Namihira, A. Y. Saber, and M. A. G. Khan, “Dispersion tolerance of various photonic crystal fibers,” Int. J. Optomechatron. 1, 359–368 (2007).
[CrossRef]

S. M. A. Razzak, Y. Namihira, and F. Begum, “Ultra flattened dispersion photonic crystal fiber,” Electron. Lett. 43, 615–617 (2007).
[CrossRef]

Renversez, G.

Ritari, T.

Rusell, P. St. J.

Saber, A. Y.

S. M. A. Razzak, Y. Namihira, A. Y. Saber, and M. A. G. Khan, “Dispersion tolerance of various photonic crystal fibers,” Int. J. Optomechatron. 1, 359–368 (2007).
[CrossRef]

Saitoh, K.

S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, “Numerical investigation and optimization of a photonic crystal fiber for simultaneous dispersion compensation over S + C + L wavelength bands,” Opt. Commun. 274, 74–79 (2007).
[CrossRef]

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843–852 (2003).
[CrossRef]

M. Koshiba and K. Saitoh, “Structural dependence of effective area and mode field diameter for holey fibers,” Opt. Express 11, 1746–1756 (2003).
[CrossRef]

Samiul Habib, M.

M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. A. Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20, 32–38 (2014).
[CrossRef]

M. Selim Habib, M. Samiul Habib, S. M. A. Razzak, and M. A. Hossain, “Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber,” Opt. Fiber Technol. 19, 461–467 (2013).
[CrossRef]

Sankawa, I.

Sasaoka, E.

Saval, S. G. L.

Selim Habib, M.

M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. A. Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20, 32–38 (2014).
[CrossRef]

M. Selim Habib, M. Samiul Habib, S. M. A. Razzak, and M. A. Hossain, “Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber,” Opt. Fiber Technol. 19, 461–467 (2013).
[CrossRef]

Serrão, V. A.

M. A. R. Franco, V. A. Serrão, and F. Sircilli, “Microstructured optical fiber for residual dispersion compensation over S + C + L + U wavelength bands,” IEEE Photon. Technol. Lett. 20, 751–753 (2008).
[CrossRef]

Singh, V. K.

R. K. Gangwar, S. S. Mishra, and V. K. Singh, “Designing of endlessly single mode polarization maintaining highly birefringent nonlinear micro-structure fiber at telecommunication window by FV-FEM,” Optik 125, 1641–1645 (2014).
[CrossRef]

Sircilli, F.

M. A. R. Franco, V. A. Serrão, and F. Sircilli, “Microstructured optical fiber for residual dispersion compensation over S + C + L + U wavelength bands,” IEEE Photon. Technol. Lett. 20, 751–753 (2008).
[CrossRef]

Tamchek, N.

D. C. Tee, M. H. A. Bakar, N. Tamchek, and F. R. M. Adikan, “Photonic crystal fiber in photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands,” IEEE Photon. J. 5, 7200607 (2013).
[CrossRef]

Tee, D. C.

D. C. Tee, M. H. A. Bakar, N. Tamchek, and F. R. M. Adikan, “Photonic crystal fiber in photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands,” IEEE Photon. J. 5, 7200607 (2013).
[CrossRef]

Varshney, S. K.

S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, “Numerical investigation and optimization of a photonic crystal fiber for simultaneous dispersion compensation over S + C + L wavelength bands,” Opt. Commun. 274, 74–79 (2007).
[CrossRef]

Wadsworth, W. J.

Xiao, L.

Zhou, J.

Electron. Lett. (1)

S. M. A. Razzak, Y. Namihira, and F. Begum, “Ultra flattened dispersion photonic crystal fiber,” Electron. Lett. 43, 615–617 (2007).
[CrossRef]

IEEE Photon. J. (1)

D. C. Tee, M. H. A. Bakar, N. Tamchek, and F. R. M. Adikan, “Photonic crystal fiber in photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands,” IEEE Photon. J. 5, 7200607 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

S. M. A. Razzak and Y. Namihira, “Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers,” IEEE Photon. Technol. Lett. 20, 249–251 (2008).
[CrossRef]

J. P. da Silva, D. S. Bezerra, V. F. R. Esquerre, I. E. Fonseca, and H. E. H. Figueroa, “Ge-doped defect-core microstructured fiber design by genetic algorithm for residual dispersion compensation,” IEEE Photon. Technol. Lett. 22, 1337–1339 (2010).
[CrossRef]

M. A. R. Franco, V. A. Serrão, and F. Sircilli, “Microstructured optical fiber for residual dispersion compensation over S + C + L + U wavelength bands,” IEEE Photon. Technol. Lett. 20, 751–753 (2008).
[CrossRef]

M. A. Islam and M. S. Alam, “Design of a polarization-maintaining equiangular spiral photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands,” IEEE Photon. Technol. Lett. 24, 930–932 (2012).
[CrossRef]

Int. J. Optomechatron. (1)

S. M. A. Razzak, Y. Namihira, A. Y. Saber, and M. A. G. Khan, “Dispersion tolerance of various photonic crystal fibers,” Int. J. Optomechatron. 1, 359–368 (2007).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Commun. (1)

S. K. Varshney, N. J. Florous, K. Saitoh, M. Koshiba, and T. Fujisawa, “Numerical investigation and optimization of a photonic crystal fiber for simultaneous dispersion compensation over S + C + L wavelength bands,” Opt. Commun. 274, 74–79 (2007).
[CrossRef]

Opt. Express (4)

Opt. Fiber Technol. (2)

M. Selim Habib, M. Samiul Habib, S. M. A. Razzak, and M. A. Hossain, “Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber,” Opt. Fiber Technol. 19, 461–467 (2013).
[CrossRef]

M. I. Hasan, M. Selim Habib, M. Samiul Habib, and S. M. A. Razzak, “Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber,” Opt. Fiber Technol. 20, 32–38 (2014).
[CrossRef]

Opt. Lett. (5)

Optik (1)

R. K. Gangwar, S. S. Mishra, and V. K. Singh, “Designing of endlessly single mode polarization maintaining highly birefringent nonlinear micro-structure fiber at telecommunication window by FV-FEM,” Optik 125, 1641–1645 (2014).
[CrossRef]

Other (1)

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002), pp. 15–64.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Transverse cross section of the proposed O-PCF with optimized structural parameters d, d1, and d2.

Fig. 2.
Fig. 2.

Fundamental electric field properties at 1550 nm wavelength: (a) x polarization, (b) y polarization.

Fig. 3.
Fig. 3.

Flattened chromatic dispersion over the S + C + L + U bands and comparison with other structures.

Fig. 4.
Fig. 4.

(a) Confinement loss as a function of wavelength for Nr=5 and 9, (b) dispersion curve for two different rings.

Fig. 5.
Fig. 5.

Birefringence as a function of wavelength for optimum design parameters.

Fig. 6.
Fig. 6.

Effective area and splice loss as a function of wavelength for optimum design parameters.

Fig. 7.
Fig. 7.

Dispersion as a function of wavelength for variation of diameter d1 of the first ring of ±2% and ±5%.

Fig. 8.
Fig. 8.

Birefringence as a function of wavelength for variation of diameter d1 of the first ring of ±2% and ±5%.

Fig. 9.
Fig. 9.

Dispersion as a function of wavelength for variation of diameter d of two air holes in the first ring along the y axis of ±2% and ±5%.

Fig. 10.
Fig. 10.

Effective V parameter, Veff, as a function of wavelength for optimum design parameters.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D(λ)=λcd2Re[neff]dλ2,
Lc=8.686×k0Im[neff]×103dB/km,

Metrics